NATIONAL TALENT SEARCH EXAMINATION-2019-20, UTTAR PRADESH

SCHOLASTIC APTITUDE TEST (SAT) PAPER & HINTS & SOLUTION

PHYSICS

101. Ans.	Unit of momentum is (1) meter/second (3) Sol. kg-meter/second SINCE, MOMENTUM (Then, unit of 'p' = kg me	(2) Newton ×meterp) = mass (m) x velocityeter/second	(3) kg-meter/second (v)	(4) kg ⁻¹ meter second ⁻¹
102. Ans. (4 Sol.	Which one of the follow (1) Restoring force) as during simple harmo so total	ing physical quantity is c (2) Kinetic energy nic motion there is contin mechanical energy (KE	onstant in simple harmon (3) Potential energy nous interchange of kinet + PE) is conserved.	nic motion? (4) Total energy tic energy and potential energy,
103.	A ray of light passes from (1) $\sin^{-1}\left(\frac{1}{2}\right)$	form glass $\left(\mu = \frac{3}{2}\right)$ to wate (2) $\sin^{-1}\left(\sqrt{\frac{8}{9}}\right)$	$r\left(\mu = \frac{4}{3}\right)$. The value of (3) $\sin^{-1}\left(\frac{8}{9}\right)$	critical angle will be (4) $\sin^{-1}\left(\frac{5}{7}\right)$
Ans. Sol.	(3) As we have refractive in $\mu_1 / \mu_2 = 1/\sin c$ so, we can write $(3/2)/(4/3) = 1/\sin c$ sin c = 8/9 c = sin-1 (8/9) here, $\mu_1 = \mu_{glass} = 3/2$ $\mu_1 = \mu_{water} = 4/3$	ndex(µ) formula in terms	of critical angle (c) as,	
104. Ans.	The value of acceleration (1) surface (2) Sol. since radius of ear Therefore, acceleration	on due to gravity (g) on th (2) poles th at poles are minimum due to gravity increases	ne earth will be maximum (3) equator and at equater is maxim when we move from equ	n at (4) center um uator to poles
105. Ans.	Which one of the follow (1) Nuclear Energy (3) Sol. since gobar gas or	ing is an example of Bio (2) Sun energy bio gas is obtained from	mass Energy source. (3) Gobar Gas i decomposition of bioma	(4) Wind energy

106. The refraction of light by a prism is shown in the following figure. Then Angle $\angle D$ is:

(1) Angle of prism (2) Angle of refraction (3) Angle of emergent (4) Angle of deviation

- Ans. (4)
- **Sol.** since angle of deviation is the angle made between incident ray and emergent ray from the prism.
- 107. The unit of power of a lens is dioptre. Then one dioptre (1 dioptre) is equal to (1) 100 cm^{-1} (2) 1 meter⁻¹ (3) 1 meter (4) 100 cm
- Ans. (2)
- Sol. AS S.I. UNIT OF POWER OF LENS IS dioptre (D).

FORMULA OF POWER OF LENS (P) = 1/ FOCAL LENGTH (in meters) P = 1/f (in meters) So,

 $1 \text{ dioptre} = 1/(\text{meter}) = 1 \text{ meter}_{-1}$

- 108. If F be the focal length of a convex lens, then the nature of image of an object placed at a distance of 2F will be
 - (1) Real, inverted and same size
 - (3) Real, erect and same size
- (2) Virtual, erect and small

(4) Virtual, inverted and same size

- Ans. (1)
- Sol. When the object is placed at 2F

When the object is placed at the centre of curvature of a lens then a ray of light AO which is parallel to the principal axis after refraction pass through the focus F along the direction OF. While the other ray AC pass through the optical centre C and goes straight without any deviation. These two refracted light rays intersect each other at point A', on the other side of the lens at the centre of curvature 2F. So, the image A'B' formed in this case is at the centre of curvature, of same size as the object, real and inverted.

- 109. The power of a plane mirror is
 - (1) Zero (2) + 1 (3) 1 (4) Infinity (∞)

Ans.

Sol. The power of a mirror is the reciprocal of its focal length. As the focal length of a plane mirror is infinite, its power

is zero. P = 1/f $P = (1/\infty) = 0$

(1)

