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NMTC STAGE-II 2015
 JUNIOR GROUP (IX AND X)

Note : •
Answer as many questions as possible.
Elegant and noval solution will get extra credits.
Diagrams and explanations should be given wherever necessary.
Fill in FACE SLIP and your rough working should be in the answer book itself
Maximum time allowed is THREE hour.
All questions carry equal marks.

1. a) 28 integers are chosen from the interval [104, 208]. Show that there exit two of them having a
common prime divisor.
b) AB is a line segment.C is a point on AB. ACPQ and CBRS are squares drawn on the same side AB,
Prove the S is the orthocentre of the triangle APB.

Sol. No. of primes between 104 to 208 19
We have so many Integers which are 
divisible by 2  206 (2×103)................106(2×53)
divisible by 3   183(3×61)................111(3×37)
divisible by 5  105,110 ................205
divisible by 7   105................203
divisible by 11  110................198
divisible by 13  169(13×13)................143(13×11)
divisible by 17  119 (17×7)................187(17×11)
So that 19 primes and one from every 2,3,5,7,11 and 13 we have total 19 + 6 25,
Such Numbers that doesn’t have any common prime factor.
But, if we take 28 Numbers so their will be 2 such Numbers that will have 1 same prime factor.
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Draw a line from B which passes through S and intersect AP at M. As PC is the altitude of APB which
pass through S and BM is also pass through S. In order to prove S orthocentre, now we just need to

prove BM   AP..
Let PBS = x
SPB + PSB + PBS = 180º
RSB = 45º [As BS is diagonal of the square]
 SPB = 45º – x
In SPM
AP is the diagonal of square ACPQ
 MPS = 45°
PSM = 180 – (90 + 45) [Linear pair]
= 45°
PMS = 180 – (45 + 45)  90° [Angle sum proper]
In PAB
PC and BM are altituted which intrsecs at S.
So S is the orthocenter
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2. a) a,b,c are distinct real numbers such that a3 = 3 (b2+c2) –25, b3 = 3(c2+a2) –25, c3 = 3 (a2 + b2) – 25. Find
the numericla value of abc.

b) a = 1 + 22
1

+ 23
1

+ 24
1

+.............+ 22015
1

find [a], where [a] denotes the integer part of a.

Sol. (a) a3 – b3 = 3(b2 – a2)  a2 + b2 + ab  = – 3 (a + b) ..(i)

b3 – c3 = 3 (c2 – b2)  b2 + c2 + bc = – 3 (c + b) ..(ii)
a3 – c3 = 3 (c2 – a2)  a2 + c2 + ac = –3 (a + c) ..(iii)
from (i) & (ii)
a2 – c2 + b (a – c) = – 3 (a – c)
a + b + c = – 3 ..(iv)
by adding given equation
a3 + b3 + c3 = 6 (a2 + b2 + c2) – 75
(a + b + c) (a2 + b2 + c2 – ab – bc – ca) + 3abc  = 6 (a2 + b2 + c2) – 75
– 3a2 – 3b2 – 3c2 + 3ab + 3bc + 3ac + 3abc = 6(a2 + b2 + c2) – 75
3ab + 3bc + 3ac + 3abc = 9(a2 + b2 + c2) – 75
= 9[(a + b + c)2 – 2ab – 2bc – 2ca)] – 75
= 9[9 – 2ab – 2bc – 2ac) – 75
3ab + 3bc + 3ac + 3abc = 6 – 18 (ab + bc + ca)
3abc  = 6 – 21 (ab + bc + ca)
abc = 2 – 7 (ab + bc + ca) ..(v)
from (i), (ii),(iii)
2a2 + 2b2 + 2c2 + ab + bc + ac = – 3  2  – 3   = 18
2(a2 + b2 + c2) + ab + bc + ca = 18
2((a + b + c)2 – 2ab – 2bc – 2ca) + ab + bc + ca = 18
2(3)2 – 3 (ab + bc + ca) = 18
ab + bc + ca = 0 ..(vi)
 from (v) & (vi)
abc = 2 – 7(0) = 2
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Add all above inequations
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
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1
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1
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0.99950 > 22
1

 + 23
1

+ – + 22015
1

so it means 22
1

 + 23
1

+ – + 22015
1

 is a

decimal value less than one

 [a] = 



  222 2015

1
3
1

2
11

= [1 + decimal value less than one]

= 1

3. The arthemetic mean of a number of pair wise distinct prime numbers is 27. Determine the biggest
prime among them.

Sol. These are pairs of prime no. whose mean is 27
(47, 7) (11, 43) (41, 13) (19, 37)
So, biggest prime no. is 47

4. 65 bugs are placed at different squares of a 9 × 9 square board. A bug in each moves to a horizontal or
vertical adjacent square. No bug makes two horizontal or two vertical moves in succession. Show that
after some moves, there will be atleast two bugs in the same square.

