

KAPREKAR CONTEST - FINAL - SUB JUNIOR

Classes VII & VIII

AMTI - Saturday, 2nd November 2019.

Instructions:

- Answer as many questions as possible. 1.
- 2. Elegant and novel solutions will get extra credits.
- Diagrams and explanations should be given wherever necessary. 3.
- 4. Fill in FACE SLIP and your rough working should be in the answer book.
- 5. Maximum time allowed is THREE hours.
- All questions carry equal marks.
- Let a_0 be the units place of $1^2 + 2^2 + 3^2 + ... + n^2$. Prove that the decimal 0. $a_1 a_2 a_3 ... a_n$... is a rational 1. number and represent it as $\frac{p}{q}$, where p and q are natural numbers.

Sol. For
$$1^2 + 2^2 + 3^2 + ... + n^2$$

$$a_1 = 1 \mid a_{11} = 6 \mid a_{21} = 1$$

$$a_2 = 5 \mid a_{12} = 0 \mid a_{22} = 5$$

$$a_2 = 5$$
 $a_{12} = 0$ $a_{22} = 5$ $a_3 = 4$ $a_{13} = 9$ $a_{23} = 4$

$$a_4 = 0 \mid a_{14} = 5 \mid a_{24} = 0$$

$$a_5 = 5 \mid a_{15} = 0 \mid a_{25} = 5$$

$$a_6 = 1 \mid a_{16} = 6 \mid a_{26} = 1$$

$$a_7 = 0$$
 $a_{17} = 5$ $a_{27} = 0$

$$a_8 = 4 \mid a_{18} = 9 \mid a_{28} = 4$$

$$a_9 = 5 \mid a_{19} = 0 \mid a_{29} = 5$$

$$a_{10} = 5 \mid a_{20} = 0 \mid a_{30} = 5$$

- \therefore given number 0. $a_1a_2a_3...a_n = 0.15405104556095065900$
- : given number is non-terminating and repeating.
- \therefore it is a rational number and can be represent in the form of $\frac{p}{q}$
- (a) Find the positive integers m, n such that $\frac{1}{m} + \frac{1}{n} = \frac{3}{17}$. 2.
 - **(b)** Find the positive integers m, n, p such that $\frac{1}{m} + \frac{1}{n} + \frac{1}{p} = \frac{3}{17}$.
 - (c) Using this idea, prove that we can find for any positive integer k, k distinct integers, n_1, n_2, \dots, n_k such that $\frac{1}{n_1} + \frac{1}{n_2} + \dots + \frac{1}{n_k} = \frac{3}{17}$.

Sol.

If
$$\frac{1}{x} + \frac{1}{y} = \frac{1}{a}$$

then,
$$(x - a) (y - a) = a^2$$

so,
$$\frac{1}{m} + \frac{1}{n} = \frac{3}{17}$$

$$\frac{1}{3m} + \frac{1}{3n} = \frac{1}{17}$$

$$(3m - 17)(3n - 17) = 289$$

$$= 289 \times 1$$

$$= 17 \times 17$$

$$= 1 \times 289$$

If
$$(3m - 17) = 289$$
 and $3n - 17 = 1$

$$m = 102$$

so,
$$(m, n) = (102, 6)$$

If
$$3m - 17 = 17$$
 and $3n - 17 = 17$

$$m = \frac{34}{3}$$
 $n = \frac{34}{3}$

$$n = \frac{34}{3}$$

not integer so reject

If
$$(3m - 17) = 1$$
 and $3n - 17 = 289$

$$m = 6$$

$$n = 102$$

so,
$$(m, n) = (6, 102)$$

so,
$$\frac{1}{6} + \frac{1}{102} = \frac{3}{17}$$
(i)

