Note: •
Answer as many questions as possible.
Elegant and noval solution will get extra credits.
Diagrams and explanations should be given wherever necessary.
Fill in FACE SLIP and your rough working should be in the answer book itself
Maximum time allowed is THREE hour.
All questions carry equal marks.

1. a) 28 integers are chosen from the interval [104, 208]. Show that there exit two of them having a common prime divisor.
b) $A B$ is a line segment. C is a point on $A B$. $A C P Q$ and $C B R S$ are squares drawn on the same side $A B$,

Prove the S is the orthocentre of the triangle APB.
Sol.
No. of primes between 104 to $208 \Rightarrow 19$
We have so many Integers which are \rightarrow
divisible by $2 \longrightarrow 206(2 \times 103)$ 106(2×53)
divisible by $3 \longrightarrow 183(3 \times 61) \ldots \ldots \ldots \ldots111(3 \times 37)$
divisible by $5 \longrightarrow 105,110 \ldots \ldots205$
divisible by $7 \longrightarrow$ 105................ 203
divisible by $11 \longrightarrow 110 ~ 198$
divisible by $13 \longrightarrow 169(13 \times 13) \ldots \ldots \ldots143(13 \times 11)$
divisible by $17 \longrightarrow 119(17 \times 7) \ldots \ldots187(17 \times 11)$
So that 19 primes and one from every $2,3,5,7,11$ and 13 we have total $\Rightarrow 19+6 \Rightarrow 25$,
Such Numbers that doesn't have any common prime factor.
But, if we take 28 Numbers so their will be 2 such Numbers that will have 1 same prime factor.
(b)

Draw a line from B which passes through S and intersect $A P$ at M. As $P C$ is the altitude of $\triangle A P B$ which pass through S and $B M$ is also pass through S. In order to prove S orthocentre, now we just need to
prove $\mathrm{BM} \perp \mathrm{AP}$.
Let PBS = x
$\angle \mathrm{SPB}+\angle \mathrm{PSB}+\angle \mathrm{PBS}=180^{\circ}$
$\angle \mathrm{RSB}=45^{\circ} \quad$ [As $B S$ is diagonal of the square]
$\rightarrow \quad \angle \mathrm{SPB}=45^{\circ}-x$
In Δ SPM
$A P$ is the diagonal of square $A C P Q$
$\therefore \angle \mathrm{MPS}=45^{\circ}$
$\angle \mathrm{PSM}=180-(90+45)$ [Linear pair]
$=45^{\circ}$
$\therefore \angle \mathrm{PMS}=180-(45+45) \Rightarrow 90^{\circ}$ [Angle sum proper]
In $\quad \triangle \mathrm{PAB}$
$P C$ and $B M$ are altituted which intrsecs at S.
So $\quad S$ is the orthocenter
2. a) a, b, c are distinct real numbers such that $a^{3}=3\left(b^{2}+c^{2}\right)-25, b^{3}=3\left(c^{2}+a^{2}\right)-25, c^{3}=3\left(a^{2}+b^{2}\right)-25$. Find the numericla value of $a b c$.
b) $\mathrm{a}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\ldots \ldots \ldots \ldots+\frac{1}{2015^{2}}$
find [a], where [a] denotes the integer part of a.
Sol.
(a) $a^{3}-b^{3}=3\left(b^{2}-a^{2}\right) \Rightarrow a^{2}+b^{2}+a b=-3(a+b)$
$b^{3}-c^{3}=3\left(c^{2}-b^{2}\right) \Rightarrow b^{2}+c^{2}+b c=-3(c+b)$
$a^{3}-c^{3}=3\left(c^{2}-a^{2}\right) \Rightarrow a^{2}+c^{2}+a c=-3(a+c)$
from (i) \& (ii)
$a^{2}-c^{2}+b(a-c)=-3(a-c)$
$a+b+c=-3$
by adding given equation
$a^{3}+b^{3}+c^{3}=6\left(a^{2}+b^{2}+c^{2}\right)-75$
$(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)+3 a b c=6\left(a^{2}+b^{2}+c^{2}\right)-75$
$-3 a^{2}-3 b^{2}-3 c^{2}+3 a b+3 b c+3 a c+3 a b c=6\left(a^{2}+b^{2}+c^{2}\right)-75$
$3 a b+3 b c+3 a c+3 a b c=9\left(a^{2}+b^{2}+c^{2}\right)-75$
$\left.=9\left[(a+b+c)^{2}-2 a b-2 b c-2 c a\right)\right]-75$
$=9[9-2 a b-2 b c-2 a c)-75$
$3 a b+3 b c+3 a c+3 a b c=6-18(a b+b c+c a)$
$3 a b c=6-21(a b+b c+c a)$
$a b c=2-7(a b+b c+c a)$
from (i), (ii),(iii)
$2 a^{2}+2 b^{2}+2 c^{2}+a b+b c+a c=-3 \times 2 \times-3=18$
$2\left(a^{2}+b^{2}+c^{2}\right)+a b+b c+c a=18$
$2\left((a+b+c)^{2}-2 a b-2 b c-2 c a\right)+a b+b c+c a=18$
$2(3)^{2}-3(a b+b c+c a)=18$
$a b+b c+c a=0$
\therefore from (v) \& (vi)
$a b c=2-7(0)=2$
(b) $\frac{1}{1 \times 2}>\frac{1}{2^{2}}$
$\frac{1}{2 \times 3}>\frac{1}{3^{2}}$
and so on ...