10. The n 10. The n (1) 1: (1) 1: (2) 0 (1) As gi Resis Whe So New New New New So, N 11. Which (1) 1 ns. (4) 0I. In IN 12. How (1) 1 ns. (2) 0I. giver and I To fin energy E = F so, t t = 10	resistance of a wire the new resistance Ω ven in question that stance= Resistivity in the wire is stretch Resistance = Resis resistance = (Resister resistance = Resister New resistance = 4 th one of the follow 10 V and 50 Hz IDIA we work on 5 much time will be hour in , power (P) = 100 Energy (E) = 1unit ind , time(t) = ? gy = power x time P X t = E/P	e is 4Ω . If lenge e will be (2) 6Ω at old resistant x length/area hed to double stivity x (2 len stivity x length stance x 4 x 4 = 16 ohm ing alternating (2) 220 V and 0 Hz frequenc taken by a 100 (2) 10 hour watt = 1 kWh = 100	gth of wire gth of wire the length ngth) / (area n/area) x 4 (g current is d 60 Hz (cy and 220) 0 watt bulb 00 Wh	is made double a (3) 4Ω e is = 4 ohm , the area of cros a/2) supplied in our h (3) 110 V and 6 V supply in hous to consume one (3) 100 hour	and area of s section touse hold to Hz (the hold cir the unit of er	of cross section is made half, (4) 12Ω gets reduced to half. d circuits? (4) 220 V and 50 Hz rcuits. hergy: (4) 1000 hour
 (1) 1: ns. (2) ol. As gi Resis Whe So New New New New So, N 11. White (1) 1 ns. (4) ol. In IN 12. How (1) 1 ns. (2) ol. giver and I To fin energy E = F so, t t = 10 	Ω ven in question that stance= Resistivity n the wire is stretcl Resistance = Resi resistance = (Resi resistance = Resis New resistance = 4 th one of the follow 10 V and 50 Hz IDIA we work on 5 much time will be hour n, power (P) = 100 Energy (E) = 1unit nd, time(t) = ? gy = power x time P X t = E/P	(2) 6Ω at old resistant x length/area hed to double stivity x (2 len stivity x length stance x 4 x 4 = 16 ohm ing alternating (2) 220 V and 0 Hz frequenc taken by a 100 (2) 10 hour watt = 1 kWh = 100	ice of a wir the length ngth) / (arean/area) x 4 (arean/area) x 4 (c) g current is (c) d 60 Hz (c) and 220 (c) watt bulk (c) Wh	 (3) 4Ω e is = 4 ohm , the area of cros a/2) supplied in our h (3) 110 V and 6 V supply in hous to consume one (3) 100 hour 	nouse hold 30 Hz (30 hz))))))))))))))))))))))))))))))))))))	 (4) 12Ω gets reduced to half. d circuits? (4) 220 V and 50 Hz rcuits. nergy: (4) 1000 hour
ns. (2) ol. As gi Resis Whe So New New So, N 11. Whic (1) 1 ns. (4) ol. In IN 12. How (1) 1 ns. (2) ol. giver and I To fin energy E = F so, t t = 10	ven in question that stance= Resistivity n the wire is stretch Resistance = Resis resistance = (Resi resistance = Resis New resistance = 4 th one of the follow 10 V and 50 Hz IDIA we work on 5 much time will be hour n, power (P) = 100 Energy (E) = 1 unit nd, time(t) = ? gy = power x time P X t = E/P	at old resistand x length/area hed to double stivity x (2 len stivity x length stance x 4 x 4 = 16 ohm ing alternating (2) 220 V and 0 Hz frequenc taken by a 100 (2) 10 hour watt = 1 kWh = 100	the length the length ngth) / (arean/area) x 4 (and 60 Hz (b) watt bulb (c) watt bulb (c) Wh	e is = 4 ohm , the area of cros a/2) s supplied in our h (3) 110 V and 6 V supply in hous to consume one (3) 100 hour	nouse hold 30 Hz (e hold cir unit of er	gets reduced to half. d circuits? (4) 220 V and 50 Hz rcuits. nergy: (4) 1000 hour
New New New So, N 1. Whice (1) 1 is. (4) ol. In IN 2. How (1) 1 is. (2) ol. giver and I To fin energy E = F so, t t = 10	Resistance = Resi resistance = (Resi resistance = Resis New resistance = 4 th one of the follow 10 V and 50 Hz IDIA we work on 5 much time will be hour n, power (P) = 100 Energy (E) = 1unit nd, time(t) = ? gy = power x time P X t = E/P	stivity x (2 len stivity x length stance x 4 x 4 = 16 ohm ing alternating (2) 220 V and 0 Hz frequenc taken by a 100 (2) 10 hour watt = 1 kWh = 100	ngth) / (arean/area) x 4 n g current is d 60 Hz cy and 220 0 watt bulb	a/2) supplied in our h (3) 110 V and 6 V supply in hous to consume one (3) 100 hour	nouse hole 30 Hz (a hold cir a unit of er (d circuits? (4) 220 V and 50 Hz rcuits. nergy: (4) 1000 hour
 Whic (1) 1 (4) In IN How (1) 1 How (1) 1 (2) giver and I giver and I E = F so, t t = 10 	th one of the follow 10 V and 50 Hz IDIA we work on 5 much time will be hour 1, power (P) = 100 Energy (E) = 1unit nd, time(t) = ? gy = power x time P X t = E/P 200(100 = 10 hour	ing alternating (2) 220 V and 0 Hz frequenc taken by a 100 (2) 10 hour watt = 1 kWh = 100	g current is id 60 Hz cy and 220 0 watt bulk 00 Wh	s supplied in our f (3) 110 V and 6 V supply in hous to consume one (3) 100 hour	house hol 30 Hz 1 3e hold cir 9 unit of er (d circuits? (4) 220 V and 50 Hz rcuits. nergy: (4) 1000 hour
I. In IN 2. How (1) 1 s. (2) I. giver and I To fin energ E = F so, t t = 10	IDIA we work on 5 much time will be hour in, power (P) = 100 Energy (E) = 1unit ind, time(t) = ? gy = power x time P X t = E/P	0 Hz frequenc taken by a 100 (2) 10 hour watt = 1 kWh = 100	cy and 220 0 watt bult 00 Wh	V supply in hous to consume one (3) 100 hour	e hold cir unit of er	rcuits. nergy: (4) 1000 hour
2. How (1) 1 s. (2) I. giver and I To fin E = F so, t t = 10	much time will be hour n, power (P) = 100 Energy (E) = 1unit nd, time(t) = ? gy = power x time P X t = E/P	taken by a 100 (2) 10 hour watt = 1 kWh = 100	0 watt bult 00 Wh	o to consume one (3) 100 hour	e unit of ei	nergy: (4) 1000 hour
s. (2) J. giver and l To fin energ E = F so, t t = 10	n, power (P) = 100 Energy (E) = 1unit nd, time(t) = ? gy = power x time P X t = E/P	watt = 1 kWh = 10	00 Wh			
	500/100 = 10 hour					
3. Whic (1) C	h one of the follow	ing is not a co	onventiona m	source of energy	y?	(4) Solar energy
s. (4) I. as or	nly solar energy is	non conventio	onal as wel	l as renewable so	ource of e	energy.
			<u>CH</u>	EMISTRY		
4. Whic (1) B	h of the following e	element is moi (2) F	re electro p	oositive? (3) Cl		(4)
s. (4) J. On m as siz	noving down to the ze of atom increas	group electro es. So in halo	positive ch gens, iodir	naracter increases ne is the most ele	s because ctropositi [,]	e ionization energy decreases ve element.
5. The ((1) C	name of metal whic	ch decompose (2) Pt	es water in	cold is (3) Ag	((4) Na
s. (4) I. Acco react hydro 2Na 2O –	rding to metal read ive than ogen. + 2H ≽2NaOH + H₂	ctivity series N	la is more	reactive than hyd	lrogen and	d Pt, Cu and Ag are less
6. On h	eating camphor in	a porcelain di	ish it got m	ixed in air withou	ıt melting.	This phenomenon is known
as (1) C	ondensation	(2) Sublimati	ion	(3) Suspension	((4) Evaporation
. Camp state	without undergoing	f sublime substa into liquid state	ance which	upon heating gets	converted	from solid state into gaseous
		Corporate Of	fice : CG Tow	er, A-46 & 52, IPIA, Ne A-51 [A] IPIA Near Pe	ar City Mall,	Jhalawar Road, Kota (Raj.)- 324005 Tower : Contact : 0744-6635569 2777760

