

SUCCESS COMES WITH SUSTAINED HARD WORK UNDER EXPERTS' GUIDANCE

Toppers in JEE (Advanced) 2018

ADMISSION OPEN for Session 2019-20

CLASSES:

7 8 9 10 11 12

TARGET: JEE (Main+Advanced) JEE (Main) | AIIMS/ NEET Pre-foundation

SCHOLARSHIP UPTO 90%

Entrance Test Dates: 17th, 31st March & 7th April 2019

Pre-foundation Career Care Programmes (PCCP) Division

PRE-BOARD_SESSION-2018-19

SUBJECT : MATHEMATICS

CLASS-X (CBSE PATTERN)

Time: 3 Hours

Max. Marks : 80

Please read the instructions carefully. You are allotted 5 minutes specifically for this purpose.

INSTRUCTIONS

- a) All questions are compulsory.
- b) The question paper consists of 30 questions divided into four sections A, B, C and D.
- c) Section A contains 6 questions of 1 mark each which are subjective questions, Section B contains 6 questions of 2 marks each, Section C contains 10 questions of 3 marks each, Section D contains 8 questions of 4 marks.
- d) Use of calculator is not permitted.

I have read all the instructions and shall abide by them I have verified the identity, name and roll number of the candidate.

Signature of the Candidate

Signature of the Invigilator

PCCP Head Office :

Address : Plot No. A-51 [A], IPIA, Near Resonance CG Tower, Behind City Mall, Jhalawar Road, Kota (Rajasthan)-324005 Contact. No. : +91-0744-6635569, Fax : 0744-2427146 Website : www.pccp.resonance.ac.in E-mail : pccp@resonance.ac.in

Section-A

- **1.** The coordinates of one end point of a diameter of a circle are (4, -1) and the coordinates of the centre of the circle are (1, -3). Find the coordinates of the other end of the diameter.
- **2.** Find the roots of the quadratic equation $x^2 + 2\sqrt{2}x 6 = 0$ by using the quadratic formula.

OR

Show that the roots of the equation $x^2 + ax - 4 = 0$ (where $a \in R$) are real and distinct

3. Find the value of expression $\frac{\sin 30^\circ + \tan 45^\circ - \sec 60^\circ}{\csc 30^\circ - \cot 45^\circ - \cos 60^\circ}$

OR

Find the value of the expression $(\cos\theta - 1)(1 + \cos\theta) (1 + \cot^2\theta)$.

- 4. Find the 11th term of the AP : -5, $\frac{-5}{2}$, 0, $\frac{5}{2}$, ...
- **5.** \triangle ABC and \triangle PQR are similar triangles such that \angle A = 32° and \angle R = 65°, then find \angle B.
- **6.** Write the statement of fundamental theorem of arithmetics.

Section-B

7. Show that 12ⁿ cannot end with the digit 0 or 5 for any natural number n.

OR

Use Euclid's division algorithm to find the HCF of 10224 and 9648.

8. In an A. P. 5 times the 5th term is equal to 8 times the 8^{th} term, then find its 13^{th} term .

OR

Which term of the AP: 53, 48, 43,... is the first negative term ?

- **9.** Show that the points (1, 1), (-2, 7) and (3, -3) are collinear.
- **10.** A school has five houses A, B, C, D and E. A class has 23 students, 4 from house A, 8 from house B, 5 from house C, 2 from house D and rest from house E. A single student is selected at random to be the class monitor. Then find the probability that the selected student is not from A, B and C
- An integer is chosen between 0 and 100. What is the probability that it is (i) divisible by 7 ? (ii) not divisible by 7 ?
- 12. Find the values of x and y in the following rectangle [see Figure].

 Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

 PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower Contact : 91-0744-6635569

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in

 PRE-BOARD(MATHEMATICS)

 Toll Free : | 1800 258 5555 | CIN: U80302RJ2007PLC024029

Section-C

- Prove that $5 2\sqrt{3}$ is an irrational number 13.
- 14. If α and β are the zeroes of the quadratic polynomial $f(x) = x^2 - 1$, then find a quadratic polynomial whose zeroes are $\frac{2\alpha}{\beta}$ and $\frac{2\beta}{\alpha}$.
- Solve : $\frac{25}{x+y} \frac{3}{x-y} = 1$, $\frac{40}{x+y} + \frac{2}{x-y} = 5$ 15.
- Find the points on the x-axis which are at a distance of $2\sqrt{5}$ from the point (7, 4). How many such 16. points are there ?

OR

Let P and Q be the points of trisection of the line segment joining the points A(2, -2) and B(-7, 4) such that P is nearer to A. Find the coordinates of P and Q.

17. Evaluate :

 $\frac{\cos^2 20^\circ + \cos^2 70^\circ}{\sec^2 50^\circ - \cot^2 40^\circ} + 2 \csc^2 58^\circ - 2 \cot 58^\circ \tan 32^\circ - 4 \tan 13^\circ \tan 37^\circ \tan 45^\circ \tan 53^\circ \tan 77^\circ$

OR

Given 2y cos θ = x sin θ and 2x sec θ – y cosec θ = 3, then find the value of x² + 4y².

18. If AB is a chord of a circle with centre O, AOC is a diameter and AT is the tangent at A as shown in figure. Prove that $\angle BAT = \angle ACB$.