$$
\frac{1}{2014 \times 2015}>\frac{1}{2015^{2}}
$$

Add all above inequations

$$
\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+-+\frac{1}{2014 \times 2015}>\frac{1}{2^{2}}+\frac{1}{3^{2}}+-+\frac{1}{2015^{2}}
$$

$$
\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+-+\left(\frac{1}{2014}-\frac{1}{2015}\right)>\frac{1}{2^{2}}+\frac{1}{3^{2}}+-+\frac{1}{2015^{2}}
$$

$$
\begin{aligned}
& \left(1-\frac{1}{2015}\right)>\frac{1}{2^{2}}+\frac{1}{3^{2}}+-+\frac{1}{2015^{2}} \\
& \left(\frac{2014}{2015}\right)>\frac{1}{2^{2}}+\frac{1}{3^{2}}+-+\frac{1}{2015^{2}} \\
& 0.99950>\frac{1}{2^{2}}+\frac{1}{3^{2}}+-+\frac{1}{2015^{2}}
\end{aligned}
$$

so it means $\frac{1}{2^{2}}+\frac{1}{3^{2}}+-+\frac{1}{2015^{2}}$ is a
decimal value less than one

$$
\begin{aligned}
\therefore \quad & {[\mathrm{a}]=\left[1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+-+\frac{1}{2015^{2}}\right] } \\
& =[1+\text { decimal value less than one }] \\
& =1
\end{aligned}
$$

3. The arthemetic mean of a number of pair wise distinct prime numbers is 27 . Determine the biggest prime among them.
Sol. These are pairs of prime no. whose mean is 27

$$
(47,7)(11,43)(41,13)(19,37)
$$

So, biggest prime no. is 47
4. 65 bugs are placed at different squares of a 9×9 square board. A bug in each moves to a horizontal or vertical adjacent square. No bug makes two horizontal or two vertical moves in succession. Show that after some moves, there will be atleast two bugs in the same square.
Sol. Total bugs $\Rightarrow 65$
total squares $\Rightarrow 81$
\longleftarrow (IInd step)

If we take 64 bugs, then we can arrange them together into a matrix of 8×8 square, so their is a possibility that No 2 bugs are in same square, because we can move all the bugs vertically upward in $1^{\text {st }}$ step, then Horizontally left in 2nd step vertically down in the third step, and in the $4^{\text {th }}$ step horizontaly left and so on.
But, If we take 65 bugs so one horizontal or vertical row of square will fill with bugs. So we can not perform the above process in this situation [due to extra 65th bug] so after some move their will be 2 bugs in same square.

