NTSE STAGE-II (2014)
 CLASS-X [SAT]

HINTS \& SOLUTIONS

ANSWER KEY

Ques.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans	4	2	3	1	4	2	3	2	4	3	4	4	1	2	3
Ques.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans	2	2	3	4	2	4	4	4	3	4	2	2	2	4	4
Ques.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans	4	1	3	1	1	1	2	3	4	1	1	4	4	3	3
Ques.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans	2	2	4	3	3	2	3	1	3	3	4	3	1	3	1
Ques.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Ans	3	1	4	3	4	2	4	2	3	2	1	2	3	2	4
Ques.	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
Ans	3	2	4	1	3	1	2	3	3	4	3	2	1	3	4
Ques.	91	92	93	94	95	96	97	98	99	100					
Ans	1	2	2	4	3	3	3	1	3	4					

CHEMISTRY

15. 15. Noise, vaccume and light flash not example of matter.
1.

X	Y
$100 \mathrm{ML} \rightarrow$ water	$100 \mathrm{ml} \rightarrow$ water
$20^{\circ} \mathrm{C}$	
$0^{\circ} \mathrm{C} \rightarrow 100 \mathrm{~g} \leftarrow$ water	100 g ice $\leftarrow 0^{\circ} \mathrm{C}$

\downarrow more
cooling
y is colder than x
17. At 313 k it from saturated solution. therefore all 50 gm . will be dissolve.
when temperature down to $283 \mathrm{~K}(62-21=$ 41 gm.)
will be crystall cut.
18.
$A=A I$
B
$z=13$
valency $=3$
Z = 8
valency $=2$
$=\mathrm{Al}_{2} \mathrm{O}_{3}$

$$
\begin{aligned}
\text { formula mass } & =27 \times 2+16 \times 3 \\
& =102
\end{aligned}
$$

19. $\mathrm{C}_{(\mathrm{g})}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})}$
mole of $=\frac{3}{12} \quad$ mole of $\mathrm{O}_{2}=\frac{32}{32}$
$=\frac{1}{4} \quad=1$ \rightarrow LR
12 gm C give $\mathrm{CO}_{2}=44 \mathrm{gm}$
$\therefore \quad 3 \mathrm{gm} \mathrm{C}$ give $\mathrm{CO}_{2}=\frac{44}{12} \times \frac{3}{1}$
$=11 \mathrm{gm}$
20.

$X \rightarrow K, L, M$
M shell is the valency shell
2,8,7 \bigcirc therefore valency $=7$
$X=\mathrm{Cl}$
21. $\mathrm{O}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
O.S. of O_{2} become \longrightarrow zero to -2
\because it will be reduced
and \quad Oxidation state of H_{2} becomes zero to +1 it will be oxidised
\because therefore reaction will be redox
22. $\underset{\text { base }}{\mathrm{NH}_{4} \mathrm{OH}}+\underset{\text { acid }}{\mathrm{CH}_{3} \mathrm{COOH}} \rightarrow \underset{3}{\mathrm{CH}_{3} \mathrm{COONH}_{4}}+\mathrm{H}_{2} \mathrm{O}$ (neutralisation reaction)
$2 \mathrm{AgCl} \underset{\underline{h \nu}}{2} 2 \mathrm{Ag}+\mathrm{Br}_{2}$ (Photo chemical decomposition)
$\mathrm{ZnCO}_{3} \xrightarrow{\Delta} \mathrm{ZNO}+\mathrm{CO}_{2}$ (thermla decompostion) $2 \mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Fe}$ (Thermite reaction)
23. Order of acidic strength