19. A vertical tower stands on a horizontal plane and is surmounted by a vertical flag staff of height h. At a point on the plane, the angles of elevation of the bottom and the top of the flag staff are α and β , respectively. Prove that the height of the tower is $\left(\frac{h \tan \alpha}{\tan \beta - \tan \alpha}\right)$.

- 20. An archery target has three regions formed by three concentric circles as shown in figure. If the diameters of the concentric circles are in the ratio 1: 2:3, then find the ratio of the areas of three regions.

All the vertices of a rhombus lie on a circle. Find the area of the rhombus, if area of the circle is 1256 cm². (Use π = 3.14).

Resonance®	Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005 PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower Contact : 91-0744-6635569			
Educating for better tomorrow	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in PRE-BOARD(MATHEMATICS			
Pre-foundation Career Care Programmes (PCCP) Division	Toll Free : 1800 258 5555 <u>CIN: U80302RJ2007PLC024029</u>	CLASS-X_PAGE-3		

21. A hollow cube of internal edge 22cm is filled with spherical marbles of diameter 0.5 cm and it is assumed that $\frac{1}{8}$ space of the cube remains unfilled. Then find the number of marbles that the cube can accomodate.

OR

A metallic spherical shell of internal and external diameters 4 cm and 8 cm, respectively is melted and recast into the form a cone of base diameter 8cm. Find the height of the cone.

22. The mean of the following frequency distribution is 25.2. Find the missing frequency x

C.I.	0-10	10-20	20-30	30-40	40-50
Frequency	8	х	10	11	9

Section-D

23. Solve for x : $\frac{1}{(x-1)(x-2)} + \frac{1}{(x-2)(x-3)} = \frac{2}{3}$, x \neq 1 ,2 , 3

OR

A motor boat whose speed is 24 km/h in still water takes 1 hour more to go 32 km upstream than to return downstream to the same spot. Find the speed of the stream.

- 24. The sum of three numbers in A.P. is 12 and the sum of their cubes is 288. Find the numbers.
- **25.** In figure, D and E trisect BC, then prove that $8AE^2 = 3AC^2 + 5AD^2$.

- **26.** Construct a triangle ABC with side BC = 7 cm, $\angle B = 45^\circ$, $\angle A = 105^\circ$. Then construct another triangle whose sides are $\frac{3}{4}$ times the corresponding sides of the \triangle ABC.
- **27.** A man on a cliff observes a boat at an angle of depression of 30° which is approaching the shore to the point immediately beneath the observer with a uniform speed. Six minutes later, the angle of depression of the boat is found to be 60°. Find the total time taken by the boat from the initial point to reach the shore.

OR

At a point, the angle of elevation of a tower is such that its tangent is $\frac{5}{12}$. On walking 240 m nearer the

tower, the tangent of the angle of elevation becomes $\frac{3}{4}$. Find the height of the tower.

八	Resonance®	Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhal PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tow	awar Road, Kota (Raj.) – 324005 ver Contact : 91-0744-6635569
$ \land \rangle$	Educating for better tomorrow	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	PRE-BOARD(MATHEMATICS)
Pre-founda	tion Career Care Programmes (PCCP) Division	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	CLASS-X_PAGE-4

28. The mean of the following frequency distribution is 50, but the frequencies f_1 and f_2 in classes 20-40 and 60-80, respectively are not known. Find these frequencies, if the sum of all the frequencies is 120.

Class	0-20	20-40	40-60	60-80	80-100
Frequency	17	f ₁	32	f ₂	19

OR

The median of the following data is 50. Find the values of p and q, if the sum of all the frequencies is 90.

Marks	Frequency	
20-30	р	
30-40	15	
40-50	25	
50-60	20	
60-70	q	
70-80	8	
80-90	10	

29. Water flows at the rate of 10m/minute through a cylindrical pipe 5 mm in diameter. How long would it take to fill a conical vessel whose diameter at the base is 40 cm and depth 24m ?

30. Prove that $\frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta} = \sec \theta \csc \theta + 1.$

 Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

 PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower Contact : 91-0744-6635569

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in

 PRE-BOARD(MATHEMATICS)

 Toll Free : | 1800 258 5555 | CIN: U80302RJ2007PLC024029

PRE-BOARD-SESSION-2018-19 SUBJECT : MATHEMATICS CLASS-X(CBSE PATTERN)

HINTS & SOLUTIONS

SECTION-A

1. Let A (x, y) be the other end of the diameter and centre C (1, -3) is mid point of end points of a diameter.

2. $x^2 + 2\sqrt{2}x - 6 = 0$

Here $a = 1, b = 2\sqrt{2}, c = -6$ $b^2 - 4ac = (2\sqrt{2})^2 - 4 \times 1 \times -6$ = 8 + 24 = 32The roots are given by

$$= x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-2\sqrt{2} \pm \sqrt{32}}{2 \times 1}$$
$$= \frac{-2\sqrt{2} \pm 4\sqrt{2}}{2} = x = \frac{-2\sqrt{2} + 4\sqrt{2}}{2} \text{ or } x = \frac{-2\sqrt{2} - 4\sqrt{2}}{2}$$
$$x = \sqrt{2} \text{ or } x = -3\sqrt{2}$$
Hence, roots are $\sqrt{2}$ and $-3\sqrt{2}$.

