SCHOLASTIC APTITUDE TEST PAPER & SOLUTIONS

- 1. A particle completes two revolutions in 50 seconds in a circular path of radius 7m. Distance covered and displacement in two revolutions will be, respectively.
- (1) 44m, 14 m (2) 88 m, 44m (3) 44m, zero (4) 88 m, zero Sol. Distance = $(2\pi r) \times 2$

```
Displacement = Zero
```

Distance =
$$2 \times \frac{22}{7} \times 7 \times 2$$

= 88 m

2. Distance - time graph of two cars A and B is shown. The ratio of speeds of A and B.

= tan θ [θ is angle with +ve x axis]

For A

$$S_A = \tan 30 = \frac{1}{\sqrt{3}}$$

For B

 $S_{\rm B} = \tan 60 = \sqrt{3}$

$$\therefore \frac{S_A}{S_B} = \frac{1/\sqrt{3}}{\sqrt{3}} = \frac{1}{3}$$

STSEBSX0271116-1

	esonance [®]			ATION-2016 27-11-2016
3.		ollowing solid objects will ha	-	
Ans.	(1) lce 3	(2) Wood	(3) Iron	(4) Aluminium
AIIS.	3			
Sol.	Inertia depend	ls upon mass		
4.	m distance. I		bassengers is 1000 kg, the	es it stops after travelling 100 en the value of force due to
	(1) -1000	(2) –2000	(3) –3600	(4) -7200
Ans.	2	(_) _000	(0) 0000	(1) 1200
Sol.	u = 72 Km/hr :	$= 72 \times \frac{5}{18} = 20 \text{ m/s}$		
	v = 0 m/s			
	s = 100 m/s			
	From 3 rd equa	tion of motion		
	$v^2 - u^2 = 2as$			
	$a = \frac{v^2 - u^2}{2s} = -$	$\frac{-400}{2 \times 100} = 2 \text{ m/s}^2$		
	F = m x a			
	= – 2 x 1000			
	= – 2000 N			

5.The SI unit of universal gravitational constant (G) is.(1) Nm^2kg^{-2} (2) $Nm^{-2}kg^{-2}$ (3) $Nm^{-2}kg^2$ (4)

(4) Nm⁻¹m²kg²

Ans. 1

6. If the kinetic energy and momentum of an object of mass m are k and p respectively, then the relation between kinetic energy and momentum will be.

(1) p = 2 km (2) p = 2 k² m (3) p = $\sqrt{2km}$ (4) p = $\sqrt{\frac{2k}{m}}$

Ans. 3

R	Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar	Road, Kota (Raj.)- 324005
/ Resonance	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	STSEBSX0271116-2
Educating for better tomorrow	Toll Free : 1800 200 2244 1800 258 5555 CIN: U80302RJ2007PLC024029	313EB3X02/1110-2

	® =	CTATE TALE		ATION 2046 27 44 2046
7.	esonance cating for better tomorrow			ATION-2016 27-11-2016 Inface of moon will be in
	newton.		,	
	(1) 12	(2) 19.6	(3) 117.6	(4) 127.4
Ans.	2			
Sol.	M = 12 kg			
	acceleration c	lue to gravity at moon surface	$e(g') = \frac{9.8}{6} m/s^2$	
	w = m x g'			
	$= 12 \times \frac{9.8}{6}$			
	= 19.6 N			
8.	The physical	quantity which has unit pasca	l is.	
	(1) pressure	(2) momentum	(3) density	(4) relative density
Ans.	1			
9.	The gravitation	onal force between two obje	cts each of mass m, sep	arated by a distance r, is F,
	Gravitational	force between two objects ea	ch of mass 2m separated	by a distance 2r, will be.
	(1) $\frac{F}{2}$	(2) F	(3) 2F	(4) 4F,
A 10 a	2			
Ans.	2			
Sol.	$F = \frac{Gm^2}{r^2}$			
	$F' = \frac{G(2m)(2m)}{(2r)^2}$	<u>m)</u>		
	F' = F			
10.	When a shee statements is		opped in vacuum freely,	then which of the following
		conect? ches earlier than the sheet of	paper on the earth	
		aper reaches earlier than the		
		n at the same time on the ear		

