

TARGET: NEET (UG) 2024

Course: SARANSH (Youtube Live CRASH COURSE)



## PHYSICS: CURRENT ELECTRICITY

**DPP No.: 1** 

1. Which of the adjoining graphs represents ohmic resistance









Drift velocity  $v_{\scriptscriptstyle d}$  varies with the intensity of electric field as per the relation 2.

(2) 
$$v_d \propto \frac{1}{E}$$

(2) 
$$v_d \propto \frac{1}{E}$$
 (3)  $v_d = \text{constant}$  (4)  $v_d \propto E^2$ 

(4) 
$$v_d \propto E^2$$

3. A car has a fresh battery of e.m.f. 12 V and internal resistance of 0.05  $\Omega$ . If the starter motor draws a current of 90 A, the terminal voltage when the starter is on will be

If nearly 10<sup>5</sup> C liberate 1 g equivalent of aluminium, then the amount of aluminium (equivalent weight 9) 4. deposited through electrolysis in 20 min by a current of 50 amp will be :

- 5. The drift velocity of electrons in a conducting wire is of the order of 1mm/s, yet the bulb glows very quickly after the switch is put on because
  - (1) The random speed of electrons is very high, of the order of 10<sup>6</sup> m/s
  - (2) The electrons transfer their energy very quickly through collisions
  - (3) Electric field is set up in the wire very quickly, producing a current through each cross section, almost instantaneously
  - (4) All of above



Pre Medical Division: CG Tower-2, A-51(A) IPIA, Behind City Mall, Jhalawar Road, Kota (Raj.)-324005

- 6. A piece of copper and another of germanium are cooled from room temperature to 80 K. The resistance
  - (1) each of the them increases
  - (2) each of them decreases
  - (3) copper increases and germanium decreases
  - (4) copper decreases and germanium increases
- 7. In an electric circuit containing a battery, the positive charge inside the battery
  - (1) always goes from the positive terminal to the negative terminal
  - (2) may go from the positive terminal to the negative terminal
  - (3) always goes from the negative terminal to the positive terminal
  - (4) does not move.
- 8. Find the current through the 10  $\Omega$  resistor shown in figure



- (1) zero
- (2) 1 A
- (3) 2A
- (4) 5 A

9. The current i in the circuit of figure is -



- (1)  $\frac{1}{45}$  amp.
- (2)  $\frac{1}{15}$  amp.
- (3)  $\frac{1}{10}$  amp.
- (4)  $\frac{1}{5}$  amp.

10. The reading of voltmeter is



(1)50V

(4) 80 V