

TARGET: NEET (UG) 2024

Course: SARANSH (Youtube Live CRASH COURSE)

PHYSICS: NEWTON'S LAW OF MOTION

DPP No.: 1

- A ship of mass 3×10^7 kg initially at rest is pulled by a force of 5×10^4 N through a distance of 3 m. 1. Assume that the resistance due to water is negligible, the speed of the ship is
 - (1) 1.5 m/s
- (2) 60 m/s
- (3) 0.1 m/s
- 2. The pulleys and strings shown in the figure are smooth and of negligible mass. For the system to remain in equilibrium, the angle θ should be :

- $(1) 0^{\circ}$
- $(2) 30^{\circ}$
- $(3) 45^{\circ}$
- $(4) 60^{\circ}$
- 3. Two masses M and m are connected by a weightless string. They are pulled by a force F on a frictionless horizontal surface. The tension in the string will be

- (1) $\frac{FM}{m+M}$
- (3)
- (4) $\frac{Fm}{M+m}$
- 4. Two weights w₁ and w₂ are suspended from the ends of a light string passing over a smooth fixed pulley. If the pulley is pulled up at an acceleration g, the tension in the string will be
 - $(1) \ \frac{4w_1w_2}{w_1 + w_2}$
- $(2) \ \frac{2w_1w_2}{w_1 + w_2}$
- (3) $\frac{w_1w_2}{w_1 + w_2}$ (4) $\frac{w_1w_2}{2(w_1 + w_2)}$
- 5. A mass M is suspended by a rope from a rigid support at A as shown in figure. Another rope is tied at the end B, and it is pulled horizontally with a force F. If the rope AB makes an angle θ with the vertical in equilibrium, then the tension in the string AB is:

- (1) F $\sin \theta$
- (2) F/sin θ
- (3) F cos θ
- (4) F/cos θ

6. A uniform thick rope of length 5m is kept on frictionless surface and a force of 5N is applied to one of its end. Find tension in the rope at 1m from this end-

(1) 1N

- (2) 3N
- (3) 4N
- (4) 5N
- 7. Three block are connected as shown in fig., on a horizontal frictionless table and pulled to the right with a force $T_3 = 60 \text{ N}$. If $m_1 = 10 \text{ kg}$. $m_2 = 20 \text{ kg}$. and $m_3 = 30 \text{ kg}$. the tension T_2 is-

(1) 10 N

- (2) 20 N
- (3) 30 N
- (4) 60 N
- 8. Two blocks of 7 kg and 5 kg are connected by a heavy rope of mass 4 kg. An upward force of 200N is applied as shown in the diagram. The tension at the top of heavy rope at point P is- $(g = 10 \text{ m/s}^2)$

(1) 2.27 N

- (2) 112.5 N
- (3) 87.5 N
- (4) 360 N
- **9.** Two masses are connected by a string which passes over a pulley accelerating upward at a rate A as shown. If a₁ and a₂ be the acceleration of bodies 1 and 2 respectively then:

(1) $A = a_1 - a_2$

- (2) $A = a_1 + a_2$
- (3) A = $\frac{a_1 a_2}{2}$
- (4) A = $\frac{a_1 + a_2}{2}$
- **10.** A rider on horse falls back when horse starts running, all of a sudden because-
 - (1) rider is taken back
 - (2) rider is suddenly afraid of falling
 - (3) inertia of rest keeps the upper part of body at rest while lower part of the body moves forward with the
 - (4) none of the above
- 11. Two bodies of 5 kg and 4 kg are tied to a string as shown in the fig. If the table and pulley both are smooth, acceleration of 5 kg body will be equal to-

(1) g

- (2) $\frac{9}{4}$
- (3) $\frac{4g}{q}$
- $(4) \frac{5g}{2}$

12. A spring of negligible mass going over a clamped pulley of mass m supports a block of mass M as shown in the figure. The force on the pulley by the clamp at the time of equilibrium is given by -

- (1) $\sqrt{2}$ Ma
- (2) $\sqrt{(mg)^2 + (kx)^2}$
- (3) $\left(\sqrt{(M+m)^2 + m^2}\right) g$ (4) $\left(\sqrt{(M+m)^2 + M^2}\right) g$
- 13. System shown in figure is in equilibrium and at rest. The spring and string are massless Now the string is cut. The acceleration of mass 2m and m just after the string is cut will be :

- (1) g/2 upwards, g downwards
- (2) g upwards, g/ 2 downwards
- (3) g upwards, 2g downwards
- (4) 2g upwards, g downwards
- 14. A body of mass 3 kg hits a wall at an angle of 60° and with speed of 10 m/s and returns at the same angle. The impact time is 0.2 sec. Calculate force exerted on the wall:

- (1) 150√3 N
- (2) 100 N
- (3) 50√3 N
- (4) 75√3N
- 15. In the figure shown, a person wants to raise a block lying on the ground to a height h. In both the cases if time required is same then in which case he has to exert more force. Assume pulleys and strings light.

- (1) (i)
- (2) (ii)
- (3) same in both
- (4) Cannot be determined

Toll Free: | 1800 258 5555 | CIN: U80302RJ2007PLC024029