Sol. Total bugs 65
total squares 81

8×8=64 
squares 
(64 bugs)

(1st step)

(IInd step)

If we take 64 bugs, then we can arrange them together into a matrix of 8 × 8 square, so their is a
possibility that No 2 bugs are in same square, because we can move all the bugs vertically upward in 1st

step, then Horizontally left in 2nd step vertically down in the third step, and in the 4th step horizontaly left
and so on.
But , If we take 65 bugs so one horizontal or vertical row of square will fill with bugs. So we can not
perform the above process in this situation [due to extra 65th bug]
so after some move their will be 2 bugs in same square.
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“OR”
We have consider 16 shaded squares.
Let we have a bug in the shaded Square. So in at most 4 moves, Bug will be in any shaded square
again.
And if we have a bug in the un-shaded square, in at most 3 moves, bug will be in any shaded square
again
So, if we have total 65 bugs  in these 81 squares, some of them will be in shaded square and some of
them in un-shaded square. So after 3 or 4 moves all the bugs need to be in shaded square. So their will
exist atleast one move in which 2 bugs will get into the same shaded square-

5. f(x) is a fifth degree polynomial. It is given that f(x) + 1 in divisible by (x–1)3 and f(x)–1 is divisible by
(x+1)3 . Find f(x).

Sol. Let f(x) = k1(x – )(x – ) (x – 1)3 – 1
f(x) – 1 = k1(x – ) (x – ) (x – 1)3 – 2
k1(x – ) (x – ) (x – 1)3 – 2 = k2(x – ) (x – ) (x + 1)3

k1(x
2 – ( + )x + ) (x3 – 3x2 + 3x – 1) – 2

= k2 (x
2 – ( + )x + ) (x3 + 3x2 + 3x + 1)

comparing cofficient of x5 k1 = k2 = k ..(i)
comparing cofficient of x4

–3k – k – k = 3k – k – k
  +  –  –  – 6 = 0 ..(ii)
comparing cofficient of x3

3k + 3k + 3k + k = 3k – 3k – 3k + k
3 + 3 +  + 3 + 3 –  = 0 ..(iii)

comparing cofficient of x2

–k – 3k – 3k – 3k = k – 3k – 3k + 3k
 –1 – 3 – 3 – 3 = 1– 3 – 3 + 3
 3 + 3 – 3 – 3 – 3 – 3 – 2 = 0 ..(iv)
comparing cofficient of x

k + k + 3k = –k – k + 3k
  +  + 3 +  +  – 3  = 0 ..(v)
comparing constant term :

– k – 2 = k
 k + k = – 2
 k ( + ) = – 2 ..(vi)
(v) – 3  (iii)  +  + 3 +  +  – 3 = 0

9 + 9 + 3 + 9 + 9 – 3 = 0
          _     _       _        _      _      +

_____________________________________
–8 – 8 – 8 – 8 = 0

  +  +  +  = 0 ..(vii)
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(ii) + (vii)  +  –  –  = 6
 +  +  +  = 0

________________________
2( + ) = 6

 +  = 3 and ( + ) = (–3)
put in (iv)
3(3) – 3 (–3) – 3 ( + ) = 2

 9 + 9 – 3 (–
k
2

) = 2 from (vi)

18 + 
k
6

 = 2  
k
6

 = –16 k = –
8
3

  +  = 
3
2




 8 = 
3

16

now put  +  = 3 and ( + ) = (–3) in (v)
–3 + 3 + 3 ( – ) = 0   = 

  =  = 
3
8

 f(x) = k(x – ) (x – ) (x – 1)3 – 1

= 





 

8
3

 [x2 – (–3)x + 
3
8

]  (x – 1)3 – 1

= 





 