$$D = a^{2} - 4 (-4)$$

= $a^{2} + 16$
Here D > 0, therefore roots are real and distinct

3.
$$\frac{\sin 30^{\circ} + \tan 45^{\circ} - \sec 60^{\circ}}{\csc 30^{\circ} - \cot 45^{\circ} - \cos 60^{\circ}} = \frac{\frac{1}{2} + 1 - 2}{2 - 1 - \frac{1}{2}} = -\frac{1}{\frac{1}{2}} = -1.$$
OR

$$(\cos\theta - 1) (1 + \cos\theta) (1 + \cot^2\theta)$$

= $(\cos^2\theta - 1) (\csc^2\theta)$
= $-\sin^2\theta \cdot \csc^2\theta = -1.$

4. Here, n = 11, a = -5 d = $\frac{-5}{2}$ - (-5) = $\frac{5}{2}$ a_n = a + (n - 1)d

$$\therefore \qquad a_{11} = -5 + (11 - 1) \left(\frac{5}{2}\right) = -5 + 10 \times \frac{5}{2} = -5 + 25 = 20.$$

 Pre-foundation Career Care Programmes (PCCP) Division
 Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

 Pre-foundation Career Care Programmes (PCCP) Division
 Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

 Pre-foundation Career Care Programmes (PCCP) Division
 Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

 PCCP Head Office : Plot No. A-51 [A], IPIA, Near Resonance CG Tower Contact : 91-0744-6635569

 Website : www.resonance.ac.in [E-mail : contact@resonance.ac.in

 Toll Free : | 1800 258 5555 | CIN: U80302RJ2007PLC024029

 CLASS-X_PAGE-1

SECTION-B

7. Number ending at 0 or 5 is divisible by 5. Now, $(12)^n = (2 \times 2 \times 3)^n = 2^{2n} \times 3^n$ It does not have 5 in prime factorization. So, 12^n can never end with 5 and zero.

OR

10224 = 9648 × 1 + 576 9648 = 576 × 16 + 432 576 = 432 × 1 + 144 432 = 144 × 3 + 0 HCF = 144

8. $5T_5 = 8T_8$ \Rightarrow 5 (a + 4d) = 8 (a + 7d) $\Rightarrow 5a + 20d = 8a + 56d$ \Rightarrow 3a + 36d = 0 $\Rightarrow a + 12d = 0$ now $T_{13} = a + 12d = 0$.

OR

Given A.P. is 53, 48, 43, ...

a = 53, d = 48 - 53 = -5 *.*.. Let the nth term of A.P. is the first negative term. Then, $a_n < 0$ a + (n – 1) d < 0 \Rightarrow 53 + (n – 1) (–5) < 0 \Rightarrow -5(n-1) < -53 \Rightarrow \Rightarrow 5(n-1) > 53 \Rightarrow 5n – 5 > 53 5n > 53 + 5 n > 11.6 \Rightarrow \Rightarrow n = 12 *.*..

Hence, the first negative term of A.P. is 12th term, i.e.,

AB = $\sqrt{(-2-1)^2 + (7-1)^2} = \sqrt{9+36} = \sqrt{45} = 3\sqrt{5}$ BC = $\sqrt{(3+2)^2 + (-3-7)^2} = \sqrt{25+100} = \sqrt{125} = 5\sqrt{5}$ CA = $\sqrt{(3-1)^2 + (-3-1)^2} = \sqrt{4+16} = 2\sqrt{5}$ \therefore AB + CA = BC $3\sqrt{5} + 2\sqrt{5} = 5\sqrt{5}$ $5\sqrt{5} = 5\sqrt{5}$

So, the points A, B and C are collinear

10. T(E) = 23
F(E) = not form A, B, C i.e., = 23 - (4 + 8 + 5)
F(E) = 23 - 17 = 6
∴ P(F) =
$$\frac{6}{23}$$
.

11. (i) Numbers between 0 and 100 divisible by 7 are 7, 14, 21,..., 98 = (AP) Here, $a_n = 98$, a = 7, d = 7. $\Rightarrow a_n = a + (n - 1)d$

$$\Rightarrow a_n - a + (n - 1)u$$

$$\Rightarrow 98 = 7 + (n - 1) 7$$

$$\Rightarrow 98 - 7 = (n - 1) 7$$

$$\Rightarrow \frac{91}{7} = (n - 1)$$

$$\Rightarrow (n - 1) = 13$$

$$\Rightarrow n = 13 + 1 = 14.$$

$$\therefore F(E) = 14 \text{ and } T(E) = 99$$

$$\therefore P(E) = \frac{14}{99}.$$

(ii) Number of favourable outcomes of getting a number which is not divisible by 7 = 99 - 14 = 85

∴ P(E) = 85
∴ P(E) =
$$\frac{F(E)}{T(E)} = \frac{85}{99}$$
.

12. As the opposite sides of a rectangle are equal so by figure, we conclude that

3x + y = 7	(1)
x + 3y = 13	(2)
9x + 3y = 21	[From (1)]
x + 3y = 13	

 $\overline{8x} = 8$ [Substracting (ii) from (i)]x = 1[From (i)]x = 1y = 7 - 3 $\Rightarrow y = 7 - 3$ $\Rightarrow y = 4$ Hence the required values of x and y are 1 and 4 respectively.