"OR"

We have consider 16 shaded squares.
Let we have a bug in the shaded Square. So in at most 4 moves, Bug will be in any shaded square again.
And if we have a bug in the un-shaded square, in at most 3 moves, bug will be in any shaded square again
So, if we have total 65 bugs in these 81 squares, some of them will be in shaded square and some of them in un-shaded square. So after 3 or 4 moves all the bugs need to be in shaded square. So their will exist atleast one move in which 2 bugs will get into the same shaded square-

5. $\quad f(x)$ is a fifth degree polynomial. It is given that $f(x)+1$ in divisible by $(x-1)^{3}$ and $f(x)-1$ is divisible by $(x+1)^{3}$. Find $f(x)$.
Sol. Let $f(x)=k_{1}(x-\alpha)(x-\beta)(x-1)^{3}-1$
$f(x)-1=k_{1}(x-\alpha)(x-\beta)(x-1)^{3}-2$
$\therefore k_{1}(x-\alpha)(x-\beta)(x-1)^{3}-2=k_{2}(x-\gamma)(x-\delta)(x+1)^{3}$
$\Rightarrow k_{1}\left(x^{2}-(\alpha+\beta) x+\alpha \beta\right)\left(x^{3}-3 x^{2}+3 x-1\right)-2$
$=\mathrm{k}_{2}\left(\mathrm{x}^{2}-(\gamma+\delta) \mathrm{x}+\gamma \delta\right)\left(\mathrm{x}^{3}+3 \mathrm{x}^{2}+3 \mathrm{x}+1\right)$
comparing cofficient of $x^{5} \quad k_{1}=k_{2}=k$
comparing cofficient of x^{4}

$$
\begin{array}{ll}
& -3 \mathrm{k}-\mathrm{k} \alpha-\mathrm{k} \beta=3 \mathrm{k}-\mathrm{k} \gamma-\mathrm{k} \delta \\
\Rightarrow \quad & \gamma+\delta-\alpha-\beta-6=0 \tag{ii}
\end{array}
$$

comparing cofficient of x^{3}

$$
\begin{align*}
& 3 \mathrm{k}+3 \mathrm{k} \alpha+3 \mathrm{k} \beta+\mathrm{k} \alpha \beta=3 \mathrm{k}-3 \mathrm{k} \gamma-3 \mathrm{k} \delta+\mathrm{k} \gamma \delta \\
& 3 \alpha+3 \beta+\alpha \beta+3 \gamma+3 \delta-\gamma \delta=0 \tag{iii}
\end{align*}
$$

comparing cofficient of x^{2}

$$
\begin{array}{ll}
& -\mathrm{k}-3 \mathrm{k} \alpha-3 \mathrm{k} \beta-3 \mathrm{k} \alpha \beta=\mathrm{k}-3 \mathrm{k} \gamma-3 \mathrm{k} \delta+3 \mathrm{k} \gamma \delta \\
\Rightarrow & -1-3 \alpha-3 \beta-3 \alpha \beta=1-3 \gamma-3 \delta+3 \gamma \delta \\
\Rightarrow & 3 \gamma+3 \delta-3 \gamma \delta-3 \alpha-3 \beta-3 \alpha \beta-2=0 \tag{iv}
\end{array}
$$

comparing cofficient of x

$$
\begin{equation*}
k \alpha+k \beta+3 k \alpha \beta=-k \gamma-k \delta+3 k \gamma \delta \tag{v}
\end{equation*}
$$

$\Rightarrow \quad \alpha+\beta+3 \alpha \beta+\gamma+\delta-3 \gamma \delta=0$
comparing constant term :

$$
-\mathrm{k} \alpha \beta-2=\mathrm{k} \gamma \delta
$$

$\Rightarrow \quad k \alpha \beta+k \gamma \delta=-2$
$\Rightarrow \quad \mathrm{k}(\alpha \beta+\gamma \delta)=-2$
(v) $-3 \times$ (iii) $\quad \alpha+\beta+3 \alpha \beta+\gamma+\delta-3 \gamma \delta=0$
$9 \alpha+9 \beta+3 \alpha \beta+9 \gamma+9 \delta-3 \gamma \delta=0$
\qquad
$-8 \alpha-8 \beta-8 \gamma-8 \delta=0$
$\Rightarrow \quad \alpha+\beta+\gamma+\delta=0$
(ii) $+(v i i)$

$$
\begin{aligned}
& \gamma+\delta-\alpha-\beta=6 \\
& \gamma+\delta+\alpha+\beta=0
\end{aligned}
$$

