

NEET 2017 07-05-2017

SUBJECT - PHYSICS

Time : 3 :00 Hrs. समय : 3 घंटे

Max. Marks (अधिकतम अंक): 720

READ THE INSTRUCTIONS CAREFULLY (कृपया इन निर्देशों को ध्यान से पढें)

Imp	portant Instructions:	महत	चपूर्ण निर्देश :
1.	The Answer Sheet is inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars on Side-1 and Side-2 carefully with blue/black ball point pen only.	1.	उत्तर पत्र इस परीक्षा पुस्तिका के अन्दर रखा है। जब आपको परीक्षा पुस्तिका खोलने को कहा जाए, तो उत्तर पत्र निकाल कर पृष्ठ-1 एवं पृष्ठ-2 पर केवल नीले/काले बॉल पॉइंट पेन से विवरण भरें।
2.	The test is of 3 hours duration and Test Booklet contains 180 questions. Each question carries 4 marks. For each correct response, the candidate will get 4 marks . For each incorrect response, one mark will be deducted from the total scores. The maximum marks are 720 .	2.	परीक्षा की अवधि 3 घंटे है एवं परीक्षा पुस्तिका में 180 प्रश्न हैं। प्रत्येक प्रश्न 4 अंक का है। प्रत्येक सही उत्तर के लिए परीक्षार्थी को 4 अंक दिए जाएंगे। प्रत्येक गलत उत्तर के लिए कुल योग में से एक अंक घटाया जाएगा। अधिकतम अंक 720 हैं।
3.	Use Blue/Black Ball Point Pen only for writing particulars on this page/marking response.	3.	इस पृष्ठ पर विवरण अंकित करने एंव उत्तर पत्र पर निशान लगाने के लिए केवल नीले/काले बॉल पॉइंट पेन का प्रयोग करें।
4.	Rough work is to be done on the space provided for this purpose in the Test Booklet only.	4.	रफ कार्य इस परीक्षा पुस्तिका में निर्धारित स्थान पर ही करें।
5.	On completion of the test, the candidate must handover the Answer Sheet to the invigilator in the Room/Hall. The candidates are allowed to take away this Test Booklet with them.	5.	परीक्षा सम्पन्न होने पर, परीक्षार्थी कक्ष⁄हॉल छोडने से पूर्व उत्तर पत्र कक्ष निरीक्षक को अवश्य सौंप दें। परीक्षार्थी अपने साथ प्रश्न पुस्तिका को ले जा सकते हैं।
6.	The CODE for this Booklet is Make sure that the CODE printed on Side-2 of the Answer Sheet is the same as that on this Booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklets and the Answer Sheets.	6.	इस पुस्तिका का संकेत है यह सुनिश्चित कर लें कि इस पुस्तिका का संकेत, उत्तर पत्र के पृष्ठ-2 पद छपे संकेत से मिलता है। अगर यह भिन्न हो, तो परीक्षार्थी दूसरी परीक्षा पुस्तिका और उत्तर पत्र लेने के लिए निरीक्षक को तुरन्त अवगत कराएं।
7.	The Candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your roll no. anywhere else except in the specified space in the Test Booklet/Answer Sheet.	7.	परीक्षार्थी सुनिश्चित करें कि इस उत्तर पत्र को मोड़ा न जाए एवं उस पर कोई अन्य निशान न लगाएं। परीक्षार्थी अपना अनुक्रमांक प्रश्न पुस्तिका/उत्तर पत्र में निर्धारित स्थान के अतिरिक्त अन्यत्र न लिखें।
8.	Use of white fluid for correction is NOT permissible on the Answer Sheet.	8.	उत्तर पत्र पर किसी प्रकार के संशोधन हेतु व्हाइट फ़्लूइड के प्रयोग की अनुमति नहीं है।

In case of any ambiguity in translation of any question, English version shall be treated as final.