SECTION-C

13. If possible, suppose $5 - 2\sqrt{3}$ is rational. Therefore, we can find two integers a, b (b \neq 0) such that

$$5-2\sqrt{3} = \frac{a}{b}$$
 \Rightarrow $2\sqrt{3} = 5-\frac{a}{b}$ \Rightarrow $\sqrt{3} = \frac{1}{2}\left(5-\frac{a}{b}\right)$

Since a, b, 2, and 5 are integers, $\frac{1}{2}\left(5-\frac{a}{b}\right)$ is a rational number. Hence, $\sqrt{3}$ should be rational.

But we know that $\sqrt{3}$ is an irrational number. Therefore, our assumption is wrong. Hence, $5 - 2\sqrt{3}$ is irrational.

14.
$$f(x) = x^2 - 1$$
 $\alpha \beta = -1$ $\alpha + \beta = 0$
Required polynomial:

$$\mathbf{x}^{2} - \left[\frac{2\alpha}{\beta} + \frac{2\beta}{\alpha}\right]\mathbf{x} + \frac{2\alpha}{\beta} \times \frac{2\beta}{\alpha} = \mathbf{x}^{2} - \left\lfloor\frac{2\left(\alpha^{2} + \beta^{2}\right)}{\alpha\beta}\right]\mathbf{x} + 4$$

$$= \mathbf{x}^{2} - \left[\frac{2\left[\left(\alpha + \beta\right)^{2} - 2\alpha\beta\right]}{\alpha\beta}\right]\mathbf{x} + 4 = \mathbf{x}^{2} - \frac{-4\left(-1\right)}{-1}\mathbf{x} + 4 = \mathbf{x}^{2} + 4\mathbf{x} + 4.$$

15.
$$\frac{25}{x+y} - \frac{3}{x-y} = 1$$
(i) $\frac{40}{x+y} + \frac{2}{x-y} = 5$ (ii)
multiplying (i) by 2 & (ii) by 3
 $\frac{50}{x+y} - \frac{6}{x-y} = 2$ (iii) $\frac{120}{x+y} + \frac{6}{x-y} = 15$ (iv)
Adding (iii) & (iv) we get
 $\frac{120}{x+y} + \frac{50}{x+y} = 17$
 $\frac{170}{x+y} = 17$
 $x + y = 10$ (vii)
Multiplying (i) by 8 & (ii) by 5, we get
 $\frac{200}{x+y} + \frac{24}{x-y} = 8$ (v) $\frac{200}{x+y} - \frac{10}{x-y} = 25$ (vi)
(vi) - (v)
 $\frac{24+10}{x-y} = 17$
 $x - y = \frac{34}{17} = 2$
 $x - y = 2$ (viii)
By adding (vii) & (viii) we get
 $2x = 12$
 $x = 6$ & $y = 4$ Answer.
16. Let point P(x, 0) be a point on x-axis, and A be the pont (7, -4)
So, $AP = 2\sqrt{5}$ [Given]

So, $AP = 2\sqrt{5}$ [Given] $\Rightarrow AP^2 = 4 \times 5 = 20$

 $\Rightarrow \qquad (x-7)^2 + [0-(-4)]^2 = 20$

 \Rightarrow x² + 49 - 14x + 16 = 20

 $\Rightarrow \qquad x^2 - 14x - 20 + 65 = 0$

 $\Rightarrow x^2 - 14x + 45 = 0$ $\Rightarrow x^2 - 9x - 5x + 45 = 0$

$$\Rightarrow \qquad x^2 - 9x - 5x + 45 = 0$$

$$\Rightarrow \qquad x(x-9) - 5(x-9) = 0$$

$$\Rightarrow (x-9)(x-5) = 0$$

$$\Rightarrow x-9 = 0 \text{ or } x-5 = 0$$

Hence, there are two such points on x-axis whose distance from (7, -4) is $2\sqrt{5}$. Hence, required points are (9, 0), (5, 0).

OR

$$\begin{array}{c|c} 1 & 2 \\ \hline P & Q \\ \hline A(2,-2) & B(-7,4) \\ \hline 2 & 1 \end{array}$$

For the dividing ratio is 1 : 2 $P(x_1, y_1)$, Q (x_2, y_2) for point Q the dividing ratio is 2 : 1.

Resonance ®	Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhal PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tow	awar Road, Kota (Raj.) – 324005 ver Contact : 91-0744-6635569
Educating for better tomorrow	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	SOL. PRE-BOARD(MATHEMATICS)
Pre-foundation Career Care Programmes (PCCP) Division	Toll Free : 1800 258 5555 <u>CIN: U80302RJ2007PLC024029</u>	CLASS-X_PAGE-4

$$x_{1} = \frac{4 - 7}{3} = \frac{-3}{3} = -1$$

$$x_{2} = \frac{-14 + 2}{3} = -4$$

$$y_{1} = \frac{-4 + 4}{3} = 0$$

$$y_{2} = \frac{8 - 2}{3} = 2$$

$$P(-1, 0) \& Q(-4, 2)$$
17.