(4) Sheet of paper stops but stone reaches on the earth

Ans. 3

八民		STATE TALEN	IT SEARCH EXAMINA	TION-2016 27-11-2016
11.	The value of one l	-	_	
	(1) 1000	(2) 3.6 × 10 ⁴	(3) 3.6 × 10 ⁵	(4) 3.6×10^6
Ans.	4			
12.	A car of mass 10	00 kg is moving with velo	city 15 ms ⁻¹ on a horizor	ntal plane work done by the
	force of gravity wil	I be $(g = 10 m s^{-2})$		
	(1) zero	(2) 1500 J	(3) 15000 J	(4) 150000 J.
Ans.	1	(_)		
Sol.	No Displacement	in direction of force		
13.	By whom of the fo	llowing infrasonic sound is	produced?	
	(1) Porpoises	(2) dolphins	(3) elephants	(4) bats
Ans.	3			
14.	A sound wave has	s frequency of 4 kHz and w	vavelength 25 cm. Then d	istance travelled by sound in
	2 sec. (in km) will	be.		
	(1) 1	(2) 2	(3) 3	(4) 4
Ans.	2			
Sol.	n = 4000 Hz			
	$\lambda = \frac{25}{100}m$			
	100			
	$v = n\lambda$			
	$v = 4000 \times \frac{25}{100}$			
	v = 1000 m/s			
	t = 2 sec			
		1000 0		
	distance = v x t =	1000 x 2		
	= 2 km			

Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005				
Vebsite : www.resonance.ac.in E-mail : contact@resonance.ac.in STSEBSX0271116-4				
Toll Free : 1800 200 2244 1800 258 5555 CIN: U80302RJ2007PLC024029	313EB3X0271110-4			

STATE TALENT SEARCH EXAMINATION-2016 | 27-11-2016

When an image formed by a concave mirror is virtual, erect and enlarged, than position of the objects will be.
 (1) beyond centre of curvature C

- (2) in between centre of curvature C and focus F
- (3) at focus F
- (4) in between pole P and focus F.
- Ans. 4

16. If half of a convex lens is blackened, then which of the following statements is correct?

- (1) Image will not be formed
- (2) Image formed will be half of size of the object and intensity will be unchanged
- (3) Image will be formed fully but intensity becomes half
- (4) Image will be formed fully and intensity will be unchanged
- Ans. 3
- **17.** The far point of a myopic person is at 100 cm in front of the eye. The nature and power of the lens required to correct this problem will be.
 - (1) Concave lens, + 1D (2) concave lens, 1D (3) convex lens, + 1D (4) convex lens, 1D
- Ans. 2
- **Sol.** $\frac{1}{f} = \frac{1}{v} \frac{1}{u}$
 - $\frac{1}{f} = \frac{1}{\infty} \frac{1}{100}$

f = -100 cm = -1m

$$\mathsf{P} = \frac{1}{\mathsf{f}} = -1\mathsf{D}$$

- **18.** Which of the following materials is an alloy?
 - (1) Ebonite (2) Manganese (3) Manganin (4) Nickel **3**
- Ans.
- **19.** The electrical resistivity of the material of conductor is ρ. If its length is doubled and area of cross section is tripled, then its electrical resistivity will be.

(1) ρ (2) 2 ρ (3) 3 ρ (4) 4 ρ

```
Ans. 1
```

Sol. Resistivity remains same

	Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar	Road, Kota (Raj.)- 324005
	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	STSEBSX0271116-5
Educating for better tomorrow	Toll Free : 1800 200 2244 1800 258 5555 CIN: U80302RJ2007PLC024029	515ED5A02/1110-5

20. Three resistors of equal resistance are connected first in series and then in parallel. If the equivalent resistances in both cases are R_s and R_P respectively, then the value of $\frac{R_s}{R_p}$ will be.

(1) 1 : 1 (2) 3 : 1 (3) 9 : 1 (4) 1 : 9

- Ans. 3
- Sol. Let each resistance be R
 - $R_{s} = 3R$ $R_{p} = R/3$ $\frac{R_{s}}{R_{p}} = 9:1$
- **21.** In the following figure, the motion of an electron is shown in a figure in uniform magnetic field. The direction of force acting an electron will be.