Toll Free : | 1800 258 5555 | CIN: U80302RJ2007PLC024029

NTSE STAGE-I-2019-20 PAGE-3

		N/	ATIONAL TALE	ENT SEARCH EXAMI	INATION- 03.11.20)19 UTTAR P RADESH SAT
117. Ans	Ethylene and Sulp (1) Chloroethane	oher monochl (2) Eth	oride on heatin Nylene chloride	ng gives e (3) Mustard Ga	ıs (4) Ethyl	ene glycol
AII5.	$\frac{2}{2C_0H_1} + S_0Cl_0$		\rightarrow S(C,H	$(CI)_{o} + S$		
Sol.	Ethylene Sulphu	ar Mono Chlorida	e bis(2-0 (Musta	Chloroethyl) sulphide ard gas)		
118.	The H+ ion concer $(\log_{10} 2 = 0.3010)$	ntration of a s	olution is 2 ×1	0^{-8} mol L ⁻¹ . The pH	value of the solut	ion is
Ans.	(1) 7.699 (1)	(2) 7.5	99	(3) 7.799	(4) 7.899	9
	Here $[H^+]$ of given s $[H^+]_{total} = [H^+]_{sol}$ $= 2 \times 10^{-8} (2 \times 10^{-8})^{-8} (2 \times 10^{-8})^{-8$	olution is very l $(10^{10} + [H^+]_{water})^{-8} + 10^{-7}$ $(10^{-8} + 0.1)$ $(10^{-8} + 0.1)$ $(10^{$	ess so [H ⁺] from	water has to be conside	ered.	
	= -0.3010 + 8	3				
Sol.	pH = 7.699					
119. Ang	Which of the follov (1) Normal elemen	ving element nt (2) Typ	s exhibit varial pical element	ble valency? (3) Transitional	element (4) None	of these
Sol.	The transition eler there is very little formation. So, tran	ments have the difference in the second s	neir valence el the energies o nts show varia	ectrons into differen f these orbitals. Bot able valencies	nt sets of orbitals i th energy levels ca	.e. (n–1)d and ns. As an be used for bond
120. Ans.	Which one is addi (1) $Zn + H_2SO_4 \rightarrow$ (3) $2H_2 + O_2 \rightarrow 2H_3$ (3)	tion reaction? $ZnSO_4 + H_2$ H_2O	?	(2) 2KBr + Cl – (4) HgO \rightarrow 2Hg	$\rightarrow \text{KCl} + \text{Br}_2^2$ g + O_22	n repetien
501.	when two or more	e reactants co	ombine togeth	er to form a product	t known as additio	n reaction.
121.	Which compound (1) H_2S	has both cov (2) CC	alent as well a	as co-ordinate bond (3) H ₂ O	(4) SO ₂	
Ans. Sol.	(4) Central sulphur ator presence of lone pai	n is connected r of electron o	to one oxygen n sulphur atom.	by a double bond and	l to the other by a co	o- ordinate bond due to
		.0		••• .0.	S [⊕] O.	
122.	Complex salt is (1) Zinc Sulphate (3) Iron ammoniur	n Sulphate		(2) Sodium hyd (4) Tetraamine	Irogen Sulphate Copper (II) Sulph	ate
Ans. Sol.	(4) A compound com known as complex each other. Tetra	posed of cent salt becaus amine coper	tral metal aton e the structure sulphate is on	n having coordinate is complex and the e of the examples of	bonds and with leave are cations an of complex salt.	egends around it, is d anions bonded to
		Corp	orate Office : CG	Tower, A-46 & 52, IPIA, Ne No. A-51 [A] IPIA Near Re	ear City Mall, Jhalawar R	oad, Kota (Raj.)- 324005
八	Resonar		site :www.pccp.resc	mance.ac.in E-mail : nccn	@resonance.ac.in	SAT
	Educating for better to	morrow				NTSE STAGE I 2019 20 BA

Toll Free : | 1800 258 5555 | CIN: U80302RJ2007PLC024029

SAT NTSE STAGE-I-2019-20 PAGE-4

		NATIONAL TALEN	SEARCH EXAMINATION	- 03.11.201	9 UTTAR PRADESH SAT
123.	Calamine is the ore of met (1) Copper (2	al) Aluminium	(3) Zinc	(4) Iron	
Ans. Sol.	(3) The formula of calamine is	s ZnCO₃ or it is also kr	nown as zinc carbonate		
124.	Acid used in Lead Batterie (1) HCl (2	es is 1) H ₂ SO ₄	(3) HNO ₃	(4) H ₂ CO ₃	
Ans. Sol.	(2) Sulphuric acid is used in L	ead - Acid storage ba	tteries.		
125.	Which type of ores are cor	ncentrated by Froth flo	patation process?		
Ans.	(1) Oxide ores (2 (2)	!) Sulphide ores	(3) Carbonate ores	(4) Nitrate	ores
Sol.	Only sulphide ores are cor sulphide ores and hence b	ncentrated by froth flo rings it to froth.	atation process because	pine oil sel	ectively wets the
126.	Which of the following is a (1) Na ₂ O (2	mphoteric oxide? 2) SO2	(3) Al2O3	(4) CaO	
Ans. Sol.	(3) Aluminium Oxide is ampho	oteric oxide because i	t can react with acids as	well as bas	e.
	$\begin{array}{l} Al_2O_3 + HCl \rightarrow AlCl_3 + H_2O_3 \\ Al_2O_3 + NaOH \rightarrow NaAlO_2 + \end{array}$) · H2O			
		BIOL	.OGY		
127.	In human body temperatur	re control centre is			
Ans.	(1) Epithalamus (2) Hypothalamus	(3) Thalamus	(4) Medula	a oblongata
Sol.	Hypothalamus Brain is contral center of our temperature.	body. Its different part	control different function &	t hypothalam	nus is control the body
128.	Which factor is responsible	e for Green House Eff	ect?		
Ans.	(1) H ₂ O (2 (4)	.) CO	(3) 502	(4) CO2	
Sol.	CO ₂ CO ₂ trap the UV rays & UV increase. This is green ho	/ rays donot move ou use effect.	t complete to the space &	& temperatu	ire of earth
129.	Which one of the following	element is essential	for synthesis of Thyroxin	Hormones	?
Ans.	(1) ZINC (2)) Iodine	(3) Boron	(4) Nitroge	en
Sol.	lodine Self explanatory.				
130.	Smallest unit of classificati	on is			
Ans.	(1) Species (2 (1)) Class	(3) Order	(4) Kingdo	om
Sol.	Species				
	Phylum				
	C	lass order	IAXONOMIC Classifica	ation	
		family	nue		
		Ge	Species →Basic & sma	llest unit ar	nd Taxon
131.	Which of the following is n (1) Ovary (2	ot a part of the female) Uterus	e reproductive system in (3) Fallopian tube	human beir (4) Vas de	ngs? ifereus
		Corporate Office : CG Tow PCCP Head Office: Plot No.	er, A-46 & 52, IPIA, Near City Mal A-51 [A], IPIA, Near Resonance C	l, Jhalawar Road G Tower ; Cont a	d, Kota (Raj.)- 324005 act : 0744-6635569, 2777769
\square		Website :www.pccp.resonan		e.ac.in	
		1 OII Free: 1800 258 5555 Cl	N: U8U3U2RJ2UU/PLCU24U29		NTSE STAGE-I-2019-20 PAGE

