Note : •

Answer as many questions as possible.
Elegant and noval solution will get extra credits.
Diagrams and explanations should be given wherever necessary.
Fill in FACE SLIP and your rough working should be in the answer book itself
Maximum time allowed is THREE hour.
All questions carry equal marks.

1. \square
175 70
The diagram above contains 13 boxes. The numbers in the second and the twelfth boxes are respectively 175 and 70 . Fill up the boxes with natural numbers such that
(i) sum of all numbers in all the 13 boxes is 2015,
(ii) sum of the numbers in any three consecutive boxes is always the same.

The solution must contain the steps how you arrive at the numbers.
b) if x, y, z are real and unequal numbers, prove that

$$
2015 x^{2}+2015 y^{2}+6 z^{2}>2(2012 x y+3 y z+3 z x)
$$

Sol. (a) | a | 175 | b | a |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\therefore \mathrm{b}=70$
$5 a+4 b+175 \times 4=2015$
$5 a+4 \times 70+700=2015$
$5 a+280+700=2015$
$5 a=2015-980$
$5 a=1035$
$\mathrm{a}=207$
(b) $2012 x^{2}, 2012 y^{2}$
we apply $A M \geq$ GM

$$
\begin{align*}
& \frac{2012 x^{2}+20112 y^{2}}{2} \geq \sqrt{\left(2012 x^{2}\right)\left(2012 y^{2}\right)} \\
& 2012 x^{2}+2012 y^{2} \geq 2[2012 x y] \tag{i}
\end{align*}
$$

$3 y^{2}, 3 z^{2}$ apply AM \geq GM

$$
\frac{3 y^{2}+3 z^{2}}{2} \geq \sqrt{3 y^{2} 3 z^{2}}
$$

$$
\begin{equation*}
3 y^{2}+3 z^{2} \geq 2[(3) y z] \tag{ii}
\end{equation*}
$$

$3 x^{2}, 3 z^{2}$ apply AM \geq GM

$$
\begin{align*}
& \frac{3 x^{2}+3 z^{2}}{2} \geq \sqrt{3 x^{2} 3 z^{2}} \\
& 3 x^{2}+3 z^{2} \geq 2[(3) x z] \tag{iii}\\
& \text { Add (i), (ii), (iii) }
\end{align*}
$$

$2015 x^{2}+2015 y^{2}+6 z^{2}>2(2012 x y+3 y z+3 z x)$
2. If a, b, c are reals such that $a+b=4$ and $2 c^{2}-a b=4 \sqrt{3} c-10$, find the numerical values of a, b and c.

Sol. (i)... $a+b=4 \rightarrow \quad b=4-a$
(ii).. $2 c^{2}-a b=4 \sqrt{3} c-10$
put $\mathrm{b}=4$ - a in (ii)
$2 c^{2}-a(4-a)=4 \sqrt{3} c-10$
$2 c^{2}-4 a+a^{2}=4 \sqrt{3} c-10$
$2 \mathrm{c}^{2}-4 \sqrt{3} \mathrm{c}+\mathrm{a}^{2}-4 \mathrm{a}+10=0$
$2\left[\mathrm{c}^{2}-2 \sqrt{3} \mathrm{c}+3-3\right]+\left[\mathrm{a}^{2}-4 \mathrm{a}+4-4\right]+10=0$
$2\left[(c-\sqrt{3})^{2}-3\right]+\left[(a-2)^{2}-4\right]+10=0$
$2(c-\sqrt{3})^{2}-6+(a-2)^{2}-4+10=0$
$2(c-\sqrt{3})^{2}+(a-2)^{2}=0$
Sum of two square number is zero, it is possible when both square have value zero
$\therefore \quad c=\sqrt{3}, a=2$
So $b=4-a=4-2=2$
3. When $a=2^{2014}$ and $b=2^{2015}$, prove that
$\left\{\frac{\frac{(a+b)^{2}+(a-b)^{2}}{b-a}-(a+b)}{\frac{1}{b-a}-\frac{1}{a+b}}\right\} \div\left\{\frac{(a+b)^{3}+(b-a)^{3}}{(a+b)^{2}-(a-b)^{2}}\right\}$ is divisible by 3
Sol. $\quad a=2^{2014} b=2^{2015}=2.2^{2014}=2 a$
$\left\{\frac{\frac{(a+2 a)^{2}+(a-2 a)^{2}}{2 a-a}-(a+2 a)}{\frac{1}{2 a-a}-\frac{1}{a+2 a}}\right\} \div\left\{\frac{(a+2 a)^{3}+(2 a-a)^{3}}{(a+2 a)^{2}-(a-2 a)^{2}}\right\}$
$\left\{\frac{\frac{9 a^{2}+a^{2}}{2 a-a}-3 a}{\frac{1}{a}-\frac{1}{3 a}}\right\} \div\left\{\frac{27 a^{3}+a^{3}}{9 a^{2}-a^{2}}\right\}$
$\left[\frac{10 a-3 a}{\frac{3-1}{3 a}}\right] \div\left[\frac{28 a^{3}}{8 a^{2}}\right]$
$=7 a \times \frac{3 a}{2} \div \frac{7 a}{2}=7 a \times \frac{3 a}{2} \times \frac{2}{7 a}=3 a$
4. Prove that the feet of the perpendiculars drawn from the vertices of a parallelogram on to its diagonals are the vertices of a parallelogram.
Sol. By AAS $\triangle \mathrm{DPO} \cong \triangle \mathrm{BRO}$

$$
\begin{equation*}
\therefore \mathrm{PO}=-\mathrm{RO} \tag{CPCT}
\end{equation*}
$$