24. $\mathrm{Na}, \mathrm{K}, \mathrm{Ca}, \mathrm{Mg}$
(i) \because these matals can lose e^{-}easily as compared to C therefore these are better reducing agent as compare to C.
(ii) due to strong electropositive behaviour of these metals having strong tendency to react with oxygen.
25. Molecular formula $\rightarrow \mathrm{C}_{6} \mathrm{H}_{12}$

cyclohexane
26. M.F. $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$

(a) Atomic no 18 it will be $\mathrm{Ar} \rightarrow$ inert gas valency = zero
(c) $9,17,35$, all are belong same group that is
17 and have same valency.
(d) atomic no. 17 is Cl atomic no. 16 is S
atomic no. 35 is Br
\because Cl is more electronegative

PHYSICS

28. Body moving with constant speed can have acceleration only if it moves along a curved path.
29. $m=20 \mathrm{Kg}, \mathrm{u}=2 \mathrm{~m} / \mathrm{s}, \mathrm{v}=0, \mathrm{~S}=5 \mathrm{~m}$
$v^{2}=u^{2}-2 a S$
$0=4-2 a \times 5$
$\mathrm{a}=0.4 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{F}=\mathrm{ma}=20 \times 0.4=8 \mathrm{~N}$
30. $\quad F=\frac{G(m)(4 \mathrm{~m})}{\left(100 \times 10^{3}\right)^{2}}$
for smaller mass
$m(1)=\frac{G(m)(4 m)}{\left(10^{10}\right)}$
$\mathrm{Gm}=\frac{10^{10}}{4}$
for bigger mass
$(4 \mathrm{~m})(\mathrm{a})=\frac{\mathrm{G}(\mathrm{m})(4 \mathrm{~m})}{\left(25 \times 10^{3}\right)^{2}}$
$\mathrm{a}=\frac{\mathrm{Gm}}{625 \times 10^{10}}$
$a=\frac{10^{10}}{4 \times 625 \times 10^{6}}$
$a=\frac{10^{4}}{2500}$
$\mathrm{a}=4 \mathrm{~m} / \mathrm{s}^{2}$
31. Buoyant force
$B=0.02$
$\rho_{\ell} \mathrm{g} \mathrm{v}{ }^{\prime}=0.02$
$100 \times 10 \times \mathrm{V}^{\prime}=0.02$
$\mathrm{V}^{\prime}=0.02 \times 10^{-4} \mathrm{~m}^{3}$
$=2 \mathrm{~cm}^{3}$
32. Given : $F=10 \mathrm{~N}, \mathrm{~m}=1 \mathrm{~kg}, \mathrm{t}=2 \mathrm{~s}, \mathrm{u}=0$
$\mathrm{W}=$?
$\mathrm{s}=0+1 / 2(10 / 1)(2)^{2}=20 \mathrm{~m}$
$W=10 \times 20=200 \mathrm{~J}$
33. Stethoscope is based on multiple reflection of sound.
34. $\frac{\sin i}{\sin r}=\frac{v_{1}}{v_{2}}=n_{21}$
35. $f_{1}=0.5 \mathrm{~m}, \mathrm{P}_{1}=\frac{1}{0.5}=2 \mathrm{D}$
$P_{1}+P_{2}=1.5$
$2+P_{2}=1.5$
$\mathrm{P}_{2}=-0.5 \mathrm{D}$
$\therefore \mathrm{f}_{2}=\frac{1}{-0.5}=-2 \mathrm{~m}$
36. Myopia, means person can see nearby objects.
37.

$$
\begin{aligned}
& W=\Delta K E \\
& 5(q)=1 / 2 \mathrm{mv}^{2} \\
& v^{2}=\frac{10 q}{m}
\end{aligned}
$$

$$
m_{p}>m_{e}
$$

38. Magnetic filed line are continuous lines passing inside and outside the magnet, only one field line passes through a point
39. DC generator has split ring (commutator), whereas AC generator does not.
40. Energy of star is due to Nuclear Fusion.