(b) Now,

If
$$\frac{1}{6} = \frac{1}{x} + \frac{1}{y}$$

$$(x-6)(y-6) = 36$$

$$= 3 \times 12 \text{ or } 12 \times 3$$

$$= 4 \times 9 \text{ or } 9 \times 4$$

$$=6 \times 6$$

so,
$$(x, y) = (7,42)(8, 24), (9, 18), (10, 15)(12, 12)$$

so from equation (i)

$$\frac{1}{7} + \frac{1}{42} + \frac{1}{102} = \frac{3}{17}$$

$$\frac{1}{8} + \frac{1}{24} + \frac{1}{102} = \frac{3}{17}$$

$$(w - 102) (z - 102) = (102)^2$$

$$= 1 \times 10404$$

$$= 102 \times 102$$

Total 27 in which 13 are repeated so total 14 different pais.

so pairs of (w, z) = (103, 10506), (104, 5304)....(204, 204)

so total 14 pairs

from equation (i)

$$\frac{1}{6} + \frac{1}{103} + \frac{1}{10506} = \frac{3}{17}$$

$$\frac{1}{6} + \frac{1}{104} + \frac{1}{5304} = \frac{3}{17}$$

: :

Total 5 + 14 = 19 pairs.

(c)
$$\frac{1}{a} = \frac{1}{a+1} + \frac{1}{a(a+1)}$$

We convert every rational number into definite unit fractions so we can find for any positive integer k.

Such that
$$\frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3} + \dots + \frac{1}{n_k} = \frac{3}{17}$$
.

3. Does there exist a positive integer which is a multiple of 2019 and whose sum of the digits is 2019? If no, prove it. If yes, give one such number.

Sol. Sum of digits

$$1 \times 2019 = 2019$$
 12 $2 \times 2019 = 4038$ 15

So, sum of digits of number 20196057 = 30

9

If we take 67 times 20196057 and 1 time 12114 then sum of digits is 2019 and number is also divisible by 2019.

Number is 20196057 20196057.....12114

67 times

other number is 4038 4038.....12114.

134 times

4. In a triangle XYZ, the medians drawn through X and Y are perpendicular. Then show that XY is the smallest side of XYZ.

Sol.

: XP ⊥ YQ, XP and YQ intersect at G

Let XY = 2a

YZ = 2b

XZ = 2c & XG = 2y

GP = y and YG = 2x

$$GQ = x$$

In Δ XGQ

$$c^2 = 4y^2 + x^2$$

$$c = \sqrt{4y^2 + x^2}$$
(1)

In ∆YGP

$$b^2 = 4x^2 + y^2$$

$$b = \sqrt{4x^2 + y^2}$$
(2)

In ∆XGY

$$4a^2 = 4x^2 + 4y^2$$

$$a^2 = x^2 + y^2$$

$$a = \sqrt{x^2 + y^2}$$
(3)

from eq.(1) & (3)

$$a < c \Rightarrow 2a < 2c \Rightarrow XY < XZ$$
(4)

From eq. (2) & (3)

a < b

2a < 2b

From eq. (4) & (5) we can say that XY is the smallest side.

5. Let $\triangle PQR$ be a triangle of area 1cm². Extend QR to X such that QR = RX; RP to Y such that RP = PY and PQ to Z such that PQ = QZ. Find the area of $\triangle XYZ$.

Sol.

area $\triangle PRQ$ = area $\triangle PXR$

(PR is a median)

1 = area ∆PXR

area $\triangle PXR$ = area $\triangle PXY$

(PX is a median)

1 = area ∆PXY

area $\triangle PQY = area \triangle PRQ$

(PQ is a median)

area ∆PQY = 1

area $\triangle QYZ$ = area $\triangle PQY$

(YQ is a median)

area RQZ = area ∆PRQ

(RQ is a median)

area ∆RQZ = 1

area $\triangle RQZ$ = area $\triangle RZX$

(RZ is a median)

1 = area ∆RZX

 \therefore area $\triangle XYZ = 7 \text{ cm}^2$

Find the real numbers x and y given that $x - y = \frac{3}{2}$ and $x^4 + y^4 = \frac{2657}{16}$. 6.