प्रश्नों के अनुवाद में किसी अस्पष्टता की स्थिति में, अंग्रेजी संस्करण को ही अन्तिम माना जायेगा।

Name of the Candidate (in Capital letters) :						
Roll Number : in figures :						
Name of Examination Centre (in Capital letters) :						
Candidate's Signature: Invigilator's Signature:						
Resonance Eduventures Ltd.						
Pre Medical Division:- CG Tower-2, A-51(A), IPIA, Behind City Mall, Jhalawar Road, KOTA - 324005 (Rajasthan) CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005						

Reg. Office : J-2, Jawahar Nagar, Main Road, Kota (Raj.)-324005 | Ph. No.: +91-744-3192222 | FAX No. : +91-022-39167222 Ph.No. : +91-744-3012222, 6635555 | To Know more : sms RESO at 56677

Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

Toll Free : 1800 258 5555 🔊 08003 444 888 📑 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu 📓 www.youtube.com/resowatch 🗈 blog.resonance.ac.in

This solution was download from Resonance NEET 2017 Solution portal

The most trusted Institute in Kota for IITJEE is now emerging as most promising and consistently growing institute for Pre-Medical

Classroom: 32 | DLP+e-LP: 181

24 AIRs in TOP 200 | 77 AIRs in TOP 500

TOP PERFORMERS FROM CLASSROOM

Ғ facebook.com/ResonanceEdu 🔰 twitter.com/ResonanceEdu 🛗 www.youtube.com/resowatch 🕠 blog.resonance.ac.in

| NEET-2017 | 07-05-2017 | CODE-W (PHYSICS)

91. Two blocks A and B of masses 3m and m respectively are connected by a massless and inextensible string. The whole system is suspended by a massless spring as shown in figure. The magnitudes of acceleration of A and B immediately after the string is cut, are respectively :

92. The acceleration due to gravity at a height 1 km above the earth is the same as at a depth d below the surface of earth. Then :

(1)
$$d = \frac{1}{2} km$$
 (2) $d = 1km$ (3) $d = \frac{3}{2}$ (4) $d = 2km$

- Ans. (4)
- **93.** A particle executes linear simple harmonic motion with an amplitude of 3 cm. When the particle is at 2 cm from the mean position, the magnitude of its velocity is equal to that of its acceleration. Then its time period in second is :

(3) $\frac{4\pi}{\sqrt{5}}$

(4) $\frac{2\pi}{\sqrt{3}}$

- (1) $\frac{\sqrt{5}}{\pi}$
- Ans. (3)
- **94.** The resistance of a wire is 'R' ohm. If it is melted and stretched to 'n' times its original length, its new resistance will be
 - (1) nR (2) $\frac{R}{n}$ (3) n^2 R (4) $\frac{R}{n^2}$

(2) $\frac{\sqrt{5}}{2\pi}$

- Ans. (3)
- 95. A capacitor is charged by a battery. The battery is removed and another identical uncharged capacitor is connected in parallel. The total electrostatic energy of resulting system :

 (1) increases by a factor of 4
 (2) decreases by a factor 2
 (3) remains the same
 (4) increases by a factor of 2
- Ans.

(2)

RESONANCE EDUVENTURES LTD.

 Pre Medical Division:- CG Tower-2, A-51(A), IPIA, Behind City Mall, Jhalawar Road, KOTA - 324005 (Rajasthan)

 CORPORATE OFFICE : CG TOWER, A-46 & 52, IPIA, NEAR CITY MALL, JHALAWAR ROAD, KOTA (RAJ.) - 324005

 REG. OFFICE : J-2, JAWAHAR NAGAR, MAIN ROAD, KOTA (RAJ.)-324005 | PH. NO.: +91-744-3192222 | FAX NO. : +91-022-39167222

 PH.NO. : +91-744-3012222, 6635555 | TO KNOW MORE : SMS RESO AT 56677

 WEBSITE : WWW.RESONANCE.AC.IN | E-MAIL : CONTACT@RESONANCE.AC.IN | CIN : U80302RJ2007PLC024029

 Toll Free : 1800 258 5555 | 0 08003 444 888

| NEET-2017 | 07-05-2017 | CODE-W

96. Two rods A and B of different materials are welded together as shown in figure. Their thermal conductivities are K_1 and K_2 . The thermal conductivity of the composite rod will be

Ans. (1)

97. The two nearest harmonics of a tube closed at one end and open at other end are 220 Hz and 260 Hz. What is the fundamental frequency of the system?