MATHEMATICS

$\left(\frac{1+\frac{2}{3}}{\frac{2}{\sqrt{13}}+\frac{3}{\sqrt{13}}}\right)\left(\frac{1-\frac{3}{2}}{\frac{\sqrt{13}}{3}+\frac{\sqrt{13}}{2}}\right)$
$=\left(\frac{\frac{5}{3}}{\frac{5}{\sqrt{13}}}\right)\left(\frac{\frac{-1}{2}}{\frac{5 \sqrt{13}}{6}}\right)$
$=\frac{\sqrt{13}}{3} \times\left(\frac{-1}{2}\right) \times \frac{6}{5 \sqrt{13}}$
$=-\frac{1}{5}$
42. $\frac{1}{\sqrt{6}-\sqrt{5}}-\frac{3}{\sqrt{5}-\sqrt{2}}-\frac{4}{\sqrt{6}+\sqrt{2}}$
$\Rightarrow \sqrt{6}+\sqrt{5}-\sqrt{5}-\sqrt{2}-\sqrt{6}+\sqrt{2}$
$\Rightarrow 0$
43. $p(x)=3 x^{2}-5 x+2$
$=3\left(x^{2}-\frac{5}{3} x+\frac{2}{3}\right)$
$=3\left[x^{2}-\frac{5}{3} x+\left(\frac{5}{6}\right)^{2}-\left(\frac{5}{6}\right)^{2}+\frac{2}{3}\right]$
$=3\left[\left(x-\frac{5}{6}\right)^{2}-\frac{25}{36}+\frac{2}{3}\right]$
$=3\left[\left(x-\frac{5}{6}\right)^{2}+\frac{-25+24}{36}\right]$
$=3\left[\left(x-\frac{5}{6}\right)^{2}-\frac{1}{36}\right]$
$=3\left(x-\frac{5}{6}\right)^{2}-\frac{1}{12}$
so minimum value is $-\frac{1}{12}$
44. Let $|x|=y$
$y^{2}+y-6=0$
$(y+3)(y-2)=0$
$y=-3$ or $y=2$
$|x|=-3$ which is not possible
$|x|=2$
$\therefore x= \pm 2$
The product of the roots is -4
45. $3 x=12, x=4$

$A E=\frac{\sqrt{3}}{2}(3 x)$
$D E=A E-A D$
$=\frac{3 x}{2}-x$
$=\frac{x}{2}$
$A D=\sqrt{A E^{2}+D E^{2}}$
$=\sqrt{\frac{27}{4} x^{2}+\frac{x^{2}}{4}}$
$=\sqrt{\frac{28 x^{2}}{4}}=\sqrt{7 x^{2}}=\sqrt{7} x=4 \sqrt{7}$
46. $\left(\frac{B X}{A B}\right)^{2}=\frac{1}{2}$

$$
\frac{B X}{A B}=\frac{1}{\sqrt{2}}
$$

$$
1-\frac{B X}{A B}=1-\frac{1}{\sqrt{2}}
$$

$$
\frac{A B-B X}{A B}=\frac{\sqrt{2}-1}{\sqrt{2}}
$$

$$
\frac{A X}{A B}=\frac{2-\sqrt{2}}{2}
$$

47.

area equilateral $D=\frac{\sqrt{3}}{4} a^{2}=\frac{1}{2} a\left(P_{1}+P_{2}+\right.$ P_{3})
$\frac{\sqrt{3}}{4} \mathrm{a}^{2} \times \frac{2}{\mathrm{a}}=\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3}$
$\frac{\sqrt{3} a}{2}=P_{1}+P_{2}+P_{3}$
48.

infinite tripazium can be made
49.

