Regional Mathematical Olympiad-2013 Paper with Solution

Time: 3 hours **December 15, 2013**

Instructions:

- Calculators(in any form) and protactors are not allowed.
- Rulers and compasses are allowed.
- Answer all the questions. Maximum marks: 100
- Answer to each questions should start on a new page. Clearly indicate the question number.
- 1. Given that a,b,c,d,e are real numbers such that

$$a + b + c + d + e = 8$$
 (a,b,c d, e are all positive)

Determine the maximum value of e.

[17]

Sol. Method-1 Given a, b, c, d, $e \in R^+$

$$(a + b + c + d)^2 = (8-e)^2$$

$$\Rightarrow$$
 a² + b² + c² + d² + 2a (b + c + d) + 2b(c + d) + 2cd = (8-e)²

$$\Rightarrow 4(a^2 + b^2 + c^2 + d^2) \ge (8-e)^2$$

[Using A.M. \geq G.M.]

$$\therefore 4(16 - e^2) \ge (8-e)^2$$

[Given: $a^2 + b^2 + c^2 + d^2 = 16 - e^2$]

$$\Rightarrow$$
 5e² \leq 16e

$$\Rightarrow$$
 e \leq 16/5

Method-2 For maximizing e, Take a = b = c = d

$$4a + e = 8$$

.....(1)

$$4a^2 + e^2 = 16$$
(2)

Solving (1) & (2)

$$e^2 + 4 \left(\frac{8-e}{4}\right)^2 = 16$$

$$\Rightarrow$$
 4e² + (64 + e² - 16e) 64

$$\Rightarrow$$
 5e² - 16 e = 0, e > 0

$$\Rightarrow$$
 e = 16/5

2. Let a,b,c be the sides of a triangle and A is its area. Prove that $a^2 + b^2 + c^2 \ge 4\sqrt{3}$ A. [16]

Sol. Method-1

$$a^2 + b^2 + c^2$$

 $= 4R^2 \sin^2 A + 4R^2 \sin^2 B + 4R^2 \sin^2 C$

[Using sine Rule]

$$= 4R^2 (sin^2A + sin^2B + sin^2C)$$

We know that $\sin^2 A + \sin^2 B + \sin^2 C \ge 2\sqrt{3} \sin A$. $\sin B$. $\sin C$

Now,
$$a^2 + b^2 + c^2 \ge 4R^2 (2\sqrt{3} \text{ sinA . sinB .sinC})$$

$$\Rightarrow a^2 + b^2 + c^2 \ge 2\sqrt{3}(2R\sin A)(2R\sin B)\sin C$$

$$a^2 + b^2 + c^2 \ge 4\sqrt{3} A$$

Method- 2

By A.M -G.M. inequality

$$\frac{a^2 + b^2 + c^2}{3} \geq \sqrt[3]{a^2b^2c^2}$$

$$\Rightarrow a^2 + b^2 + c^2 \ge 3(a^2b^2c^2)^{1/3}$$

We know that

$$ab = \frac{2A}{\sin C}$$
, $bc = \frac{2A}{\sin B}$, $ca = \frac{2A}{\sin A}$

$$\therefore a^2b^2c^2 = \frac{8A^3}{\sin A \sin B \sin C}$$

Again we know that $G.M \le A.M$.

$$(sinA \ sinB \ sinC)^{1/3} \leq \ \frac{sinA + sinB + sinC}{3} \leq \frac{1}{3} \left(\frac{3\sqrt{3}}{2}\right)$$

$$(sinA \ sinB \ sinC)^3 \leq \ \frac{3\sqrt{3}}{8} \Rightarrow \frac{1}{sinA \ sinB \ sinC} \geq \frac{8}{3\sqrt{3}}$$

$$\therefore a^2b^2c^2 \ge \frac{64A^3}{3\sqrt{3}}$$

$$a^2 + b^2 + c^2 \ge 3(a^2b^2c^2)^{1/3} \ge 4\sqrt{3}A$$

Consider an isosceles triangle ABC. R is the radius of its circumscribed circle and r is the radius of its inscribed circle. Prove that the distance 'd' between the centres of these two circles is $\sqrt{R(R-2r)}$, when angle A \leq 60° and AB = AC.

Sol.

Given, Isosceles triangle \triangle ABC. Let O & I are circumcentre and incentre respectively. \angle BAC \le 60°, O & I lies on altitude of BC.

