ASSOCIATION OF MATHEMATICS TEACHERS OF INDIA (AMTI)
 PRIMARY LEVEL-2020-21
 Classes V \& VI
 Saturday, 24th April 2021

Instructions:

1. Answer as many questions as possible.
2. Elegant and novel solutions will get extra credits.
3. Diagrams and explanations should be given wherever necessary
4. Fill in FACE SLIP and your rough working should be in the answer book.
5. Maximum time allowed is THREE hours.
6. All questions carry equal marks.
7. In $\triangle A B C$, the side $A B$ extended to P and $A B$ is extended to P and $A C$ is extended to Q such that $A B=$ $B P$ and $A C=C Q$, as shown. If the area of a quadrilateral is $21 \mathrm{~cm}^{2}$, then find the area of $\triangle A B C$.

Sol.

Given Ar quad. BCQP $=21 \mathrm{~cm}^{2}$
To find $\operatorname{Ar} \triangle A Q P$
Let $A B=a$ then $A P=2 a$

$$
\begin{aligned}
& \quad \frac{\operatorname{Ar} \triangle \mathrm{ABC}}{\operatorname{Ar} \triangle \mathrm{AQP}}=\left(\frac{\mathrm{a}}{2 \mathrm{a}}\right)^{2} \\
& \frac{\operatorname{Ar} \triangle \mathrm{ABC}}{\operatorname{Ar} \triangle \mathrm{AQP}}=\frac{1}{4} \\
& 4 \operatorname{Ar} \triangle \mathrm{ABC}=\operatorname{Ar} \triangle \mathrm{AQP} \\
& 4 \operatorname{Ar} \triangle \mathrm{ABC}=\operatorname{Ar} \triangle \mathrm{ABC}+\operatorname{Ar} \text { quad BCQP } \\
& 3 \mathrm{Ar} \triangle \mathrm{ABC}=21 \\
& \operatorname{Ar} \triangle \mathrm{ABC}=7 \mathrm{~cm}^{2}
\end{aligned}
$$

2. Arrange the following fraction is ascending order : $\frac{10}{31}, \frac{25}{61}, \frac{17}{71}, \frac{37}{73}$. Justify with reasons.

Sol. Arrange in ascending order $\frac{10}{31}, \frac{25}{61}, \frac{17}{71}, \frac{37}{73}$
Make either numerator of diominator some
\therefore Making numerator some

L．C．M．$(10,25,17,37)=31450$
$\frac{10}{31} \times \frac{3145}{3145}=\frac{31450}{97495} \quad \frac{17}{71} \times \frac{1850}{1850}=\frac{31450}{131,350}$
$\frac{25}{61} \times \frac{1258}{1258}=\frac{31450}{76738} \quad \frac{37}{73} \times \frac{850}{850}=\frac{31450}{62050}$
Greater the denominator smaller will be the number
$\therefore \frac{17}{71}<\frac{10}{31}<\frac{25}{61}<\frac{37}{73}$

3．Let M be the sum of all possible 4 digit numbers with different digits formed from digits $1,2,3,4$ Let N be the sum of all possible 4 digit numbers with different with different digits formed from digits $2,4,6,8$ ．

Find the value of $\frac{N}{M}$ ．
Sol．$\quad M=$ Sum of all the four digit number with different digits $1,2,3,4$

No．of 4 digit numbers | 4 | 3 | 2 | 1 |
| :--- | :--- | :--- | :--- |

Sum of these four digit no．：
Four digit number can be written in the form of

$$
1000 a+100 b+10 c+d
$$

Now a，b，c，d，can be 1，2，3， 4
$24 \times[1000(1+2+3+4)+1000(1+2+3+4)+10(1+2+3+4)+(1+2+3+4)]$
$24 \times[1000+100+10+1]=240 \times 1111=266640$
$\therefore \mathrm{M}=266640$
$\mathrm{N}=$ sum of 4 digit number with different digit 2，4，6， 8
Now similarly
$24[1000(2+4+6+8)+100(2+4+6+8)+10(2+4+6+8)+(2+4+6+8)]$
$24(1000 \times 20+100 \times 20+10 \times 20+20)$
$24 \times 20(1000+100+10+1)$
$480 \times 1111=533280$
$\therefore \mathrm{N}=533280$

$$
\frac{\mathrm{N}}{\mathrm{M}}=\frac{533280}{266640}=\frac{2}{1}
$$

So，\therefore
4．Find two，100－digit numbers with non－zero digits and sum of the digits 125 ，that is divisible by the sum of its digits．Explain the process by which you arrived the numbers
Sol． 100 digit number，divisible by sum its digit i．e． 125 and have non－zero digit