八日			ENT SEARCH EXAMINATIO	DN- 03.11.2019 UTTAR PRADESH SAT
Ans.	(4)			
501.	Vas defereus is part o	of male reproductive sys	stem. which carry sperm	
132.	Most powerful digesti (1) Mitochondria	ve enzyme occurs in wl (2) Chloroplast	hich cell organelles. (3) Golgibody	(4) Lysosome
Ans. Sol.	(4) Lysosome Lysosome is digestive with help of digestive	e body of cell & its funct engyme so it contain m	tion to digest unwanted pa nost powerful enzyme.	article of cell & dead cell organelle
133.	Causative agent of Ka (1) Bacteria	ala azar (Black fever) is (2) Virus	(3) Protozoan	(4) Fungi
Ans.	(4) Distant			
Sol.	Protozoan Kala azar or Black fev	ver is caused by leishma	ania which is member of	protozoa group
134.	Unisexual flowers occ (1) Mustard	cur in which of the follow (2) Tomato	ving plants (3) Pea	(4) Watermelon
Ans. Sol.	(4) Watermelon Tomato, musturd, Pea bisexual flower. But in watermelon co	a contain male & female	e reproductive parts in the	eir flower so they are known as
135. Ans	Biotic components of (1) Producers (4)	ecosystem are (2) Consumers	(3) Decomposers	(4) All of above
Sol.	All of these Producer, consumers	, decomposers are livin	ig so they all are known a	s biotic component of ecosystem
136. Ans	Which one of the follo (1) Protein	owing substance is char (2) Carbohydrate	nged into amino acid after (3) Fat	digestion (4) Nucleic acid
Sol.	Protein is polymer of an $Protein \xrightarrow{pepsin}$	ninoacid pepides <u>peptidase</u>	Amino acid.	
107	Source of Depicillin of	ntihiatia ia		
Ans	(1) Bacteria	(2) Fungi	(3) Virus	(4) Algae
Sol.	Fungi	D		
	Penicillium is obtain fi	rom Penicillium notatun	n which is a fungi	
138.	Testosteron Hormone (1) Leyding cell	e is produced in (2) Kupffer cell	(3) Granulosa cell	(4) None of above
Ans. Sol.	(1) Leyding cells Leyding cells are pres hormone is responsib system.	sent in side the testis & le for secondary sexual	they are responsible for s l character in male. Testis	secretion of testosteron & This is part of male reproductive
139.	Number of sex chrom (1) 23	osomes in human bein (2) 46	gs are (3) 1	(4) 2
Ans.	(4) 2			
501.	L Human contain 46 nu chromosome which a	mber of chromosome ir re xx in female & xy in i	n which 44 are autosomal male.	chromosome & 2 are sex

		NATIONAL TALENT	SEARCH EXAMINATION	- 03.11.2019 UTTAR PRADESH SAT
140.	Which of the following is (1) Plastid	known as the 'suicide k (2) Mitochondria	bag' of the cell? (3) Ribosome	(4) Lysosome
Ans.	(4)			
501.	Lysosome because lysosome conta enzymes come outs in c	ain hydrolytic enzymes & cytoplasm of cell & it dig	& when programing of ce est its own cell	II is disturbed then digestive
		SOCIAL S	SCIENCE	
141.	The Harappan Civilizatio	on was discovered in the (2) 1921	e year (3) 1935	(4) 1942
Ans. Sol.	(2) It was discovered in 192	1 by Rakhal Das Baner	iee	
142.	The First Literary Source	e is (2) Samveda	(3) Yajurved	(4) Atharvayed
Ans. Sol.	(1) As per ancient history fi	rst literacy source is Rig	veda	
143.	During whose reign Meg (1) Ashoka	gasthenes visited to India (2) Harsh Vardhan	a? (3) Chandraqupta Maur	va (4) Kumar Gupta
Ans. Sol.	(2) During the reign of Char	ndra Gupta Maurya Meg	asthense visited India.	
144.	Which dynasty was rulir (1) Nand	ng over North India at the (2) Maurya	e time of Alexander's inva (3) Shunga	asion? (4) Kanva
Ans. Sol.	(2) Mauryan Empire was ruli	ng over North India		
145.	The name of Shershah i (1) Hasan	in childhood was (2) Farid	(3) Sher Khan	(4) None of the above
Ans. Sol.	(2) Farid was his childhood	name of Shershah Suri		
146.	Which sultan of Delhi ha	as also been called 'A m	ixture of opposites'? (2) Alauddin Khilii	
	(3) Mohammad Tughala	p	(4) Ibrahim Lodhi	
Ans. Sol.	(3) Mohammad Tughalaq v	vas called as opposite o	f mixture because of his	insensible decisions
147.	The Emperor was called (1) Babar	l 'Kalandar' (2) Humayun	(3) Akbar	(4) Shahjahan
Ans. Sol.	(1) Kalandar means honest	y (Babar)		
148.	Famous ' Peacock Thro	ne' was taken away out (2) Taimur	of India by (3) Dalhousie	(4) Nadir Shah
Ans. Sol.	(4) Nadir Shah took away P	Peacock Throne		
149.	'Subsidiary Alliance' was	s implemented during pe	eriod of	(1) Lord Aug/Jord
Ans. Sol	(1) Lord Cornwallis (2)	(2) Loru Wellesley	(3) SII JONN SNOLG	(4) LOIU AUCKIANO
150.	Which one of the followi	ng writing is Not related	to Mahatma Gandhi?	
Ans.	(1) My Experiments with(3) Das Capital(3)	n truth	(2) Harijan (4) Hind Swaraj	
		Companyte Office + CC Terry		halewee Deed Kete (Dei) 224005