R

kesonano

Educating for better tomorrow

Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005

STSEBSX0271116-6

Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in

Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029

		STATE TALE	NT SEARCH EXAMINATION	DN-2016 27-11-2016	
24.	Which of the following low energy particles is bombarded on the nucleus of heavy atom in nuclear fission?				
	(1) Proton	(2) Deuteron	(3) Alpha particle	(4) Neutron	
Ans.	4				
25.	Which of the follo	owing statements is correc	t?		
	(1) Inside the bar	magnet, the direction of r	nagnetic field lines is from its no	orth pole to south pole.	
			f magnetic field lines is from so	uth pole to north pole.	
	., -	l lines are closed curves			
		l lines are open curves.			
Ans.	3				
26.	Which one of th matter?	e following is the correct	order of increasing attraction	between the particles of	
	(1) Water < Hydr	ogen < Salt	(2) Hydrogen < Salt < N	Water	
_	(3) Salt < Water	< Hydrogen	(4) Hydrogen < Water	< Salt	
Ans.	4				
Sol.	Forces of attracti	on increases from gas to s	solid state		
	∴ Hydroge	n < Water < Salt (Liquid) (Solid)			
27.	At which tempera	ature will physical state of	water be liquid?		
	(1) 265 K	(2) 298 K	(3) 378 K	(4) 398 K	
Ans.	2				
Sol.	The M.P. of H_2O	is 0°C or 273 K			
	B.P of H ₂ O is 100	0°C or 373 K			
	∴ Between	273 K and 373 K, it will b	e in liquid state.		
28.	Which one of the	following is an example o	f emulsion?		
	(1) Butter	(2) Fog	(3) Milk of magnesia	(4) Milk	
Ans.	4				
Sol.	The dispersed pr	hase and dispersion mediu	um is liquid in emulsion		

	esonance State TALENT SEARCH EXAMINATION-2016 27-11-2016
29.	Which is the suitable method of separation of two miscible liquids having less than 25°C difference
	in their boiling points?
A no	(1) Sublimation (2) Fractional distillation (3) Chromatography (4) Evaporation
Ans.	2
Sol.	Two miscible liquids having less than 25°C difference in their boiling points are separated by fractional distillation.
30.	Which one of the following is not a chemical change?
	(1) Rusting of iron (2) Digestion of food (3) Burning of paper (4) Melting of candle
Ans.	4
Sol.	No new substance is formed in melting of candle. So, melting of candle is a physical change
31.	The correct formula of the compound aluminium sulphite is.
	(1) $Al_2(SO_4)_3$ (2) $Al_3(SO_3)_2$ (3) $Al_2(SO_3)_3$ (4) $Al_3(SO_4)_2$
Ans.	3
Sol.	Aluminum ion \rightarrow Al ³⁺
	Sulphite \rightarrow SO ₃ ²⁻
	$Al^{3^{*}} \xrightarrow{7} SO_{3}^{2^{-}}$
	Formula Al ₂ (SO ₃) ₃
32.	What is the number of molecules in 4.25 g of ammonia ?
	(1) 2.40×10^{22} (2) 2.40×10^{23} (3) 1.51×10^{23} (4) 1.51×10^{22}
Ans.	3
Sol.	$Mole = \frac{Mass}{GMM} = \frac{4.25}{17}$
	No. of molecules = $\frac{4.25}{17} \times 6.023 \times 10^{23}$
	= 1.51×10^{23} molecules
	Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005
八	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in
	Educating for better tomorrow Toll Free : 1800 200 2244 1800 258 5555 CIN: U80302RJ2007PLC024029

	esonance [®]		ALENT SEARCH EXAMINAT	10N-2016 27-11-2016
33.	Which one of	the following molecules of	loes not have atomicity two?	
	(1) Chlorine	(2) Nitrogen	(3) Oxygen	(4) Phosphorus
Ans.	4			
Sol.	Atomicity of C	Chlorine is 2		
	Atomicity of I	Nitrogen is 2		
	Atomicity of	Oxygen is 2		
	Atomicity of I	Phosphorus is 4		
	T he sum here i		ll of outploarestown in	
34.		of electrons in the M- She		(A) \overline{A}
A	(1) 4	(2) 5	(3) 6	(4) 7
Ans.	3			
Sel	Electronic co	figuration of outphur ator	K L M	
Sol.	Electronic col	nfiguration of sulphur ator	2 8 6	
	a			
	So, number o	f electrons in M-shell is 6		
35.	If the ratio of	two isotopes $\frac{14}{7}$ X and $\frac{15}{7}$ X	K of an element X is 4 : 1, its aver	age atomic mass will be.
	(1) 16.00 u	(2) 17.75 u	(3) 12.84 u	(4) 14.20 u.
Ans.	4	(2) 11.10 u	(0) 12.04 0	(4) 14.20 0.
7 1101	-			
Sol.	¹⁴ ₇ X mass	s = 14		
	¹⁵ ₇ X mass	= 15		
	Average atom	nic mass = $\frac{14 \times 4 + 15 \times 1}{(4+1)}$		
		(י י ד)		
	_ 56	$\frac{+15}{5} = \frac{71}{5} = 14.20$		
		5 5 5		