	(1) 10 hz	(2) 20 Hz	(3)	30 Hz	(4) 40 hz
Ans.	(2)				

98. The bulk modulus of a spherical object is'B'. If it is subjected to uniform pressure 'p', the fractional decrease in radius is :

(1)
$$\frac{p}{B}$$
 (2) $\frac{B}{3p}$ (3) $\frac{3p}{B}$ (4) $\frac{p}{3B}$

99. A physical quantity of the dimensions of length that can be formed out of c, G and $\frac{e^2}{4\pi \epsilon_0}$ is [c is velocity of light, G is universal constant of gravitation and e is charge] :

(1)
$$\frac{1}{c^2} \left[G \frac{e^2}{4\pi \epsilon_0} \right]^{1/2}$$
 (2) $c^2 \left[G \frac{e^2}{4\pi \epsilon_0} \right]^{1/2}$ (3) $\frac{1}{c^2} \left[\frac{e^2}{G4\pi \epsilon_0} \right]^{1/2}$ (4) $\frac{1}{c} G \frac{e^2}{4\pi \epsilon_0}$

Ans. (1)

100. Figure shows a circuit that contains three identical resistors with resistance R = 9.0 Ω each, two identical inductors with inductance L = 2.0 mH each and an ideal battery with emf ε = 18 V. The current 'i' through the battery just after the switch closed is.

(1) 2 mA Ans. Bonus

101. One end of string of length ℓ is connected to a particle of mass 'm' and the other end is connected to a small peg on a smooth horizontal table. If the particle moves in circle with speed 'v' the net force on the particle (directed towards center) will be (T represents the tension in the string)

(1) T (2) T +
$$\frac{mv^2}{\ell}$$
 (3) T - $\frac{mv^2}{\ell}$ (4) zero

RESONANCE EDUVENTURES LTD.

 Pre Medical Division:- CG Tower-2, A-51(A), IPIA, Behind City Mall, Jhalawar Road, KOTA - 324005 (Rajasthan)