		NATIONAL TALENT	SEARCH EXAMINATION	- 03.11.2019 UTTAR PRADESH SAT
Sol.	Das Capital was written by	Karl Marx		
151.	Name the founder of 'Gada (1) Lal Hardayal (3) Madam Cama	ar Party'	(2) Subhash Chandra B (4) Madan Lal Dhingra	Bose
Ans. Sol.	(1) Lala Hardayal started the '0	Gadar Party	(,)	
152.	Who among the following (1) Bal Gangadhar Tilak (3) M.G. Ranade	was not known as Mo	derate in the Indian Nati (2) Dadabhai Naoroji (4) Gopal Krishna Gokh	ional Movement? nale
Ans. Sol.	(1) Bal Gangadhar Tilak was a	a moderate while othe	rs were exteruist	
153. Ans.	The Himalayan mountain ra (1) Block mountain (2) (2)	ange is an example o) Folding mountain	f (3) Volcanic mountain	(4) Residual mountain
501.	Himalayan mountain are ca	alled as Young fold m	outains	
154.	The forest of Ganga-Brahm (1) Evergreen Forest (2)	nputra-delta is known) Monsoon Forest	as (3) Sundan Ban	(4) Deciduous Forest
Ans. Sol.	(3) Sundar Ban being the mos	t fertile land are called	d as deltas where river G	Ganga and Brahmputra meet
155.	How many districts are in L (1) 70 (2)	Uttar Pradesh?) 75	(3) 80	(4) 85
Ans. Sol.	(2) 75 Districts are there in UP			
156. Ans. Sol	In which continent the Saha (1) South America (2) (2) Sahara desert is situated in	ara desert is situated) Africa	(3) Asia	(4) North America
457	The Dive Develotion is related			
157. Ans.	(1) Food Grain (2) (2)) Fish Production	(3) Milk Production	(4) Oil seed Production
Sol.	Fish production is called bl	ue rebellion		
158.	The Oil and Natural Gas C	ommission (ONGC) w	as set up in	(4) 1061
Ans. Sol.	(1) 1950 (2) (1) ONGC was set up in 1956) 1957	(3) 1959	(4) 1961
159.	What is the name of Mid La	atitude grass land in S	South America?	(1) 01-22-2
Ans.	(1) Prairie (2) (2) Pampas are the name give) Pampas en to Mid Latitude gra	(3) Veld	(4) Steppes
160	Where Thar Desert is loss	ted?		~
Δ n c	(1) Pakistan (2)) China	(3) India	(4) United State of America
Sol.	Thar desert is located in Ind	dia		
161.	Where Gobind Sagar rese (1) Uttar Pradesh (2)	rvoir is situated?) Haryana	(3) Himanchal Pradesh	(4) Punjab
Ans. Sol.	(3) Gobind Sagar reservoir is s	situated in Punjab		
		Corporate Office : CG Towe	r, A-46 & 52, IPIA, Near City Mall A-51 [A] IPIA Near Resonance C(l, Jhalawar Road, Kota (Raj.)- 324005 G Tower : Contact : 0744-6635569, 2777769
八	Resonance	Website :www.pccp.resonand	ce.ac.in E-mail : pccp@resonance	e.ac.in
	Educating for better tomorrow	Toll Free : 1800 258 5555 CIN	I: U80302RJ2007PLC024029	NTSE STAGE-I-2019-20 PAG

Resonance[®] 162. When Tourism day is celebrated? (1) 5 January (2) 10 December (3) 5 June (4) 27 September Ans. (4) Sol. 27th September is celebrated as Tourism day 163. According to Census 2011 the population of U.P. is (1) 18.8 Crores (2) 19.98 Crores (3) 24.70 Crores (4) 30.00 Crores Ans. (2) Sol. The population of UP according to 2011 report was 19.98 crores 164. I.M.F. was established by the recommendations of which Committee? (1) Bretton woods committee (2) Goswami committee (3) Narsingham committee (4) None of them Ans. (1) Sol. Bretton woods Committee was recommended by International monetary fund during world war II (1944) 165. In which year India devalued its currency for the first time (1) 1949(2) 1966 (3) 1991 (4) None of them Ans. (2) Sol. The currency of India was devalued for the first time in the year 1966 166. The least Population State in India is (1) Sikkim (2) Mizoram (3) Uttar Pradesh (4) Bihar Ans. (1) Sol. Sikkim is the least populated state 167. Where is situated the Headquarter of World Bank? (3) Washington (1) Texas (2) Canada (4) Geneva Ans. (3) Sol. World Bank is situated in Washington (USA) 168. Who has first developed the theory of Rent? (1) Recardo (2) Adam Smith (3) Marshall (4) None of them Ans. (1) Sol. David Ricardo developed the theory of Rent 169. Which Canal is largest in the world? (1) Panama Canal (2) Ram Ganga Canal (3) Kra Canal (4) Suez Canal Ans. (4) Sol. Suez canal is the largest canal which is 193.5 km 170. 'Chipko Movement' was basically against (1) Water Pollution (2) Noise Pollution (3) Soil Pollution (4) Deforestation Ans. (4) Sol. Deforestation give rise to 'Chipko Movement' against cutting of trees. 171. The President's Rule in a state means that the state is ruled by (1) The President (2) The Chief Minister (3) The Governor of The State (4) The Prime Minister State (1) Ans. Sol. During President's rule in the state, the state is ruled by The President 172. In which year "The Right to Information Act" was passed (1) 2001 (2) 2003 (4) 2007 (3) 2005 Ans. (3) Sol. The Right to Information Act was passed in 2005 by central government