$$
2(\gamma+\delta)=6
$$

$\Rightarrow \gamma+\delta=3$ and $(\alpha+\beta)=(-3)$
put in (iv)
$3(3)-3(-3)-3(\alpha \beta+\gamma \delta)=2$
$\Rightarrow 9+9-3\left(-\frac{2}{\mathrm{k}}\right)=2 \quad$ from (vi)
$18+\frac{6}{\mathrm{k}}=2 \quad \Rightarrow \frac{6}{\mathrm{k}}=-16 \quad \mathrm{k}=-\frac{3}{8}$
$\therefore \alpha \beta+\gamma \delta=\frac{-2}{-3} \times 8=\frac{16}{3}$
now put $\gamma+\delta=3$ and $(\alpha+\beta)=(-3)$ in (v)
$-3+3+3(\alpha \beta-\gamma \delta)=0 \quad \Rightarrow \alpha \beta=\gamma \delta$
$\therefore \alpha \beta=\gamma \delta=\frac{8}{3}$
$\therefore f(x)=k(x-\alpha)(x-\beta)(x-1)^{3}-1$
$=\left(\frac{-3}{8}\right)\left[x^{2}-(-3) x+\frac{8}{3}\right](x-1)^{3}-1$
$=\left(\frac{-3}{8}\right)\left[\frac{3 x^{2}+9 x+8}{3}\right](x-1)^{3}-1$
$=\frac{\left(-9 x^{2}-27 x-24\right)\left(x^{3}-3 x^{2}+3 x-1\right)-24}{24}$
$=\frac{1}{24}\left(-9 x^{5}+27 x^{4}-27 x^{3}+9 x^{2}-27 x^{4}+81 x^{3}-81 x^{2}+27 x-24 x^{3}+72 x^{2}-72 x+24-24\right)$
$=\frac{1}{24}\left[-9 x^{5}+30 x^{3}-45 x\right]$
$=\frac{1}{8}\left[-3 x^{5}+10 x^{3}-15 x\right]$
$\because f(x)+1=k(x-1)^{3}$
put $x=1$
$f(1)+1=0$
$\Rightarrow \mathrm{f}(1)=-1$
Verification:
$f(x)=\frac{1}{8}\left[-3 x^{5}+10 x^{3}-15 x\right]$
put $x=1$
RHS $=\frac{1}{8}[-3+10-15]=\frac{-8}{8}=(-1)$
OR
$f(x)+1$ is divisible by $(x-1)^{3}$
$f(x)+1=(x-1)^{3} Q_{1}(x)$
$f^{\prime}(x)=3(x-1)^{2} Q_{1}(x)+(x-1)^{3} Q_{1}^{\prime}(x)$
$=(x-1)^{2}\left[\left(3 Q_{1}(x)+Q_{1}^{\prime}(x)(x-1)\right]\right.$
so we can say $f^{\prime}(x)$ is a multiple of $(x-1)^{2}$
$f(x)-1$ is divisible by $(x+1)^{3}$
$f(x)-1=(x+1)^{3} Q_{2}(x)$
$f^{\prime}(x)=3(x+1)^{2} Q_{2}(x)+(x+1)^{3} Q_{2}^{\prime}(x)$
$=(x+1)^{2}\left[\left(3 Q_{2}(x)+Q_{2}^{\prime}(x)(x+1)\right]\right.$
so we can say $f^{\prime}(x)$ is a multiple of $(x+1)^{2}$
$f^{\prime}(x)=\lambda\left(x^{2}-1\right)^{2}$
$f^{\prime}(x)=\lambda\left(x^{4}-2 x^{2}+1\right)$
$f(x)=\lambda\left(\frac{x^{5}}{5}-\frac{2 x^{3}}{3}+x\right)+C$
As $f(1)=-1$ and $f(-1)=1$
this gives $C=0 \& \lambda=-\frac{15}{8}$
$f(x)=\frac{-3}{8} x^{5}+\frac{5 x^{3}}{4}-\frac{15}{8} x$
6. $\quad A B C$ and $D B C$ are two equilateral triangles on the same base $B C . A$ point P is taken on the circle with centre D , radius BD . Show that $\mathrm{PA}, \mathrm{PB}, \mathrm{PC}$ are the sides of a right triangle.

Sol.