®	Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005		
זכפ	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	STSEBSX0271116-9	
omorrow	Toll Free : 1800 200 2244 1800 258 5555 CIN: U80302RJ2007PLC024029	313ED3X02/1110-9	

		STATE TALE	ENT SEARCH EXAMINA	TION-2016 27-11-2016		
40.	 The pH values of four solutions A, B, C and D are 12,4,7 and 2 respectively. Which of the following statements is false for these solutions? (1) Solution A is basic (2) Solution B and D are acidic (3) Solution D has minimum concentration of H⁺ ions (4) The concentrations of H⁺ and OH⁻ ions are equal in solution C. 					
Ans.	3					
Sol.	Acidic solution has	s pH less than 7.				
	Basic solution has	pH more than 7.				
	& Neutral solution	pH = 7.				
	For A, pH = 12, so	it is basic solution				
	For B & D, pH < 7	, so it is acidic solution				
	For C, pH = 7, so i	it is Neutral solution				
	As pH decreases,	the concentration of H^+ i	ions increases.			
41.	Which gas reacts	with lime water and turns	s it milky?			
Ans.	(1) Oxygen 4	(2) Chlorine	(3) Hydrogen	(4) Carbon dioxide.		
Sol.	Lime water is Ca(OH)₂				
	Ca(OH) ₂ (aq) + CC	$D_2(g) \longrightarrow CaCO_3(s) + H_2$	₂ O(I)			
	Lime water turns r	nilky due to the formation	n of insoluble suspension of	calcium carbonate.		
42.	Which of the follow	ving metals can be cut e	asily with a knife?			
	(1) Iron	(2) Tin	(3) Zinc	(4) Sodium		
Ans.	4					
Sol.	Sodium is a soft m	netal which can be cut wi	th a knife			
43.	Which is the most	reactive metal among th	e following?			
_	(1) Calcium	(2) Zinc	(3) Copper	(4) Silver		
Ans.	1					
Sol.	The increasing or	der of reactivity of metal i	is			
	Silver < Copper <					
1		- Corporate Office : CC	Tower A-46 & 52 IPIA Near City Ma	II Jhalawar Road, Kota (Rai)- 324005		

		STATE TALENT S	EARCH EXAMINATION	-2016 27-11-2016
44.	Which one of the follow	ing compounds has $-C$	functional group ?	
		· · · · · · · · · · · · · · · · · · ·	∼н	
Ans.	(1) Propanol 3	(2) Propanone	(3) Propanal	(4) Propene
AII3.	5			
Sol.	The formula of propana	al is $H_3C - CH_2 - CHO$		
	So, it contains aldehydi	c group		
45.	What is obtained when	ethanol is heated with exc	ess of conc. H_2SO_4 at 443	K temperature?
	(1) Ethane	(2) Ethene	(3) Ethyne	(4) Mathane
Ans.	2			
Sol.	Dehydration of alcohol			
	Conc	H SO		
	$CH_2 - CH_2 - 44$	$\frac{H_2SO_4}{H_3 K} \rightarrow CH_2 = CH_2 +$	H ₂ O	
	Н ОН			
46.	Which one of following	hydrocarbons will not disp	lay addition reaction?	
	(1) C ₂ H ₄	(2) $C_2 H_2$	(3) $C_{3}H_{6}$	(4) C ₃ H ₈
Ans.	4			
Sol.	The formula of propane	e is C_3H_8 i.e. alkane		
	Alkanos are saturated l	audrocarbons. So thou do	not show addition reaction.	
	Aikailes ale saturateu i	Tydrocarbons. So, they do		
47.	Which one of the follow	ing properties does not be	long to jonic compounds?	
	(1) Hard and brittle		(2) High melting and boili	ng points
	(3) Usually water solub	le	(4) Good conductor of ele	0.1
Ans.	4			

Sol. Ionic compounds are bad conductor of electricity in solid state because in the solid state, due to strong electrostatic force of attraction free ions are absent. So, they are insulator in the solid state.