 CORPORATE OFFICE : CG TOWER, A-46 & 52, IPIA, NEAR CITY MALL, JHALAWAR ROAD, KOTA (RAJ.) - 324005

 REG. OFFICE : J-2, JAWAHAR NAGAR, MAIN ROAD, KOTA (RAJ.)-324005 | PH. NO.: +91-744-3192222 | FAX NO. : +91-022-39167222

 PH.NO. : +91-744-3012222, 6635555 | TO KNOW MORE : SMS RESO AT 56677

 WEBSITE : WWW.RESONANCE.AC.IN | E-MAIL : <u>CONTACT@RESONANCE.AC.IN | CIN : U80302RJ2007PLC024029</u>

 Toll Free : 1800 258 5555 [S] 08003 444 888

102.		NEET-2017		•	
102.	•	•		¹⁰ m. The velocity of the electron e	ejecteo
		e by ultraviolet light of w		⁻¹⁰ m is :	
	(Given h = 4.14×1	10^{-15} eVs and c = 3 × 10 ⁸	' ms ⁻ ')	1 6 1	
_		(2) ≈ 0.6 × 10° ms	(3) $\approx 61 \times 10^{3}$	ms^{-1} (4) $\approx 0.3 \times 10^6 ms^{-1}$	
Ans.	(1, 2)				
400	Dadiaaatiya matari	al IAI has dessu senste	at 10 01 and material	(D' has dealy constant ()? Initially	
103.		-		'B' has decay constant ' λ '. Initially	
				per of nuclei of material 'B' to that	A wii
	be $\frac{1}{e}$?				
	-	1	1	1	
	(1) $\frac{1}{\lambda}$	(2) $\frac{1}{7\lambda}$	(3) $\frac{1}{8\lambda}$	(4) $\frac{1}{9\lambda}$	
Ans.	(2)	17.	OA	97	
AII5.	(2)				
104.	A rope is wound	around a hollow cylind	er of mass 3 kg ar	nd radius 40 cm. What is the a	ngular
		cylinder if the rope is pul	-		
	(1) 25 m/s ²	(2) 0.25 rad/s ²	(3) 25 rad/s ²	(4) 5 m/s ²	
Ans.	(3)				
105.	-			r with spped of 22 m/s and 16.	
105.	respectively. The c	driver of the first car blow	ws a horn having a f	r with spped of 22 m/s and 16. requency 400 Hz. The frequency	
105.	respectively. The c by the driver of the	river of the first car blow second car is [velocity o	ws a horn having a f f sound 340 m/s] :	requency 400 Hz. The frequency	
	respectively. The c by the driver of the (1) 350 Hz	driver of the first car blow	ws a horn having a f		
	respectively. The c by the driver of the	river of the first car blow second car is [velocity o	ws a horn having a f f sound 340 m/s] :	requency 400 Hz. The frequency	
Ans.	respectively. The c by the driver of the (1) 350 Hz (4)	driver of the first car blow second car is [velocity o (2) 361 Hz	ws a horn having a f f sound 340 m/s] : (3) 411 Hz	requency 400 Hz. The frequency	heard
Ans.	respectively. The c by the driver of the (1) 350 Hz (4) A 250 – Turn rect subjected to a ma	driver of the first car blow second car is [velocity o (2) 361 Hz tangular coil of length 2	ws a horn having a f f sound 340 m/s] : (3) 411 Hz 2.1 cm and width 1	requency 400 Hz. The frequency (4) 448 Hz	heard ıA are
Ans.	respectively. The c by the driver of the (1) 350 Hz (4) A 250 – Turn rect subjected to a ma torque is :	driver of the first car blow second car is [velocity o (2) 361 Hz tangular coil of length 2 gnetic field of strength of	ws a horn having a f f sound 340 m/s] : (3) 411 Hz 2.1 cm and width 1 0.85T. Work done fo	requency 400 Hz. The frequency (4) 448 Hz .25 cm carries a current of 85 μ or rotating the coil by 180° again	heard ıA are
Ans. 106.	respectively. The c by the driver of the (1) 350 Hz (4) A 250 – Turn rect subjected to a ma torque is : (1) 9.1 μJ	driver of the first car blow second car is [velocity o (2) 361 Hz tangular coil of length 2	ws a horn having a f f sound 340 m/s] : (3) 411 Hz 2.1 cm and width 1	requency 400 Hz. The frequency (4) 448 Hz 25 cm carries a current of 85 μ	heard ıA are
Ans. 106.	respectively. The c by the driver of the (1) 350 Hz (4) A 250 – Turn rect subjected to a ma torque is :	driver of the first car blow second car is [velocity o (2) 361 Hz tangular coil of length 2 gnetic field of strength of	ws a horn having a f f sound 340 m/s] : (3) 411 Hz 2.1 cm and width 1 0.85T. Work done fo	requency 400 Hz. The frequency (4) 448 Hz .25 cm carries a current of 85 μ or rotating the coil by 180° again	heard ıA are