$$\frac{\cos^{2} 20^{9} + \cos^{2} 70^{9}}{\sec^{2} 50 - \cot^{2} 40^{9}} + 2 \csc^{2} 58^{9} - 2 \cot 58^{9}$$

$$\tan 32^{9} - 4 \tan 13^{9} \tan 37^{9} \tan 45^{9} \tan 53^{9} \tan 77^{9}$$

$$= \frac{\cos^{2} (90^{9} - 70^{9}) + \cos^{2} 70^{9}}{\sec^{2} (90^{9} - 40^{9}) - \cot^{2} 40^{9}} + 2 \csc^{2} 58^{9} - 2 \cot 58^{9} \tan (90^{9} - 58^{9})$$

$$-4 (\tan 13^{9} \tan 77^{9}) (\tan 37^{9} \tan 53^{9}) \tan 45^{9}$$

$$= \frac{\sin^{7} 70^{9} + \cos^{2} 70^{9}}{\csc^{2} 40^{9} - \cot^{2} 40^{9}} + 2 \csc^{2} 58^{9} - 2 \cot^{2} 58^{9}$$

$$-4 (\tan 13^{9} \tan 77^{9}) (\tan 37^{9} \tan 53^{9}) \tan 53^{9} [1]$$

$$= \frac{1}{1} + 2 - 4 = -1.$$

$$OR$$

$$\frac{2x}{\cos \theta} - \frac{y}{\sin \theta} = 3$$

$$\frac{2x \sin \theta - y \cos \theta}{\cos \theta \sin \theta} = 3$$

$$\frac{2x \sin \theta - y \cos \theta}{\cos \theta \sin \theta} = 3$$

$$\frac{2x \sin \theta - y \cos \theta}{\cos \theta \sin \theta} = 3$$

$$\frac{2x \sin \theta - y \cos \theta}{\cos \theta \sin \theta} = 3$$

$$\frac{2x \sin \theta - y \cos \theta}{\cos \theta \sin \theta} = 3$$

$$\frac{2x \sin \theta - y \cos \theta}{\cos \theta \sin \theta} = 3$$

$$\frac{2x \sin \theta - y \cos \theta}{\cos \theta \sin \theta} = 3$$

$$\frac{2x \sin \theta - y \cos \theta}{\cos \theta \sin \theta} = 3$$

$$\frac{2x \sin \theta - y \cos \theta}{\cos \theta \sin \theta} = 3$$

$$\frac{2x \sin \theta - y \cos \theta}{\cos \theta \sin \theta} = 3$$

$$\frac{2x \sin \theta - y \cos \theta}{\cos \theta \sin \theta} = 3$$

$$\frac{2x \sin \theta - y \cos \theta}{\cos \theta \sin \theta} = 3$$

$$\frac{2x \sin \theta - y \cos \theta}{\cos \theta \sin \theta} = 3$$

$$\frac{2x \sin \theta - y \cos \theta}{\cos \theta \sin \theta} = 3$$

$$\frac{2x \sin \theta - y \cos \theta}{\cos \theta \sin \theta} = 3$$

$$\frac{2x \sin \theta - y \cos \theta}{\cos \theta \sin \theta} = 3$$

$$\frac{2x \sin \theta - y \cos \theta}{\cos \theta \sin \theta} = 3$$

$$\frac{2x \sin \theta - y \cos \theta}{\cos \theta \sin \theta} = 3$$

$$\frac{2x \sin \theta - y \cos \theta}{\cos \theta \sin \theta} = 3$$

$$\frac{2x \sin \theta - y \cos \theta}{\cos \theta \sin \theta} = 3$$

$$\frac{2x \sin \theta - y \cos \theta}{\cos \theta \sin \theta} = 4$$
18. Given : Chord AB, diameter AOC and tangents at A of a circle with centre O.
$$To prove : .2BAT = ∠ACB$$
Proof: Radius QA and tangent AT at A are perpendicular.
... ∠OAT = 90^{9} (radius at the point of contact of tangent is perpendicular)

 $\Rightarrow \angle BAT = 90^{\circ} - \angle BAC \qquad \dots \dots (i)$ AOC is diameter $\therefore \angle B = 90^{\circ}$ $\Rightarrow \angle C + \angle BAC = 90^{\circ}$ $\Rightarrow \angle C = 90^{\circ} - \angle BAC \qquad \dots \dots (ii)$ From (i) and (ii), we get $\angle BAT = \angle ACB.$ Hence, proved.

19.

Let the height of vertical tower (TW) = x.

And, the height of flag staff (TF) = h (Given) The angle of elevation at A on ground from the base and top of flag staff are α , β respectively.

20. $d_1 : d_2 : d_3 = 1 : 2 : 3$ [Given] = 1d : 2d : 3d [× by d]

Resonance®	Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhal PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tow	awar Road, Kota (Raj.) – 324005 wer Contact : 91-0744-6635569
Educating for better tomorrow	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	SOL. PRE-BOARD(MATHEMATICS)
Pre-foundation Career Care Programmes (PCCP) Division	Toll Free : 1800 258 5555 <u>CIN: U80302RJ2007PLC024029</u>	CLASS-X_PAGE-6

Area of region between second and third circles

 $= A_3 - A_2 = 9\pi r^2 - 4\pi r^2 = 5\pi r^2.$

 $\therefore \qquad \text{Required ratio} = \pi r^2 : 3\pi r^2 : 5\pi r^2.$

On dividing all the three ratios by πr^2 , we get required ratio of areas of three regions as 1 : 3 : 5.

OR

All the vertices of a rhombus lie on a circle so rhombus is a square and its diagonals are of length 2r cm.