				SEARCH EXAMINATION		
48.	If X, Y, and Z	are Dobereiner	triads and atomi	c masses of X and Z are 1	5 and 75, respectively,	
	what will be the	e atomic mass o	f Y?			
	(1) 45	(2) 60		(3) 90	(4) 30	
Ans.	1					
Sol.	Element	х	Y	Z		
	Atomic mass	15	-	75		
	According to Dobereiner.					
	Atomic mass of middle element = $\frac{15+75}{2} = \frac{90}{2} = 45$					
49.	Which one of t	he following ator	ns is biggest in si	ize?		
	(1) B	(2) Be		(3) O	(4) N	
Ans.	2					
Sol.	In a periodic ta	ble, atomic size	decreases on mo	oving left to right in a period.		
	So, Beryllium ł	nas big size.				
50.	The element w	hich stands in th	nird period and se	cond group of modern perio	dic table is.	
	(1) Sodium	(2) Be	ryllium	(3) Magnesium	(4) Aluminium.	
Ans.	3					
Sol.	Magnesium is	the element whic	ch stands in third	period and second group of	modern periodic table.	
51.	The scientist w	ho further expar	nded cell theory w	vas.		
	(1) Leeuwenho	oek (2) Sc	hleiden	(3) Virchow	(4) Purkinje	
Ans.	3					
Sol.	Two biologists, "Schleiden and Schwann" gave the "Cell theory" which was later on expanded by "Rudolf Virchow".					
52.	The pair of org	anelles which ar	e able to make th	neir own protein is.		
	(1) Mitochondr	ia, Lysosome		(2) Ribosome, Lysosome		
	(3) Plastid, Go	lgi body		(4) Plastid, Mitochondria		
Ans.	4					

Sol. Plastid and mitochondria contain their own DNA and ribosomes.

		STATE TALENT S	EARCH EXAMINATION	N-2016 27-11-2016			
53.	The chemical present (1) Cutin	on cell wall of bark in plant		(4) Postin			
Ans.	(1) Cullin 2	(2) Suberin	(3) Lignin	(4) Pectin			
Sol.	Cell wall of plant conta	ain suberin					
54.	Correct pair of essential micronutrients for plant growth is.						
	(1) iron, magnesium	(2) phosphorus, sulphur	(3) potassium, chlorine	(4) zinc, copper			
Ans.	4						
Sol.	Essential plant micro r	nutrients are boron (B), zind	c (Zn), Maganese (Mn), iror	n (Fe), copper (Cu).			
55.	The organism which is	more sensitive to the leve	l of sulphur dioxide in the a	ir is.			
	(1) Algae	(2) Fungi	(3) Lichen	(4) Bacteria			
Ans.	3						
Sol.	Because lichen are the	e indicators of sulphur dioxi	de polution				
56.		ible for wilting of leaves is.					
	(1) Auxin	(2) Cytokinin	(3) Gibberellin	(4) Abscisic acid.			
Ans.	4						
Sol.	Abscisic acid is Respo	onsible for the wiliting of lea	ves in plants.				
57.	During anaerobic resp	iration, the chemical built u	p in our muscles is.				
	(1) Pyruvic acid	(2) Lactic acid	(3) Oxaloacetic acid	(4) Citric acid			
Ans.	2	. ,	· · ·				
Sol.	Because lactic acid pr	oduction occur in our musc	le cells when we are exerc	ising vigorously.			
58.	The growth of pollen to	ube towards ovule shows.					
	(1) Hydrotropism	(2) Phototropism	(3) Geotropism	(4) Chemotropism			
Ans.	4						
Sol.	Chemotropism- is mov	vements of plants due to ch	emical stimulus				
	Eg : growth of pollen t	ube.					

人 Reduce				ALENT SE	EARCH EXAM	INATION-201	6 27-11-2016
59.	If produce o	f a terrestri	ial food chain sy	nthesises	1000 k.cal food	energy, then the	e quantity of food
	energy that	reaches to	tertiary consume	ers will be.			
	(1) 1000 k. d	cal	(2) 100 k. cal		(3) 10 k. cal	(4) 1	lk.cal.
Ans.	4						
Sol.	10% law of e	energy flow	According to the second sec	ne 10% law	of Lederman th	ne 90% part of ob	tained energy of
	each organis	sm is utilize	ed in their variou	is metaboli	c activates and	only 10% energy	is transferred to
	the next trop	ohic level.					
	Droducor	Drim		S Soo	andan <i>i</i> oonoun	oor . Tortia	
	Producer –	→ Prim	ary consumer -		Shuary consum	ner \longrightarrow Tertia	ry consumer
	1000 k cal -	→ 100	k Cal \longrightarrow 10	k cal ——	→ 1 k cal		
			<i>.</i>				
60.		f local syste	em of canal irrig	ation in Hin			
	(1) Tal		(2) Kulh		(3) Nadi	(4) P	yne
Ans.	2						
Sol.	Kulh is the lo	ocal system	n of canal irrigati	on in Hima	chal Pradesh.		
C4	In onimola k		aration control	n o ob o niom	is colled as		
61.			ecretion control r	necnanism		a a b a piana	
	(1) secretion				(2) feedback m		
Ans.	(3) hyposeci 2	relion meci	lanish		(4) hypersecre	tion mechanism	
Alis.	2						
Sol.	In animals, ł	hormone se	ecretion control r	mechanism	is known as fee	ed back mechani	sm
62.	An example	of phylum	echinodermata i	ie			
02.	(1) Leech	or phylam	(2) Housefly		(3) Liver fluke	(4) S	tarfish
Ans.	4		(_)		(0)	(1) 0	
_							
Sol.	Starfish is a	n example	of phylum echin	odermata			
63.	Which of the	e following (diseases diseas	es is cause	d due to the def	ficiency of RBC?	
	(1) Anaemia	-			(2) Haemophili	-	
	(3) Leukaem				(4) Thrombocy		
Ans.	1					-	
0.1	A						
Sol.	Anaemia is o	caused due	e to the deficiend	CY OT RBC			