NATIONAL TALENT SEARCH EXAMINATION-| 03.11.2019 | UTTAR PRADESH | SAT|

八尾		EARCH EXAMINATION- 03.11.2	019 UTTAR P RADESH SAT
173.	The Constitution of India primarily did not include (1) Sovereign (2) Socialist (in its preamble 3) Democratic (4) Rei	public
Ans. Sol.	(2) Socialist was the word which was included in the	42nd Arnendment Act 1976	
174.	Article – 370 was associated with		
Ans.	(1) Uttar Pradesh (2) Nagaland (3) Jammu & Kashmir (4) Tela	ingana
Sol.	Article 370 is related to the state Jammu and Kasl	nmir	
175.	Who presided over the first meeting of the Indian (1) Sachchidanand Sinha ((3) Dr. B.R. Ambedkar (Constituent Assembly? 2) Dr. Rajendra Prasad 4) H.V. Kamath	
Ans. Sol.	(1) Sachchidanand Sinha presided over the 1st meet	ng of the Indian Constituent As	sembly
176	Who appoints the Chairman of Union Public Servi	ce Commission?	,
Anc.	(1) President (2) Prime Minister (3) Chief Justice of India (4) Vic	e President
Sol.	The President of the country appoints the chairma	n of union Public service comn	nission
177.	Which of the following appointments is not made I (1) Speaker of The Lok Sabha ((3) Chief of Army (by the President of India? 2) Chief Justice of India 4) Prime Minister	
Ans. Sol.	(1) The Speaker of the Lok Sabha is not appointed by majority in the Lok Sabha	v the President of India but he/s	he elected by the
178.	The first female speaker of Lok Sabha is (1) Vijay Laxmi Pandit ((3) Tarkeshwari Sinha (2) Sucheta Kriplani 4) Meira Kumar	
Ans. Sol.	(4) Meira Kumar was the first female speaker in Lok S	Shabha	
179.	The state in which Panchayati Raj was introduced	first 3) Raiasthan (4) Guia	arat
Ans. Sol.	(3) Rajasthan was the first state in which Panchayati	Raj was introduced in 2nd Oct.	1959
180.	Who was the first Muslim President in India?	2) Dr. Zakir Hussain	
_	(3) Salman Khursheid (4) Dr. Abdul Kalam Azad	
Ans. Sol.	(2) Dr. Zakir Hussain was first Muslim president of Ind	dia	
	MATHEM	ATICS	
181.	Which of the following statement is true?		

 $(1) \left(\frac{1}{2}\right)^{\frac{1}{2}} = \left(\frac{1}{3}\right)^{\frac{1}{3}}$ $(3) \left(\frac{1}{2}\right)^{\frac{1}{2}} > \left(\frac{1}{3}\right)^{\frac{1}{3}}$

(2) $\left(\frac{1}{2}\right)^{\frac{1}{2}} < \left(\frac{1}{3}\right)^{\frac{1}{3}}$ (4) $\left(\frac{1}{2}\right)^{\frac{1}{2}}$ and $\left(\frac{1}{3}\right)^{\frac{1}{3}}$ are rational numbers

Ans. (3)

Sol.	$\left(\frac{1}{2}\right)^{\frac{1}{2}} = \left(\frac{1}{2^3}\right)^{\frac{1}{6}} = \left(\frac{1}{8}\right)^{\frac{1}{6}}$
	$\left(\frac{1}{3}\right)^{\frac{1}{3}} = \left(\frac{1}{3^2}\right)^{\frac{1}{6}} = \left(\frac{1}{9}\right)^{\frac{1}{6}}$
	As $\frac{1}{8} > \frac{1}{9}$
	$\therefore \left(\frac{1}{8}\right)^{\frac{1}{6}} > \left(\frac{1}{9}\right)^{\frac{1}{6}}$
	So $\left(\frac{1}{2}\right)^{\frac{1}{2}} > \left(\frac{1}{3}\right)^{\frac{1}{3}}$
182. Ans. Sol.	The mean of 15 observations written in some order is 50. If the mean of first eight observations and last eight observations are 48 and 53 respectively then the eighth observation is (1) 35 (2) 80 (3) 72 (4) 58 (4) Mean of 15 observations = 50 Mean of 15 observations = 48 Mean of last eight observations = 53 \therefore Sum of 15 observations = 15 × 50 = 750 Sum of first eight observations = 8 × 48 = 384 Sum of last eight observation = 8 × 53 = 424 \therefore 8th observation = 384 + 424 - 750 = 808 - 750 = 58
183. Ans.	The point on the y –axis, which is equidistant from points A(6, 5) and B(-4, 3) is (1) (9, 0) (2) (0, 9) (3) (0, 4) (4) (0, 3) (2)
Sol.	Let the point Y axis is P(0,y) PA = PB $\sqrt{(0-6)^2 + (y-5)} = \sqrt{(0+4)^2 + (y-3)^2}$ 36 + y2 - 10y + 25 = 16 + y2 - 6y + 9 61 - 25 = 4y 36 = 4y y = 9 \therefore Coordinate of point P (0, 9)
184.	If $(\sec \theta - \tan \theta) = k$ where $\neq 0$ then the value of $(\sec \theta + \tan \theta)$ is
Ans. Sol.	(1) $1 - \frac{1}{k}$ (2) $1 - k$ (3) $1 + k$ (4) $\frac{1}{k}$ (4) We know $\sec^2 q - \tan^2 \theta = 1$ ($\sec \theta - \tan \theta$) ($\sec \theta + \tan \theta$) = 1 k ($\sec \theta + \tan \theta$) = 1 sec $\theta + \tan \theta = \frac{1}{k}$

 Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005

 PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower; Contact : 0744-6635569, 2777769