Let
$\angle \mathrm{DBP}=\theta$

$\frac{r}{\sin 30^{\circ}}=\frac{P C}{\sin (60+\theta)}=\frac{P B}{\sin (90-\theta)}$
$P B=2 r \cos \theta$
$P C=2 r \sin (60+\theta)$
$P C=r(\sqrt{3} \cos \theta+\sin \theta)$

$\cos \left(120^{\circ}+\theta\right)=\frac{r^{2}+4 r^{2} \cos ^{2} \theta-A P^{2}}{2 \cdot r \cdot 2 r \cos \theta}$
$-\sin \left(30^{\circ}+\theta\right)=\frac{r^{2}+4 \mathrm{r}^{2} \cos ^{2} \theta-A \mathrm{P}^{2}}{4 \mathrm{r}^{2} \cos \theta}$
$A P^{2}=r^{2}+4 r^{2} \cos ^{2} \theta+4 r^{2} \cos \theta \sin \left(30^{\circ}+\theta\right)$
$=r^{2}\left[1+4 \cos ^{2} \theta+4 \cos \theta\left(\sin 30 \cos \theta+\cos 30^{\circ} \sin \theta\right)\right.$
$=r^{2}\left[1+4 \cos ^{2} \theta+4 \cos \theta \frac{(\cos \theta+\sqrt{3} \sin \theta)}{2}\right.$
$A P^{2}=\left[1+4 \cos ^{2} \theta+2 \cos ^{2} \theta+2 \sqrt{3} \sin \theta \cos \theta\right]$
$\mathrm{AP}^{2}=\left[1+6 \cos ^{2} \theta+2 \sqrt{3} \sin \theta \cos \theta\right]$
Now, $\quad \mathrm{PB}^{2}+\mathrm{PC}^{2}$
$4 r^{2} \cos ^{2} \theta+r^{2}(\sqrt{3} \cos \theta+\sin \theta)^{2}$
$=r^{2}\left[4 \cos ^{2} \theta+3 \cos ^{2}+\sin ^{2} \theta+2 \sqrt{3} \sin \theta \cos \theta\right]$
$=r^{2}\left[1+2 \cos ^{2} \theta+4 \cos ^{2} \theta+2 \sqrt{3} \sin \theta \cos \theta\right]$
$A P^{2}=\left[1+6 \cos ^{2} \theta+2 \sqrt{3} \sin \theta \cos \theta\right]$
$=A P^{2}$
7. a, b, c are real numbers such that $a+b+c=0$ and $a^{2}+b^{2}+c^{2}=1$. Prove that $a^{2} b^{2} c^{2} \leq \frac{1}{54}$. When does the equality hold?
Sol. $\quad(a-b)^{2} \geq 0$
$a^{2}+b^{2} \geq 2 a b$
$a^{2}+b^{2}+a b \geq 3 a b$
$a+b+c=0$
$c=-a-b$
$a^{2}+b^{2}+c^{2}=a^{2}+b^{2}+(-a-b)^{2}=1$
$a^{2}+b^{2}+a^{2}+b^{2}+2 a b=1$
$a^{2}+b^{2}+a b=\frac{1}{2}$
$a^{2}+b^{2}+a b \geq 3 a b$
$\frac{1}{2} \geq 3 \mathrm{ab} \quad ; \quad \frac{1}{6} \geq \mathrm{ab}$
$a b \leq \frac{1}{6}$
$a^{2} b^{2} c^{2}=a^{2} b^{2}\left(a^{2}+b^{2}+2 a b\right)$
$a^{2} b^{2}\left(\frac{1}{2}+a b\right)$
$a^{2} b^{2}\left(\frac{1}{2}+a b\right) \leq \frac{1}{36}\left(\frac{1}{2}+\frac{1}{6}\right) \leq \frac{1}{36} \times \frac{4}{6}$
$a^{2} b^{2}\left(\frac{1}{2}+a b\right) \leq \frac{1}{54} \quad ; \quad a^{2} b^{2} c^{2} \leq \frac{1}{54}$

Equality holds when $a=b=\frac{1}{\sqrt{6}}$ and $C^{2}=1-a^{2}-b^{2}$
$C \Rightarrow \sqrt{\frac{2}{3}}$
then $a^{2} b^{2} c^{2}=\frac{1}{6} \times \frac{1}{6} \times \frac{2}{3}=\frac{1}{54}$