$1+1+1+1+1+1$	1 way
$2+1+1+1+1$	5 way
$3+1+1+1$	4 way
$4+1+1$	3 way
$5+1$	2 way
$2+3+1$	6 way
$2+4$	2 way
$3+3$	1 way
$2+2+2$	1 way
$2+2+1+1$	6 way

50. $n^{2}-3 n+3=m^{2} \ldots$ (1)
$n^{2}-3 n+3-m^{2}=0$
this eq. have integer roots. if $a=1, b, c \in I$
D is perfect sq.
$\therefore 9-4.1 .\left(3-m^{2}\right)=k^{2}$
$4 m^{2}-k^{2}=3$
$(2 m+k)(2 m-k)=3 \times 1$
$2 m+k=3$
$2 m-k=1$
on solving we get $\mathrm{m}=1$
Put $m=1$ in equ.(1)
$n^{2}-3 n+3=1$
$(n-2) \times(n-1)=0$
$\mathrm{n}=2,1$
so two values of n are possible
51.

$\begin{array}{ll}N_{1}=15 x & \\ N_{2}=15 y & \\ \mathrm{LCM} \times \mathrm{HCF}=\mathrm{N}_{1} \times \mathrm{N}_{2} & \\ 225 \times 15=15 \mathrm{x} 15 \mathrm{y} \\ \mathrm{xy}=15 & \\ 3.5=15 & \\ 1.15=15 & \\ \text { So } 15 \mathrm{~N}_{1}=3 \times 15=45 & \text { or } N_{1}=1 \times 15=15 \\ \mathrm{~N}_{2}=5 \times 15=75 & \mathrm{~N}_{2}=15 \times 15=225\end{array}$
$(45,75),(15,225)$
two such pair exist
(2)

Let radius = r
area of sector APO
$=\frac{120}{360} \times \pi \mathrm{pr}^{2}=\frac{1}{3} \pi \mathrm{r}^{2}$
area of sector $\mathrm{PBO}=\frac{60}{360} \times \pi r^{2}$
$=\frac{1}{6} \pi r^{2}$
Now area of $\triangle A O P=\frac{1}{2} \times \frac{\sqrt{3 r}}{2} \times \frac{r}{2}$
$=\frac{\sqrt{3} r^{2}}{4}$

(4)

Now area of DBOP $=\frac{\sqrt{3}}{4} r^{2}$
area of major shaded area : Area of minor shaded area
$=\left(\frac{1}{3} \pi r^{2}-\frac{\sqrt{3}}{4} r^{2}\right):\left(\frac{1}{6} \pi r^{2}-\frac{\sqrt{3}}{4} r^{2}\right)$
$=\frac{4 \pi-3 \sqrt{3}}{2 \pi-3 \sqrt{3}}$
58. $s=\frac{20+21+29}{20 \mid}=35$
$\Delta=\sqrt{35 \times 15 \times 14 \times 6}$
$=\sqrt{5 \times 7 \times 3 \times 5 \times 7 \times 2 \times 2 \times 3}$
$=5 \times 7 \times 3 \times 2$
$=210$
$210=\frac{1}{2} A_{1} 20$
$210=\frac{1}{2} A_{2} 29$
$A_{1}=21$
$A_{2}=\frac{420}{29}$
$210=\frac{1}{2} A_{3} \times 21$
$\mathrm{A}_{3}=20$
$A_{1}+A_{2}+A_{3}=21+20+\frac{420}{29}$
$=41+\frac{420}{29}$
$=\frac{1189+420}{29}=\frac{1609}{29}$
59. Let $4^{\text {th }}$ term $=x+3 d=a$
$7^{\text {th }}$ term $=x+6 d=b$
$10^{\text {th }}$ term $=x+9 \mathrm{~d}=\mathrm{c}$
on solving (1) \& (2) we get
$x=2 a-b$
$\& d=\frac{a-(2 a-b)}{3}$
$10^{\text {th }}$ term $=x+9 d=C$
$2 a-b+9\left(\frac{a-(2 a-b)}{3}\right)=c$
$=2 a-b+3 a-6 a+3 b=c$
$-a+2 b=C$
$2 b=a+c$
sum of roots of equation $a x^{2}-2 b x+c=0$
sum of roots $=\frac{2 b}{a}=\frac{a+c}{a}$
60.