 Website :www.pccp.resonance.ac.in | E-mail : pccp@resonance.ac.in
 SAT

 Toll Free : | 1800 258 5555 | CIN: U80302RJ2007PLC024029
 NTSE STAGE-I-2019-20 PAGE-11

NATIONAL TALENT SEARCH EXAMINATION-| 03.11.2019 | UTTAR PRADESH | SAT| / Resonance The value of k for which the system of linear equation x + 2y = 5 and 3x + ky = 15 has no solution, is 185. $(3) \frac{3}{2}$ (4) $\frac{2}{3}$ (2) - 6(1) 6Bouns Ans. x + 2y = 53x + ky = 15For no solutions $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ $\frac{1}{3}=\frac{2}{k}\neq\frac{5}{15}$ $\frac{1}{3} = \frac{2}{k} \text{ and } \frac{2}{k} \neq \frac{5}{15}$ k = 6 and $k \neq 6$ OR Sol. System of linear equations x + 2y = 5 and 3x + ky = 15 has no solution By using condition of no solution $\left(\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}\right)$ $\Rightarrow \frac{1}{3} = \frac{2}{k} \neq \frac{-5}{-15}$ $\Rightarrow \frac{1}{3} = \frac{2}{k} \neq \frac{1}{3}$ $\Rightarrow \frac{1}{3} = \frac{2}{k}$ and $\frac{2}{k} \neq \frac{1}{3}$ \Rightarrow k = 6 and k \neq 6 Hence contradtion. ... None of the options is correct. If x = 1 is a common root of the equations $ax^2 + ax + 3 = 0$ and $x^2 + x + b = 0$ then the value of ab is 186. (1)3(2) 3.5(3) 6(4) - 3Ans. (1) Given, x = 1 is a common root of the equations $ax^2 + ax + 3 = 0$ and $x^2 + x + b = 0$ Sol. $\therefore ax^2 + ax + 3 = 0$ $a(1)^2 + a(1) + 3 = 0$ a + a + 3 = 02a + 3 = 0a = <u>-3</u> $a = \frac{1}{2}$ and $x^2 + x + b = 0$ $1^2 + 1 + b = 0$ 1 + 1 + b = 02 + b = 0b = -2 $\therefore ab = \left(\frac{-3}{2}\right)(2) = 3$ If points (a, 0), (0, b) and (1, 1) are collinear, then the value of $\left(\frac{1}{a} + \frac{1}{b}\right)$ is 187. (1) 1(2) 2(3) 0 (4) - 1

Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower ; Conta	d, Kota (Raj.)- 324005 act : 0744-6635569, 2777769
Website :www.pccp.resonance.ac.in E-mail : pccp@resonance.ac.in	SAT
Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	NTSE STAGE-I-2019-20 PAGE-12

Ans. (1)Sol. As the point (a, 0), (0, b) and (1,1) are collinear. \therefore Ar $\Delta = 0$ $\frac{1}{2}|a(b-1)+0(1-0)+1(0-b)|=0$ |ab - a + 0 - b| = 0ab = a + b $1 = \frac{a+b}{a+b}$ ab $1 = \frac{1}{a} + \frac{1}{b}$ If the centroid of the triangle formed by points (a, b), (b, c) and (c, a) is at the origin, then $a^3 + b^3 + c^3$ is 188. equal to (1) abc (2) 0(3) a + b + c(4) 3abc Ans. (4) Sol. Given ; Coordinates of vertices of triangle are A(a, b), B(b, c) and C(c, a) : Coordinates of centroid $G\left(\frac{a+b+c}{3}, \frac{b+c+a}{3}\right)$ since centroid is at the origin Therefore, $G\left(\frac{a+b+c}{3}, \frac{b+c+a}{3}\right) = (0,0)$ $\therefore \quad \frac{a+b+c}{3} = 0$ \Rightarrow a + b + c = 0 \Rightarrow a + b = -c \Rightarrow (a + b)³ = (-c)³ \Rightarrow a³ + b³ + 3ab (a + b) = -c³ \Rightarrow a³ + b³ + 3ab (-c) = -c³ $\Rightarrow a^{3} + b^{3} - 3abc = -c^{3}$ $\Rightarrow a^{3} + b^{3} + c^{3} = 3abc$ The distance between the points ($\cos \theta$, $\sin \theta$) and ($\sin \theta$, $-\cos \theta$) is 189. (1) $\sqrt{3}$ (2) $\sqrt{2}$ (3) 2(4) 1Ans. (2) $AB = \sqrt{(\cos\theta + \sin\theta)^2 + (\sin\theta + \cos\theta)^2}$ Sol. $=\sqrt{\cos^2\theta + \sin^2\theta - 2\sin\theta\cos\theta + \sin^2\theta + \cos^2\theta + 2\sin\theta\cos\theta} = \sqrt{1+1} = \sqrt{2}$ 190. If 35% of income of A is equal to 25% of income of B then the ratio of incomes of A and B is (1) 4:3 (2) 5:7 (4) 4:3(3) 7:5 (2)Ans. 35% of incame of A = 25% of income of AB Sol. $\frac{35}{100} \times I_A = \frac{25}{100} \times I_B$ $\frac{I_A}{I_B} = \frac{25}{100} \times \frac{100}{35} = \frac{5}{7}$ 191. If the ratio of volumes of two cubes is 27.64 then the ratio of their surface area is (2) 4:3 (1) 3:4 (3) 9:16 (4) 16:9

Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Roa	d, Kota (Raj.)- 324005
PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower ; Conta	act : 0744-6635569, 2777769
Website :www.pccp.resonance.ac.in E-mail : pccp@resonance.ac.in	SAT
Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	NTSE STAGE-I-2019-20 PAGE-13

Sol. Given, Ratio of volumes of two cubes = 27 : 64

: Ratio of volumes = (Ratio of sides of two cubes)3

27:64 = (Ratio of sides of two cubes)3

∴ Ratio of sides of two cubes = 3 : 4

$$=\left(\frac{3}{4}\right)^2 = \frac{9}{16} = 9:16$$

192. If the base of a triangle is decrease by 30% and its height is increased by 25% then percentage decrease in area of triangle is

Ans.

Sol. Let the base and height of triangle are b and h respectively

Original Area =
$$\frac{1}{2}$$
bh

Now, base is decreased by 30% and height is increased by 25%

$$\therefore \text{ New Area} = \frac{1}{2} \left(b - \frac{30}{100} b \right) \left(h + \frac{25}{100} h \right) = \frac{1}{2} \left(\frac{70}{100} b \right) \left(\frac{125}{100} h \right) = \frac{1}{2} \times \frac{7}{10} \times \frac{5}{4} b h = \frac{7}{16} b h$$

% Change = $\frac{\text{Change in area}}{\text{original area}} \times 100$

$$=\frac{\frac{1}{2}bh-\frac{7}{16}bh}{\frac{1}{2}bh}\times100=\frac{\frac{1}{2}-\frac{7}{16}}{\frac{1}{2}}\times100=\frac{\frac{8-7}{16}}{\frac{1}{2}}\times100=\frac{\frac{1}{16}}{\frac{1}{2}}\times100=\frac{1}{8}\times100=12.5\%$$

193. The equation of the base of an equilateral triangle is x + y - 2 = 0. If one its vertex is (2, - 1) then area of triangle is