Area of circle = 1256 cm² $\Rightarrow \qquad \pi r^2 = 1256 cm^2$ $\Rightarrow \qquad r^2 = \frac{1256}{\pi}$ $\Rightarrow \qquad r^2 = \frac{1256 \times 100}{314} = 400$ $\Rightarrow \qquad r = \sqrt{400} = 20 cm.$ $\therefore \qquad \text{Area of rhombus} = \frac{1}{2} d_1 d_2 = \frac{1}{2} \times 2r \times 2r$ $= 2r^2 = 2 \times 20 \times 20$

$$\Rightarrow$$
 Area of rhombus = 800 cm².

21. Let the spherical marble has radius r.

Diameter of the marble = 0.5 cm

Let n marbles can fill the cube.

1

Volume of n marbles = $\left(1 - \frac{1}{8}\right)$ part of volume of cube *:*..

$$\Rightarrow \qquad n \cdot \frac{4}{3}\pi r^{3} = \frac{7}{8} \times \ell^{3}.$$

$$\Rightarrow \qquad n = \frac{7\ell^{3}}{8} \times \frac{3}{4\pi r^{3}} = \frac{7 \times 3 \times 22 \times 22 \times 22 \times 7}{8 \times 4 \times 22 \times 0.25 \times 0.25 \times 0.25 \times 0.25}$$

$$\Rightarrow \qquad n = \frac{7 \times 3 \times 22 \times 22 \times 22 \times 100 \times 100 \times 100 \times 7}{8 \times 4 \times 22 \times 25 \times 25 \times 25}$$

$$= 7 \times 3 \times 22 \times 22 \times 2 \times 7 = 42 \times 484 \times 7$$

$$n = 142296$$

So, cube can accomodate upto 142296 marbles so right answer is 142296

OR

Main concept : During recasting a shape into another its' volume does not change. Spherical shell.

Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower Contact : 91-0744-6635569 esonan SOL. PRE-BOARD(MATHEMATICS) CLASS-X_PAGE-8 Educating for better tomorrow Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in Toll Free : | 1800 258 5555 | CIN: U80302RJ2007PLC024029 Pre-foundation Career Care Programmes (PCCP) Division

C.I.	Frequency	x _i	f _i x _i
0-10	8	5	40
10-20	х	15	15x
20 - 30	10	25	250
30-40	11	35	385
40 – 50	9	45	405
	$\Sigma f_i = 38 + x$		$\Sigma f_i x_i = 1080 + 15x$

$$\overline{\mathbf{x}} = \frac{\Sigma \mathbf{f}_i \mathbf{x}_i}{\Sigma \quad \mathbf{f}_i}$$

 $\frac{252}{10} = \frac{1080 + 15x}{38 + x}$ 126 (38 + x) = 5(1080 + 15x) 4788 + 126x = 5400 + 75 x 51x = 612 $x = \frac{612}{51}$ x = 12.

SECTION-D

23.

$$\frac{1}{(x-1)(x-2)} + \frac{1}{(x-2)(x-3)} = \frac{2}{3}$$
$$\frac{(x-1)(x-2)}{(x-1)(x-2)} + \frac{(x-2)-(x-3)}{(x-2)(x-3)} = \frac{2}{3}$$
$$\frac{1}{x-2} - \frac{1}{x-1} + \frac{1}{x-3} - \frac{1}{x-2} = \frac{2}{3}$$
$$-\frac{(x-3)+(x-1)}{(x-3)(x-1)} = \frac{2}{3}$$
$$\frac{2}{(x-1)(x-3)} = \frac{2}{3}$$
$$\Rightarrow (x-1)(x-3) = 3$$
$$x^{2} - 4x + 3 = 3$$
$$x(x-4) = 0$$
$$x = 0, 4$$

OR

Let speed of stream = x km/hr $\frac{32}{24 - x} - \frac{32}{24 + x} = 1$ $32\left\{\frac{24 + x - 24 + x}{(24 + x)(24 - x)}\right\} = 1$ $64x = 24^{2} - x^{2}$ $x^{2} + 64x - 576 = 0$ $x^{2} + 72x - 8x - 576 = 0$ x(x + 72) - 8(x + 72) = 0

Educating for better tomorrow Website : www.resonance.ac.in E-mail : contact@resonance.ac.in SOL. PRE-BOARD(MATHEMATIC	A Resonance®	Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jha PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG To	lawar Road, Kota (Raj.) – 324005 wer Contact : 91-0744-6635569	
	Educating for better tomorrow	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	SOL. PRE-BOARD(MATHEMATICS)	
Pre-foundation Career Care Programmes (PCCP) Division Toll Free : 1800 258 5555 <u>CIN: U80302RJ2007PLC024029</u> CLASS-X_PAGE-9	Pre-foundation Career Care Programmes (PCCP) Division	Toll Free : 1800 258 5555 <u>CIN: U80302RJ2007PLC024029</u>	CLASS-X_PAGE-9	