OB = R, IB = r cosec
$$\frac{B}{2}$$
 = 4R sin $\frac{A}{2}$ sin $\frac{C}{2}$

$$OI^2 = OB^2 + IB^2 - 20B$$
. IB $cos(\angle IBO)$

[Using cosine rule in \(\Delta \) IBO]

$$OI^2 = R^2 + 16R^2 \sin^2 \frac{A}{2} \sin^2 \frac{C}{2} - 2R \left(4R \sin \frac{A}{2} \sin \frac{C}{2}\right) \cos \left(90^\circ - A - \frac{B}{2}\right)$$

$$OI^2 = R^2 + 16R^2 \sin^2 \frac{A}{2} \sin^2 \frac{C}{2} - 8 R^2 \sin \frac{A}{2} \sin \frac{C}{2} \cos \left(\frac{C - A}{2}\right)$$

$$OI^2 = R^2 + 8 R^2 \sin \frac{A}{2} \sin \frac{C}{2} \left[2 \sin \frac{A}{2} \sin \frac{C}{2} - \cos \left(\frac{C - A}{2} \right) \right]$$

$$OI^2 = R^2 + 8 R^2 \sin \frac{A}{2} \sin \frac{C}{2} \left(-\cos \left(\frac{A+C}{2} \right) \right)$$

$$OI^2 = R^2 + 8 R^2 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$$

$$OI^2 = R^2 - 2rR$$

Using 4R
$$\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} = r$$

Sol. Method-1

 $2^n - 1 \rightarrow \text{divisible by } 7$

$$2^n - 1 \equiv 0 \pmod{7}$$

$$2^n \equiv 1 \pmod{7}$$

Clearly
$$2^{3k} \equiv 1 \pmod{7}$$
, $2^{3k+1} \equiv 2 \pmod{7}$, $2^{3k+2} \equiv 4 \pmod{7}$

hence, n = 3k, $k \in N$

Method- 2

We observe the following set $\{2^1, 2^2, 2^3, \dots, 2^n\}$

Note that the numbers are of 3 types with respect to 3 namely 2^{3k} or 2^{3k+1} or 2^{3k+2} where k is positive integer.

Case- I

If number is of 23k type

$$N = 2^{3k} = 8^k = (7 + 1)^k$$

exapanding using binomial theorem

$$N = {}^{k}C_{0} 7^{k} + {}^{k}C_{1} 7^{k-1} + \dots {}^{k}C_{k-1} 7 + 1$$

$$= (7m + 1)$$

 \therefore N – 1 is dividible by 7

 \therefore The whole case is the solution \therefore n = 3k where k \in N is the solution

Case- II

If number is of 23k+1 type

$$N = 2.8^{k}$$

$$= 2(7 + 1)^k$$

similarly expanding we get

$$N = 7m + 2 \text{ type}$$

 \therefore N – 1 is dividible by 7

.. no solution

Case- III

If number is of 23k+2 type

$$N = 4.8^{k}$$

$$= 4 (7 + 1)^{k}$$

similearly expanding we get

$$N = 7m + 4$$
 types

 \therefore N – 1 not divisible by 7

: no solution

5. Solve $(x^2 + x - 2)^3 + (2x^2 - x - 1)^3 = 27(x^2 - 1)$ for real x. [17]

Sol.
$$(x^2 + x - 2)^2 + (2x^2 - x - 1)^3 = 27(x^2 - 1)$$

$$(x-1)^3 (x+1)^3 + (2x+1)^3 (x-1)^3 = 27 (x+1)^3 (x-1)^3$$

$$(x-1)^3=0$$

 \therefore x = 1 is one of the solution.

Now let, a = x + 2, b = 2x + 1, c = -3x - 3

Hence, a + b + c = x + 2 + 2x + 1 - 3x - 3 = 0

If a + b + c + 0 then, $a^3 + b^3 + c^3 = 3abc$

So equation becomes 3(x + 2)(2x + 1)(-3x - 3) = 0

$$(x + 2) (2x + 1) (-3x - 3) = 0$$

$$x = -2, -\frac{1}{2}, -1$$

Hence solution set is $\{-1, -\frac{1}{2}, -2, 1\}$

- **6.** Determine all non negative integral pairs (x, y) for which $(xy 7)^2 = x^2 + y^2$.
- Sol. Method-1

$$(xy - 7)^2 = x^2 + y^2$$

$$\Rightarrow$$
 (x + y)² + xy (12-xy) = 49

$$\Rightarrow$$
 xy (12 - xy) = 0 and x + y = 7

Case -I

$$xy = 12$$

$$\Rightarrow$$
 x = 3, y = 4 or x = 4, y = 3

Case -II
$$x y = 0$$

$$\Rightarrow$$
 x = 0, y = 7 or x = 7, y = 0

Required ordered pairs are: (3, 4) (4,3) (0, 7) (7, 0)

Method- 2

$$(xy - 7)^2 = x^2 + y^2$$

$$\Rightarrow$$
 (x y - 6)² + 13 = (x+y)²

$$\Rightarrow$$
 (x + y -xy + 6) (x + y + xy - 6) = 13

Case -I

$$x + y + xy - 6 = 13$$

$$x + y - xy + 6 = 1$$

On solving (x, y) = (4, 3), (3, 4)

Case -II

$$x + y + xy - 6 = 1$$

$$x + y - xy + 6 = 13$$

On solving (x, y) = (0, 7), (7, 0)

In all other cases negative solutions are obtained

hence solution set is (3,4) (4,3), (7, 0) (0, 7)