(1)
$$\frac{1}{2\sqrt{3}}$$
 sq. unit
(2) $\frac{\sqrt{3}}{12}$ sq. unit
(3) $\frac{2}{3}$ sq. unit
(4) $\frac{3\sqrt{3}}{4}$ sq. unit
Sol. Length of I' distance from (x_1, y_1) to ax + by + c = 0 is $\left|\frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}}\right|$
A $(2, -1)$
B $(2, -1)$
B $(2, -1)$
C $(2, -1)$
C $(2, -1)$
(AD) Altitude of equilateral $\Delta = \frac{\sqrt{3}}{2}$ ride $= \frac{1}{\sqrt{2}}$

NATIONAL TALENT SEARCH EXAMINATION-| 03.11.2019 | UTTAR PRADESH | SAT| ride = $\sqrt{\frac{2}{3}}$ \Rightarrow Ar. eq. $\Delta = \sqrt{\frac{3}{4}}$ side² $= \frac{\sqrt{3}}{4} \left(\frac{\sqrt{2}}{\sqrt{3}}\right)^2 = \frac{1}{2\sqrt{3}}$ 194. The lengths of chords AB and AC of a circle are 6 cm and 8 cm respectively. If $\angle BAC = 90^{\circ}$ then the radius of the circle is (1) 2.5 cm (2) 3 cm (3) 4 cm (4) 5 cm Ans. (4) Sol. в In ∆ABC AB² + AC² = BC² (Pythagoras Theorum) 62 + 82 = BC² 10^2 = BC² 10 cm = BC BC = 10 cm It is given that $\angle BAC = 90^{\circ}$ (::Angle in semicircle is 90°) BC is diameter of circle. Therefore radius is 5 cm If $\cos 43^\circ = \frac{x}{\sqrt{x^2 + y^2}}$ then the value of $\tan 47^\circ$ is 195. (2) $\frac{y}{\sqrt{x^2 + y^2}}$ (3) $\frac{x}{y}$ (1) $\frac{y}{x}$ $(4) \frac{x}{\sqrt{x^2 + y^2}}$ Ans. (3) $\cos 43^{\circ} = \frac{x}{\sqrt{x^2 + y^2}}$ Sol.

We know $\cos 43 = \sin (90 - 43)$

 $\frac{x}{\sqrt{x^2 + y^2}} = \sin 47^{\circ}$

NATIONAL TALENT SEARCH EXAMINATION-| 03.11.2019 | UTTAR PRADESH | SAT|

If the quadratic equations $2x^2 + 4x + (a + 5) = 0$ have equal roots and $(a + 4)x^2 + ax - 3b = 0$ have 196. distinct real roots then which of the following is true:

(1)
$$a = -3, b < \frac{3}{4}$$
 (2) $a = 3, b > \frac{3}{4}$ (3) $a = -3, b > \frac{3}{4}$ (4) $a = 3, b < \frac{3}{4}$

Ans.

(3) Equation $2x^2 + 4x + (a + 5) = 0$ have equal roots Sol. $\therefore B^2 - 4AC = 0$ 42 - 4(2)(a+5) = 016 - 8(a + 5) = 08(2-a-5)=08(-3-a) = 0-3 - a = 0a = – 3 Equation $(a + 4) x^2 + ax - 3b = 0$ have real and distinct roots $B^{2} - 4AC > 0$ $a^{2} - 4 \times (a + 4) (-3b) > 0$ $a^{2} + 12 (a + 4) b > 0$ $(-3)^{2} + 12 (-3 + 4)b > 0$ 9 + 12b > 0 $b > \frac{-9}{12}$ $b > \frac{-3}{4}$ a = -3 and b > $\frac{-3}{4}$ The value of tan1° tan2° tan 89° is: 197. (3) $\frac{1}{\sqrt{3}}$ (1) 0 (2) 1 (4) not defined Ans. (2) Sol. $\tan 90 - \theta$) = $\cot \theta$ \Rightarrow tan89° tan 90 - 1)° tan89° = cot 1° \Rightarrow tan88° tan (90 - 2) °) tan88° cot 2°

tan1° tan2° tan44° tan45° tan46°.....tan88° tan89°

®	Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Roa PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower ; Conta	d, Kota (Raj.)- 324005 act : 0744-6635569, 2777769
	Website :www.pccp.resonance.ac.in E-mail : pccp@resonance.ac.in	SAT
Educating for better tomorrow	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	NTSE STAGE-I-2019-20 PAGE-16

八配		SEARCH EXAMINATION	- 03.11.2019 UTTAR PRADESH SAT	
	= tan1° tan2° tan44° tan45° cot44°c	ot2º cot1º		
	= tan1° tan2° tan44° × 1 × $\frac{1}{\tan 44^\circ}$ × $\frac{1}{\tan 2^\circ}$ × $\frac{1}{\tan 1^\circ}$ = 1			
198. Ans. Sol.	The digit at the unit place in $(3157)^{2020}$ is (1) 1 (2) 3 (1) Unit place digit is depend on powers of unit digit = unit digit of $(3157)^{2020}$ = unit digit of 7^{2020} = unit digit of $7^{4 \times 505}$	(3) 7 t	(4) 9	
	= unit digit of 7^{4}) ⁵⁰⁵ = unit digit of $(2401)^{505}$ = unit digit of $(1)^{505}$ \therefore Unit place digit is 1	(Cyclicity of 7 is 4)		
199.	A metallic cuboid of dimension 9 cm \times 11 cm \times diameter 0.3 cm. The number of balls will be	12 cm is melted and rec	asted into spherical balls of	
Ans. Sol.	(1) 84000 (2) 10500 (1) Volume of cuboid = N × Volume of sphere 9 × 11 × 12 = N× $\frac{4}{3}$ × $\frac{22}{7}$ × $\frac{3}{20}$ × $\frac{3}{20}$ × $\frac{3}{20}$ (No of balls) N = 84000	(3) 78000	(4) 86000	
200.	The length of tangent drawn from a point Q to a circle is 25 cm. The radius of circle is	circle is 24 cm and dista	ance from Q from the centre of	
Ans.	(1) 7 cm (2) 12 cm (1)	(3) 15 cm	(4) 24.5 cm	
Sol.	0 25 cm Q			
	OP \perp PQ In DOPQ OP = $\sqrt{OQ^2 - OP^2} = \sqrt{25^2 - 24^2} = 7$			