By AAS $\triangle \mathrm{AOS} \cong \triangle C O Q$
$\therefore \mathrm{OS}=\mathrm{OQ}$
In quad PQRS diagonal bisect each other
\therefore PQRS is $\| \mathrm{gm}$

5. $\quad A B C$ is an acute angled triangle. P, Q are the points on $A B$ and $A C$ respectively such that area of Δ $A P C=$ area of $\triangle A Q B$. A line is drawn through B parallel to $A C$ and meets the line trough Q parallel to $A B$ at S. Q s cuts $B C$ at R. Prove that $R S=A P$.

Sol.

Area of $\triangle A P C=$ area $\triangle A Q B$
area $\triangle \mathrm{APQ}+\operatorname{area} \triangle \mathrm{PQC}=$ area $\triangle \mathrm{APQ}+\operatorname{area} \triangle \mathrm{QPB}$
area $\triangle P Q C=$ area $\triangle Q P B$
As $\triangle P Q C \triangle Q P B$ have same area $\&$ same base, so they must lie between same parallel $P Q|\mid B C$
As $A Q|\mid B S$ and $A B| \mid S Q$
$\therefore A B S Q$ is $\| \mathrm{gm}$

$$
A Q=B S
$$

$$
\angle 5=\angle 6
$$

and $P Q \| B R$ and $B P \| Q R$
$\therefore P B R Q$ is $\| \mathrm{gm}$
$P Q=B R$
$\angle 2=\angle 3$
$\angle 2=180-\angle 1$
$\therefore \angle 3=180-\angle 1$
$\angle 4=180-\angle 3=180-(180-\angle 1)$
$\angle 4=\angle 1$
In \triangle AQPand $\Delta \mathrm{SBR}$
$A Q=B S$
$\angle 4=\angle 1$
$\angle 5=\angle 6$
By AAS
$\triangle \mathrm{AQP} \cong \Delta \mathrm{SBR}$
$A P=R S$ (CPCT)
6. (a) A man is walking from a town A to another town B at a speed of $4 \mathrm{~km} / \mathrm{hr}$. He started one hour before a bus starts. The bus is travelling with a speed of 12 kmlhr . The man on the way got into the bus and travels 2 hours and reached town B. What is the distance between town A and town B.
(b) A point P is taken within a rhombus $A B C D$ such that $P A=P C$. Show that B, P, D are collinear.

Sol.

Distance travelled by a man in $1 \mathrm{hr} .=4 \times 1=4 \mathrm{~km}=A A^{\prime}$
Time required by bus to meet bus $=\frac{A A^{\prime}}{\text { speed of bus }- \text { speed of man }}=\frac{4}{12-4} \mathrm{hr} .=\frac{1}{2} \mathrm{hr}$.
Let M be the meeting point of bus and man $A^{\prime} M=4 \times \frac{1}{2}=2 \mathrm{~km}$
distance MB $=12 \times 2=24 \mathrm{~km}$
Total distance $=A A^{\prime}+A^{\prime} M+M B=4+2+24=30 \mathrm{~km}$
(b)

by SSS $\triangle \mathrm{APD} \cong \triangle \mathrm{CPD}$
$\angle 1=\angle 2 \quad$ (CPCT)
By SSS $\triangle \mathrm{PAB} \cong \triangle \mathrm{PCB}$
$\angle 3=\angle 4 \quad$ (CPCT)
$\angle 1+\angle 2+\angle 3+\angle 4=360^{\circ}$
$2 \angle 1+2 \angle 3=360^{\circ}$
$\angle 1+\angle 3=180^{\circ}$
$\therefore \mathrm{B}, \mathrm{P}, \mathrm{D}$ are collinear
7. If $(x+y+z)^{3}=(y+z-x)^{3}+(z+x-y)^{3}+(x+y-z)^{3}+k x y z$ find the numerical value of k.

Deduce the following result.
If $a=2015, b=2014, c=\frac{1}{2014}$ prove that
$(a+b+c)^{3}-\left(a+b-c^{3}\right)-(b+c-a)^{3}-(c+a-b)^{3}-23 a b c=2015$
Sol. $\quad(x+y+x)^{3}=(y+2-x)^{3}+(2+x-y)^{3}+(x+y-2)^{3}+k x y z$
we see that by putting $x=0$, the expression vanishes.
so x is a factor of the expression similarly y, z are factors of that exprssion.
The given expression is of 3rd degree \& the factors so far obtained are also of 3rd degree hence if there is any constant factors supposing it to be k.

Then in order to find k
put $x=1, y=1, z=1$
$3^{3}-1^{3}-1^{3}-1^{3}=k \cdot 1 \cdot 1 \cdot 1$
$k=24$

Hence 24 xyz

If $a=2015, b=2014, c=\frac{1}{2014}$
so value of $(a+b+c)^{3}-(a+b-c)^{3}-(b+c-a)^{3}-(c+a-b)^{3}-23 a b c$
$=24 a b c-23 a b c$
$=a b c 2015 \times 2014 \times \frac{1}{2014}=2015$