24.
$$a - d, a, a + d$$

 $a - d + a + a + d = 12$
 $\Rightarrow 3a = 12$
 $\Rightarrow a = 4$
 $(a - d)^3 + a^3 + (a + d)^3 = 288$
 $\Rightarrow a^3 - d^3 - 3ad (a - d) + a^3 + a^3 + d^3 + 3ad(a + d) = 288$
 $\Rightarrow 3a^3 - 3a^2d + 3ad^2 + 3a^2d + 3ad^2 = 288$
 $\Rightarrow 3a^3 + 6ad^2 = 288$
 $\Rightarrow 3a^3 + 6ad^2 = 288$
 $\Rightarrow 3(4)^3 + 6 \times 4 d^2 = 288$
 $\Rightarrow 24d^2 = 288 - 192$
 $\Rightarrow d^2 = \frac{96}{24} = 4$
 $\Rightarrow d = 2$
So, numbers are 2, 4, 6.
25. Let CE = ED = BD = x
To prove : $8AE^2 = 3AC^2 + 5AD^2$
 $\ln \Delta ACB$
 $AC^2 = AB^2 + BC^2$
 $AC^2 = AB^2 + BC^2$
 $AC^2 = AB^2 + 9x^2$
 $\ln \Delta ADB$
 $AD^2 = AB^2 + DB^2$
 $AD^2 = AB^2 + 2x^2$
 $\ln \Delta AEB$
 $AE^2 = AB^2 + BE^2$
 $AD^2 = AB^2 + 4x^2$
 $R.H.S. $3AC^2 + 5AD^2$
 $= 3(AB^2 + 9x^2) + 5(AB^2 + x^2)$
 $= 3AB^2 + 27x^2 + 5AB^2 + 5x^2$
 $= 8AB^2 + 32x^2$
 $= 8(AB^2 + 4x^2)$$

27.

Let the distance covered be y m in 6 min.

 \therefore Speed of boat = $\frac{y}{6}$ m/min

 Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

 PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower Contact : 91-0744-6635569

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in

 Toll Free : | 1800 258 5555 | CIN: U80302RJ2007PLC024029

Sol. PRE-BOARD(MATHEMATICS)
CLASS-X_PAGE-10

In
$$\triangle ABC$$

 $\tan 60^{\circ} = \frac{h}{x}$
 $\sqrt{3} = \frac{h}{x}$
 $x = \frac{h}{\sqrt{3}}$
In $\triangle ABD$
 $\tan 30^{\circ} = \frac{h}{x+y}$
 $\frac{1}{\sqrt{3}} = \frac{h}{\frac{h}{\sqrt{3}}+y}$
 $\frac{h}{\sqrt{3}} + y = h\sqrt{3}$
 $y = \frac{2h}{\sqrt{3}}$
So, $\frac{x}{y} = \frac{1}{2}$
 $x = \frac{y}{2}$
 \therefore Total distance to be covered $x + y = \frac{3y}{2}$
 \exists Time = $\frac{Distance}{Speed}$
 \therefore Total time taken = $\frac{3y}{2 \times y} \times 6 = 9$ min.
 $\tan \theta = \frac{5}{12}$, $\tan \phi = \frac{3}{4}$
Let the height of tower be h.
 A
 $\int_{240 \text{ m}} C$ x
 $\tan \phi = \frac{h}{x}$
 $x = \frac{h}{\tan \phi}$
In $\triangle ABC$
 $\tan \phi = \frac{h}{x} + \frac{240}{x}$
 $x + 240 = \frac{h}{\tan \theta}$

Resonance®	Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhal PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tow	awar Road, Kota (Raj.) – 324005 ver Contact : 91-0744-6635569
Educating for better tomorrow	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	SOL. PRE-BOARD(MATHEMATICS)
Pre-foundation Career Care Programmes (PCCP) Division	Toll Free : 1800 258 5555 <u>CIN: U80302RJ2007PLC024029</u>	CLASS-X_PAGE-11

OR

$$\frac{h}{\tan\phi} + 240 = \frac{h}{\tan\theta}$$

$$240 = h\left(\frac{1}{\tan\theta} - \frac{1}{\tan\phi}\right).$$

$$h = \frac{240 \times \tan\phi \tan\theta}{\tan\phi - \tan\theta}$$

$$h = \frac{240 \times \frac{3}{4} \times \frac{5}{12}}{\frac{3}{4} - \frac{5}{12}}$$
[Substituting the value of tan θ and tan ϕ]

- 75 - 005 m

$$h = \frac{1}{4/12} = 225 \text{ m}$$

So, the height of tower = 225 m.

C.I.	Mid values (x_i)	Frequency (f_i)	$x_i f_i$
0-20	10	17	170
20-40	30	f_1	$30f_1$
40-60	50	32	1600
60-80	70	f_2	$70f_{2}$
80-100	90	19	1710
		$\Sigma f_i = 68 + f_1 + f_2$	$\Sigma x_i f_i = 3480 + 30f_1 + 70f_2$

Given: $\Sigma f_i = 120$

$$\Rightarrow 68 + f_1 + f_2 = 120$$

$$\Rightarrow f_1 + f_2 = 52(i)$$

Also, $\overline{x} = \frac{\sum x_i f_i}{\sum f_i}$

$$\Rightarrow 50 = \frac{3480 + 30f_1 + 70f_2}{68 + f_1 + f_2}$$

$$\Rightarrow 3400 + 50f_1 + 50 f_2 = 3480 + 30 f_1 + 70f_2$$

$$\Rightarrow 20f_1 - 20 f_2 = 3480 - 3400$$

$$\Rightarrow 20f_1 - 20f_2 = 80$$

$$\Rightarrow f_1 - f_2 = 4(ii)$$

Solving (i) and (ii), we get
 $f_1 + f_2 = 52$
 $f_1 - f_2 = 4$
 $2f_1 = 56$

$$\Rightarrow$$
 f₁ = 28 and f₂ = 24.