			EARCH EXAMINATION	1-2016 27-11-2016
64.	Which of the following is	s not a sexually transmitte	d disease?	
	(1) Syphilis	(2) Gonorrhoea	(3) AIDS	(4) Tuberculosis.
Ans.	4			
Sol.	Syphilis, Gonorrhea All	DS are sexually transmitted	d disease.	
65.	(1) Mitochondria	as own DNA and ribosome (2) Lysosome	is. (3) Golgi apparatus	(4) Vacuoles
Ans.	1			
Sol.	Mitochondria contain its	own DNA and Ribosome		
66.	An example of cold – bl (1) Echidna	ooded animal is. (2) Kangaroo	(3) Pigeon	(4) Snake
Ans.	4			
Sol.	Snake – Because reptil	es are the cold Blooded ar	nimals	
67.	Which organ controls in (1) Cerebellum	voluntary reactions? (2) Cerebrum	(3) Medulla	(4) Forebrain
Ans.	3			
Sol.	Involuntary reaction cor	ntrols by medulla oblongata	a	
68.	Spinal chord is protecte	d by the structure.		
Ans.	(1) Vertebral column 1	(2) Skull	(3) Sternum	(4) Ribs
Sol.	Spinal chord is protecte	d by the vertebral column		
69.	Protein digesting enzyn (1) Trypsin	ne secreted by gastric glar (2) Pepsin	nd is. (3) Erepsin	(4) Lipase
Ans.	2		· / · ·	
Sol.	Pepsin is the protein dig	gestive enzyme secreted b	y gastric gland.	
70.	The biological process i	involved in the removal of	harmful metabolic waste fr	om the body is called.
Ans.	(1) Respiration 3	(2) Defecation	(3) Excretion	(4) Egestion
/	-			
Sol.	Removal of harmful me	tabolic waste from the boo	•	
八	Resonance		-46 & 52, IPIA, Near City Mall, Jhala E-mail : contact@resonance.ac.in	
\sum	Educating for better tomorrow		8 5555 CIN: U80302RJ2007PLC024029	STSEBSX0271116-16

		STATE	TALENT SEARCH	EXAMINATION-2016	27-11-2016
71.		$\sqrt[3]{2} \times \sqrt[4]{2} \times \sqrt[12]{32}$ is eq			
	(1) √2	(2) 2	(3) ¹² √2	(4) ¹² √3	2
Ans.	2				
Sol.	$(2)^{\frac{1}{3}} \times (2)^{\frac{1}{4}} \times (32)^{\frac{1}{4}}$	$(2)^{\frac{1}{12}}$			
	$\frac{1}{3} + \frac{1}{4} + \frac{5}{12}$	$\overline{2} \Rightarrow 2^{\frac{4}{2}}$	+3+5		
	$\Rightarrow 2^{\circ}$	⇒ 2	$^{12} \Rightarrow 2$		
72.	lf x ¹¹ + 11 is di	vided by x + 1, then t	he remainder is.		
	(1) 9	(2) 10	(3) 11	(4) 12	
Ans.	2	、 ,		· · · ·	
Sol.	ln x ¹¹ + 1	1			
	Put x+1=	0 (Using Ren	nainder Theorem)		
			,		
	x = – 1	l			
	(–1) ¹¹ + 11	⇒ -1 + 11	⇒ 10		
73.	In ∆PQR if ∠R	$>$ $\angle 0$ then			
	(1) QR > PR	(2) PQ > PI	R (3) PQ	< PR (4) QR	< PR
Ans.	2	(2) 1 & 1 1			
	- P				
Sol.		\			
	Q	R			
	$\angle R > \angle Q$				
	So PQ > F	PR (Side opposite to	larger Angle is larger).		