Sol.
$$x^4 + y^4 = \frac{2657}{16}$$

$$(x^2)^2 + (y^2)^2 = \frac{2657}{16}$$

$$(x^2 + y^2)^2 - 2x^2y^2 = \frac{2657}{16}$$

$$(x^2 + y^2)^2 - 2(xy)^2 = \frac{2657}{16}$$

$$((x-y)^2 + 2xy)^2 - 2(xy)^2 = \frac{2657}{16}$$

$$xy = t$$

$$x-y=\frac{3}{2}$$

$$\left(\left(\frac{3}{2} \right)^2 + 2t \right)^2 - 2t^2 = \frac{2657}{16}$$

$$\frac{81}{16} + 4t^2 + 9t - 2t^2 = \frac{2657}{16}$$

$$2t^2 + 9t = \frac{2576}{16}$$

$$2t^2 + 9t - 161 = 0$$

$$2t^2 + 23t - 14t - 161 = 0$$

$$t(2t + 23) - 7(2t + 23) = 0$$

$$(2t + 23)(t - 7) = 0$$

$$t = 7$$
, $t = \frac{-23}{2}$

$$xy = 7 \text{ or } xy = \frac{-23}{2}$$

when
$$xy = 7$$

$$y = \frac{7}{x}$$

$$x - y = \frac{3}{2}$$

$$x - \frac{7}{x} = \frac{3}{2}$$

$$\frac{x^2-7}{x}=\frac{3}{2}$$

$$2x^2 - 14 = 3x$$

$$2x^2 - 3x - 14 = 0$$

$$2x^2 - 7x + 4x - 14 = 0$$

$$x(2x - 7) + 2(2x - 7) = 0$$

$$(2x-7)(x+2)=0$$

$$x = \frac{7}{2} , x = -2$$

when
$$x = \frac{7}{2}$$

when
$$x = -2$$

$$y = \frac{-7}{2}$$

when xy =
$$\frac{-23}{2}$$

$$y = \frac{-23}{2x}$$

$$x - y = \frac{3}{2}$$

$$\frac{x}{1} + \frac{23}{2x} = \frac{3}{2}$$

$$\frac{2x^2 + 23}{2x} = \frac{3}{2}$$

$$2x^2 - 3x + 23 = 0$$

$$D = -ve$$

No real value

- 7. The difference of the eight digit number ABCDEFGH and the eight digit number GHEFCDAB is divisible by 481. Prove that C = E and D = F.
- **Sol.** Difference of ABCDEFGH GHEFCDAB is k.

$$k = 999999 (AB - GH) + 9900(CD - EF)$$

here 999999 is divisible by 481 so 9900(CD - EF) should be divisible by 481.

$$9900(10C + D - 10E - F) = 481x$$

$$99000 (C - E) + 9900 (D - F) = 481 x$$

It is possible when C – E or D – F should be multiple of 37 or 0.

$$\Rightarrow$$
 C - E = 0 , D - F = 0

$$C = E$$
 $D = F$

8. ABCD is a parallelogram with area 36cm². O is the intersection point of the diagonals of the parallelogram. M is a point on DC. The intersection point of AM and BD is E and the intersection point of BM and AC is F. The sum of the areas of triangles AED and BFC is 12cm². What is the area of the quadrilateral EOFM?

Sol. area of parallelogram ABCD = 36 area $\triangle AOD$ = area $\triangle ADDC$ = $\frac{1}{4}$ area ABCD = $\frac{1}{4}$ × 36 = 9 area $\triangle AMB$ = $\frac{1}{2}$ area ABCD = $\frac{1}{2}$ × 36 = 18 let area AED = x $\triangle ADDC$ = area $\triangle ADDC$ + area $\triangle ADDC$ + area quadrilateral EOFM 18 = 9 - x + 9 + x - 3 + area quadrilateral EOFM or quadrilateral EOFM \Rightarrow area of quadrilateral EOFM = 3 cm².

Resonance
Educating for better tomorrow