Acc to table of 125
$125 \times 1=125$
$125 \times 2=250$
$125 \times 3=375$
$125 \times 4=500$
$125 \times 5=625$
$125 \times 6=750$
$125 \times 7=875$
$125 \times 8=900$
$125 \times 9=1125$
$125 \times 10=1250$
we can see that，to be divisible by 125 number＇s
Unit digit $=5$
Ten＇s digit $=2 / 7$
\therefore I number
11111 （．．．．．．． 95 times） 98625
Il number
11111 （．．．．． 95 times） 89625

5．The diagram shows a grid of twenty five identical equilateral triangles．How many different rhombuses can be formed from two adjacent small triangles ？

Sol．Number of Rhombus $=30$
6．A sequence has all 4－digit numbers from 1000 till 2021 that contains 3 even digits and 1 odd digit．The sequence has numbers in ascending order with no number repeating．The sequence is ：1000，1002， 1004，1006，．．．．．，2018，2021．How many numbers are there in the sequence ？
Sol．4－digit number from 1000 to 2021
4－digit number with 3 even and 1000 digit
To find ：Total number in sequence
Total numbers between 1000 to 1999

1	5	5	5
	\downarrow	\downarrow	\downarrow

1 2，4，6，8，0

$$
=5 \times 5 \times 5=125
$$

Total number of numbers between 2000 － 2021
200120102021
20032012
$20052014 \quad 11$ numbers
20072016
20092018
\therefore Total numbers in the sequence
$125+11=136$

7．It is observed that Wednesday appears across dates 3，5，6 only in a particular calendar year．Also，
Wednesday appear exactly two time across each date $1,2,7$ in that year．If the year is not a leap year， what is the day on January $1^{\text {st }}$ of that year？
Sol．In o non－leap year
（1）Calender of Feb，March and No is same
（2）Jan＝Oct
April＝July
Sept．＝Dec
Above 3 pairs of months will be same
（3）May，June，Aug are different

7 Jan $=7$ Oct．$=$ Wed	6 May／ 3 June／ 9 Aug＝Wednesday
1 April＝ 1 July＝Wed	$4 \mathrm{Feb} / 4 \mathrm{May} / 4 \mathrm{Nov}=$ Wednesday
2 Sept．$=2$ Dec $=$ Wed	So，$\therefore 1$ Jan＝Thursday

Resロாコロсе®
Educating for better tomorrow
8. $\quad D A B C$ is an isosceles triangle with $A B=A C$. D is a point on $B C$ such that $A B=C D$. Draw $D E \perp A B$ at E. Show that $2 \angle A D E=3 \angle B$.

Sol.

To show : $2 \angle A D E=3 \angle B$
Given: $A B=A C, A B=C D$
In $\triangle A B C$
$\because A B=A C$
$\therefore \angle B=\angle C=x$ (Angle opposite to equal sides ar equal)
In \triangle EBD
$x+90+\angle E B D=180$
$\therefore \angle E D B=90-x$
In \triangle ADC
$A C=C D$
$\therefore \angle \mathrm{ADC}=\angle \mathrm{DAC}$ (Angle opposite to equal)
$\angle \mathrm{ADC}+\angle \mathrm{DAC}+\angle \mathrm{ACD}=180^{\circ}$
$2 \angle A D C=\frac{180-x}{2}=90-\frac{x}{2}$
$\angle \mathrm{EDB}+\angle \mathrm{EDA}+\angle \mathrm{ADC}=180$ (Lying on st. line)
$90-x+\angle E D A+90-\frac{x}{2}=180^{\circ}$
$\angle \mathrm{EDA}=\frac{3 x}{2} \Rightarrow \therefore \angle \mathrm{EDA}=3 x$
$2 \angle E D A=3 \angle E$ Hence proved