$$ar(\Delta APQ) = \frac{1}{3}ar(\Delta ABC)$$

So
$$ar(\Delta APQ) = \frac{1}{3} \cdot \frac{1}{2}ar(ABCD)$$

= $\frac{1}{6}ar(ABCD)$

76. In AOB is a diameter of the given circle and $\angle ADC = 120^{\circ}$ then $\angle CAB$ is equal to.

= 30°

R	Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar	Road, Kota (Raj.)- 324005
<u>ב</u>	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	STSEBSX0271116-19
N	Toll Free : 1800 200 2244 1800 258 5555 CIN: U80302RJ2007PLC024029	515EB5A0271116-19

 R
 Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
 STSEBSX0271116-20

 Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029
 STSEBSX0271116-20

Resonance STATE TALENT SEARCH EXAMINATION-2016 | 27-11-2016

If α,β are the zeros of the polynomial $f(x) = ax^2 + bx + c$ then $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$ is equal to. 78.

(1)
$$\frac{b^2 - ac}{a^2}$$
 (2) $\frac{b^2 - 2ac}{c^2}$ (3) $\frac{b^2 + ac}{a^2}$ (4) $\frac{b^2 + 2ac}{c^2}$

Ans. 2

 $f(x) = ax^2 + bx + c$ Sol.

$$\alpha + \beta = -\frac{b}{a} \qquad ; \qquad \alpha\beta = \frac{c}{a}$$

$$\therefore \qquad \frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\alpha^2 + \beta^2}{(\alpha\beta)^2} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{(\alpha\beta)^2} = \frac{(-b/a)^2 - 2(c/a)}{\left(\frac{c}{a}\right)^2} = \frac{b^2 - 2ac}{c^2}$$

79. If the first, second and last terms of an A.P. are a, b and 2a respectively, then its sum is

(1)
$$\frac{ab}{2(b-a)}$$
 (2) $\frac{ab}{(b-a)}$ (3) $\frac{3ab}{2(b-a)}$ (4) $\frac{2ab}{(b-a)}$

3 Ans.

First Term = a Second Term = b $\left[\text{Difference}(d) = (b - a) \right]$ Sol.

Last Term = 2a

...

2a = a + (n - 1)(b - a)

$$\Rightarrow \qquad n-1 = \frac{a}{b-a} \qquad \Rightarrow \qquad n = \frac{a}{b-a} + 1 = \frac{b}{(b-a)}$$

:
$$S_n = \frac{n}{2}[a + \ell] = \frac{b}{2(b-a)}[a + 2a] = \frac{3ab}{2(b-a)}$$

Sol. cos1° cos2° cos3° cos4°-----cos100°

 $= 0 [... \cos 90^{\circ} = 0]$

			NT SEARCH EXAMINATIO	DN-2016 27-11-2016
81.	If $A + B = 90^{\circ}$ then	tan A. tan B + tan A.cot B sin A.sec B	$-\frac{\sin^2 B}{\cos^2 A}$ is equal to.	
	(1) cot ² A	(2) cot ² B	(3) -tan ² A	(4) $-\cot^2 A$
Ans.	2			
Sol.	A + B = 90° \Rightarrow	B = (90 – A)		
	So, $\left(\frac{\tan A \cdot \tan B}{\sin A}\right)$	$\frac{B + \tan A \cdot \cot B}{A \cdot \sec B} - \frac{\sin^2 B}{\cos^2 A}$		
	$= \left(\frac{\tan A \cot A + \tan A}{\sin A \cdot \cos A}\right)$	$\left(\frac{A \cdot \tan A}{cA} - \frac{\cos^2 A}{\cos^2 A}\right) = \left(\frac{1+1}{cA}\right)$	$\left(\frac{\tan^2 A}{1} - 1\right) = \tan^2 A = \cot^2 B$	
82.	If $\cos\theta + \cos^2\theta = 1$,	then $\sin^2 \theta + \sin^4 \theta$ is equivalent	gual to.	
	(1) –1	(2) 0	(3) 1	(4) None of these
Ans.	3			
Sol.	$\cos\theta = 1 - \cos^2\theta$			
	$\cos \theta = \sin^2 \theta$			
	∴ sin²θ (1 +	$\sin^2 \theta$)		
	$= \cos \theta (1 + \cos \theta)$			
	$=\cos\theta+\cos^2\theta$	(1 given)		
	= 1			