8
3

 [
3

8x9x3 2  ] (x – 1)3 – 1

= 
24

24)1x3x3x)(24x27x9( 232 

= 
24
1

(–9x5 + 27x4 – 27x3 + 9x2 – 27x4 + 81x3 – 81x2 + 27x – 24x3 + 72x2 – 72x + 24 – 24)

= 
24
1

[–9x5 + 30x3 – 45x]

= 
8
1

[–3x5 + 10x3 – 15x]

  f(x) + 1 = k (x – 1)3

put x = 1
f(1) + 1 = 0
 f(1) = – 1
Verification :

f(x) = 
8
1

[– 3x5 + 10x3 – 15x]



6PAGE  # 6

put x = 1

RHS = 
8
1

 [–3 + 10 – 15] = 
8
8

 = (–1)

OR
f(x) +1 is divisible by (x - 1)3

f(x) +1 = (x - 1)3 Q1 (x)
f’(x) = 3(x - 1)2 Q1 (x) + (x - 1)3 Q’1 (x)
= (x - 1)2 [(3Q1 (x) + Q’1 (x)(x – 1)]
so we can say f’(x) is a multiple of (x – 1)2

f(x) –1 is divisible by (x + 1)3

f(x) –1 = (x + 1)3 Q2 (x)
f’(x) = 3(x + 1)2 Q2 (x) + (x + 1)3 Q’2 (x)
= (x + 1)2 [(3Q2 (x) + Q’2 (x)(x +1)]
so we can say f’(x) is a multiple of (x + 1)2

f’(x) =  (x2 – 1)2

f’(x) =  (x4 – 2x2 + 1)

f(x) =  (
5
x5

– 
3
x2 3

+ x) + C

As f(1) = – 1 and f(–1) =1

this gives C = 0 &  = –
8

15

f(x) = 
8
3

x5 + 
4
x5 3

– 
8

15
x

6. ABC and DBC are two equilateral triangles on the same base BC.A point P is taken on the circle with
centre D, radius BD. Show that PA, PB, PC are the sides of a right triangle.

Sol.

Let DBP
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)90sin(
PB

)60sin(
PC

º30sin
r







PB = 2r cos
PC = 2r sin (60+ )

PC = r )sincos3( 

cos(120° + ) = 



cosr.r.
APcosrr

22
4 2222

–sin(30° + ) = 



cosr
APcosrr

2

2222

4
4

AP2 = r2 +4r2cos2 + 4r2 cossin(30° +  )
= r2 [1+4cos2 + 4cos (sin30cos + cos30ºsin)

 = r2 [1+4cos2 + 4cos
 

2
3  sincos

 AP2 = [1 + 4 cos2 + 2cos2 +2 3 sin cos]

AP2 = [1 + 6 cos2 + 2 3 sin cos]
Now, PB2 + PC2

4r2 cos2 + r2 ( 3 cos + sin)2

= r2 [4cos2 + 3cos2 + sin2 + 2 3  sincos]

= r2 [1 + 2cos2 + 4cos2 + 2 3  sin cos]

AP2 = [1 + 6 cos2 + 2 3 sin cos]
= AP2

7. a,b,c are real numbers such that a + b + c  = 0 and a2 + b2 + c2 = 1. Prove that a2b2c2   54
1

When does

the equality hold ?
Sol. (a – b)2   0

a2 + b2   2ab

a2 + b2 + ab   3ab .....(1)

a + b + c = 0
c = – a – b
a2 + b2 + c2 = a2 + b2 + (– a – b)2 = 
a2 + b2 + a2 + b2 + 2ab = 

a2  + b2 + ab = 
2
1

...(2)
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a2 + b2 + ab   3ab

2
1
  3ab ;

6
1
  ab

ab  6
1

a2b2c2 = a2b2(a2 + b2 + 2ab)

a2b2 





  ab

2
1

a2b2 






  ab
2
1

 






 
6
1

2
1

36
1

   6
4

36
1


a2b2 






  ab
2
1

 54
1

; a2b2c2 54
1

Equality holds when a = b = 6
1

 and C2 = 1 – a2 – b2

C  
3
2

then a2b2c2 = 
6
1

  
6
1

  
3
2

  = 
54
1