Marks	Frequency	C.F.	
20-30	р	р	
30-40	15	p + 15	
40 – 50	25	p+40	
50 - 60	20	p + 60	
60 – 70	q	p + 60 + q	
70-80	8	p + 68 + q	
80-90	10	p + 78 + q	

We know, sum of all frequencies = 90 \Rightarrow p + 78 + q = 90 \Rightarrow p + q = 12(i) Also, $\binom{n}{-c}$

Median =
$$\ell + \left(\frac{\frac{n}{2} - c}{f}\right) \times h$$

Where, ℓ = lower limit of the median class

$$n = 90$$

$$\Rightarrow \frac{n}{2} = 45$$

C = C.F. preceding of the median class f = frequency of the median class h = class size.

$$\Rightarrow 50 = 50 + \left(\frac{45 - (p + 40)}{20}\right) \times 10$$

$$\Rightarrow 0 = \left(\frac{5 - p}{20}\right) \times 10$$

$$\Rightarrow p = 5$$

Putting in equation (i), we get
 $q = 7$.
 $P = 5 \& q = 7$

29. When a fluid (water) flows through a pipe of a area of cross-section A with velocity v, then volume of water coming from pipe in time t.

 $= A \times v.t$ [∵ V = Area of base × Height] Cylinder Cone 40 $A = \pi r^2$ cm = 0.2 mR =2 $r = \frac{5 \text{ mm}}{1000 \text{ mm}}$ 5 H = 24 cm = 0.24 m m = 2000 2 1 400 v = 10 m/min

⇒
$$v = \frac{10}{60}$$
 m/s = $\frac{1}{6}$ m/s
∴ Volume of flowing water = Volume of cone.

$$\Rightarrow \qquad \text{Area of base } \times \text{ height (dist.)} = \frac{1}{3} \pi R^2 H$$

Educating for better tomorrow Website : www.resonance.ac.in [E-mail : contact@resonance.ac.in SOL. PRE-BOARD(MATHEMATICS) Pre-foundation Career Care Programmes (PCCP) Division Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029 CLASS-X_PAGE-13	八	Resonance®	Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005 PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower Contact : 91-0744-6635569		
Pre-foundation Career Care Programmes (PCCP) Division Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029 CLASS-X_PAGE-13	$/ \setminus$	Educating for better tomorrow	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	SOL. PRE-BOARD(MATHEMATICS)	
	Pre-foundation Career Care Programmes (PCCP) Division		Toll Free : 1800 258 5555 <u>CIN: U80302RJ2007PLC024029</u>	CLASS-X_PAGE-13	

$$\Rightarrow A \times v.t. = \frac{1}{3} \pi R^2 H$$

$$\Rightarrow \pi r^2 \cdot v.t = \frac{1}{3} \pi R^2 H$$

$$\Rightarrow r^2.vt = \frac{1}{3} R^2 H.$$

$$\Rightarrow \frac{1}{400} \times \frac{1}{600} \times \frac{1}{6} t = \frac{1}{3} \times 0.2 \times 0.2 \times 0.24$$

$$\Rightarrow t = \frac{2 \times 2 \times 24 \times 400 \times 400 \times 6}{3 \times 10000}$$

$$\Rightarrow t = 4 \times 24 \times 4 \times 4 \times 2 \text{ sec.}$$

$$= \frac{4 \times 24 \times 4 \times 4 \times 2}{60} \text{ min} = \frac{512}{10} = 51.2 \text{ min.} = 51 \text{ min.} + 0.2 \text{ min} = 51 \text{ min} + 0.2 \times 60 \text{ sec.}$$

$$\Rightarrow t = 51 \text{ min and } 12 \text{ sec.}$$

Hence, conical tank will fill in 51 min and 12 sec.

30.
$$\frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta}$$
$$= \frac{\tan \theta}{1 - \frac{1}{\tan \theta}} + \frac{\frac{1}{\tan \theta}}{1 - \tan \theta}$$
$$= \frac{\tan^2 \theta}{\tan \theta - 1} + \frac{1}{\tan \theta(1 - \tan \theta)}$$
$$= \frac{\tan^2 \theta}{\tan \theta - 1} - \frac{1}{\tan \theta(\tan \theta - 1)}$$
$$= \frac{\tan^3 \theta - 1}{\tan \theta(\tan \theta - 1)}$$
$$= \frac{(\tan \theta - 1)(\tan^2 \theta + 1 + \tan \theta)}{\tan \theta(\tan \theta - 1)}$$
$$= \frac{(\tan^2 \theta + 1 + \tan \theta)}{\tan \theta}$$
$$= \tan \theta + \cot \theta + 1$$
$$= \frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta} + 1$$
$$= \frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta \cos \theta} + 1$$
$$= \frac{1}{\sin \theta \cos \theta} + 1$$
$$= \sec \theta \csc \theta + 1.$$

SUCCESS AT JEE MAIN 2019 (January Attempt)

CHANDRASEKHARPUR CAMPUS: Athena", Plot No - 189, Chandrasekharpur, Near Patia Square, Bhubaneshwar (Odisha) - 751024

Tel. No.: 07446655055 | E-mail: bbsr@resonance.ac.in

Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Rajasthan) - 324005 | CIN: U80302RJ2007PLC024029