 ®
 Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
 STSEBSX0271116-23

 V
 Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029
 STSEBSX0271116-23

八 R			SEARCH EXAMINATI	ON-2016 27-11-2016
84.	The distance between the	e given points $(\cos \theta, \sin \theta)$	${\sf n} heta)$ and $({\sf sin} heta, -{\sf cos} heta)$ is	equal to.
	(1) $\sqrt{3}$ (2) √2	(3) 2	(4) 1
Ans.	2			
Sol.	$d^2 = [\cos\theta - \sin\theta]^2 + [\sin\theta$	$-(\cos\theta)]^2$ (Using	Distance formula)	
	= $(\cos\theta - \sin\theta]^2 + (\sin\theta +$	$\cos\theta)^2$		
	$=\cos^2\theta + \sin^2\theta + \sin^2\theta + \sin^2\theta + \frac{1}{2}$	cos ² θ		
	= 1 + 1			
	d ² = 2			
	\therefore d = $\sqrt{2}$			
85.	If the radius of a sphere sphere increase?	is increased by 10%,	then how much per cer	nt does the volume of the
	(1) 33.00% (2) 33.10%	(3) 33.11%	(4) 33.12%
Ans.	2			
Sol.				
	$r_1 \longrightarrow \left(r + \frac{10}{100}r\right) = \left(r + \frac{10}{100}r\right)$	$\left(\frac{r}{10}\right)$		
	$=\frac{11r}{10}$			
	$V_1 = \frac{4}{3}\pi r^3$			
	$V_2 = \frac{4}{3}\pi \left(\frac{11r}{10}\right)^3$			
	% charge = $\left(\frac{v_2 - v_1}{v_1}\right) \times 10^{-10}$	00		
	Resonance®		, A-46 & 52, IPIA, Near City Mall, J n E-mail : contact@resonance.ac.	halawar Road, Kota (Raj.)- 324005
/	Educating for better tomorrow		258 5555 CIN: U80302RJ2007PLC02	STSEBSX0271116-24

R	Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar	Road, Kota (Raj.)- 324005
nce	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	STSEBSX0271116-25
morrow	Toll Free : 1800 200 2244 1800 258 5555 CIN: U80302RJ2007PLC024029	31328370271116-25

88. If a wire is bent in the shape of a square, then the area of this square is 81 cm². If the wire is bent into a semicircular shape, then the area of the semicircle is equal to.

	(1) 22 cm ²	(2) 44 cm ²	(3) 77 cm ²	(4) 154 cm ²
Ans.	3			

Sol. a = side of square

$$a^2 = 81$$
 $a = 9$

∴ perimeter = 4a = 36

R = 28 and r = 21

 \therefore Height of frustum = (H – h)

Using similarity

$$\frac{r}{R} = \frac{h}{H} \Longrightarrow \frac{21}{28} = \frac{h}{H}$$

$$\Rightarrow$$
 $H = \frac{4}{3}h$

V_F = 28.49 litre

Educ	cating for better tomorrow	<u> </u>		•
	= 28.49 x 1000 cm ³			
	$= 28490 \text{ cm}^3$			
	$V_{\rm F} = V - v$			
	$=\frac{1}{3}\pi R^2 H-\frac{1}{3}\pi r^2 h$			
	$=\frac{\pi}{3}\left[R^2\times\left(\frac{4h}{3}\right)-r^2\times h\right]$			
	$=\frac{\pi}{3}\times h\left[\frac{4R^2}{3}-r^2\right]=28$	490		
	$=\frac{1}{3}\times\frac{22}{7}\times h\left[\frac{4}{3}\times28\times24\right]$	8×–21×21		
	$=\frac{1}{3}\times\frac{22}{7}\times h\times7\times7\left[\frac{64}{3}\right]$	$\left[\frac{-27}{3}\right] = 28490$		
	$h = \frac{28490 \times 3 \times 3}{22 \times 7 \times 37}$			
	h = 45 cm			
	$\therefore H = \frac{4}{3}h = \frac{4}{3} \times 45 =$	60 cm		
	$\therefore \qquad H-h=60-4$	5 = 15 cm		
		Height of bucket = 15 cm		
	Pythagoras was the stu	udent of.		
	(1) Thales	(2) Euclid	(3) Thales and Euclid both(4) N	one of these
•	1			
	Pythagoras was studer	nt of Thale.		

90.

Ans.

Sol.