105. Ans. 106. Ans. 107.	respectively. The c by the driver of the (1) 350 Hz (4) A 250 – Turn rect subjected to a ma torque is : (1) 9.1 μJ (1)	driver of the first car blow second car is [velocity o (2) 361 Hz tangular coil of length 2 gnetic field of strength o (2) 4.55 μJ	ws a horn having a f f sound 340 m/s] : (3) 411 Hz 2.1 cm and width 1. 0.85T. Work done fo (3) 2.3 μJ	requency 400 Hz. The frequency (4) 448 Hz .25 cm carries a current of 85 μ or rotating the coil by 180° again	heard IA are
Ans. 106. Ans.	respectively. The c by the driver of the (1) 350 Hz (4) A 250 – Turn rect subjected to a matorque is : (1) 9.1 μ J (1) A long solenoid of	driver of the first car blow second car is [velocity o (2) 361 Hz tangular coil of length 2 gnetic field of strength (2) 4.55 μJ diameter 0.1 m has 2 ×	ws a horn having a f f sound 340 m/s] : (3) 411 Hz 2.1 cm and width 1. 0.85T. Work done fe (3) 2.3 μJ	requency 400 Hz. The frequency (4) 448 Hz .25 cm carries a current of 85 μ or rotating the coil by 180° again (4) 1.15 μJ	heard IA are Inst the coil of
Ans. 106. Ans.	respectively. The c by the driver of the (1) 350 Hz (4) A 250 – Turn rect subjected to a ma torque is : (1) 9.1 μJ (1) A long solenoid of 100 turns and radiu	driver of the first car blow second car is [velocity o (2) 361 Hz tangular coil of length 2 gnetic field of strength (2) 4.55 μJ diameter 0.1 m has 2 × us 0.01 m is placed with	ws a horn having a f f sound 340 m/s] : (3) 411 Hz 2.1 cm and width 1. 0.85T. Work done fo (3) 2.3 μJ < 10 ⁴ turn per meter its axis coinciding w	requency 400 Hz. The frequency (4) 448 Hz .25 cm carries a current of 85 μ or rotating the coil by 180° again (4) 1.15 μJ . At the centre of the solenoid, a	heard IA are not the coil of
Ans. 106. Ans.	respectively. The c by the driver of the (1) 350 Hz (4) A 250 – Turn rect subjected to a mat torque is : (1) 9.1 μ J (1) A long solenoid of 100 turns and radius solenoid reduces a	driver of the first car blow second car is [velocity o (2) 361 Hz tangular coil of length 2 gnetic field of strength (2) 4.55 μJ diameter 0.1 m has 2 × us 0.01 m is placed with	ws a horn having a f f sound 340 m/s] : (3) 411 Hz 2.1 cm and width 1. 0.85T. Work done fe (3) 2.3 μJ (3) 2.3 μJ (4) 10 ⁴ turn per meter its axis coinciding w from 4 A in 0.05 s. If	requency 400 Hz. The frequency (4) 448 Hz 25 cm carries a current of 85 μ or rotating the coil by 180° again (4) 1.15 μJ . At the centre of the solenoid, a <i>v</i> ith the solenoid axis. The current	heard IA are not the coil of
Ans. 106. Ans. 107.	respectively. The c by the driver of the (1) 350 Hz (4) A 250 – Turn rect subjected to a mat torque is : (1) 9.1 μ J (1) A long solenoid of 100 turns and radiu solenoid reduces a total charge flowing (1) 32 $\pi\mu$ C	driver of the first car blow second car is [velocity o (2) 361 Hz tangular coil of length 2 gnetic field of strength (2) 4.55 μJ diameter 0.1 m has 2 × us 0.01 m is placed with at a constant rate to 0A f	ws a horn having a f f sound 340 m/s] : (3) 411 Hz 2.1 cm and width 1. 0.85T. Work done fe (3) 2.3 μJ (3) 2.3 μJ (4) 10 ⁴ turn per meter its axis coinciding w from 4 A in 0.05 s. If	requency 400 Hz. The frequency (4) 448 Hz 25 cm carries a current of 85 μ or rotating the coil by 180° again (4) 1.15 μJ . At the centre of the solenoid, a <i>v</i> ith the solenoid axis. The current	heard IA are not the coil of
Ans. 106. Ans. 107.	respectively. The c by the driver of the (1) 350 Hz (4) A 250 – Turn rect subjected to a ma torque is : (1) 9.1 μJ (1) A long solenoid of 100 turns and radiu solenoid reduces a total charge flowing	driver of the first car blow second car is [velocity o (2) 361 Hz tangular coil of length 2 gnetic field of strength (2) 4.55 μJ diameter 0.1 m has 2 × us 0.01 m is placed with at a constant rate to 0A f g through the coil during	ws a horn having a f f sound 340 m/s] : (3) 411 Hz 2.1 cm and width 1. 0.85T. Work done fo (3) 2.3 μJ (3) 2.3 μJ (4) 10 ⁴ turn per meter its axis coinciding w from 4 A in 0.05 s. If this time is :	requency 400 Hz. The frequency (4) 448 Hz 25 cm carries a current of 85 μ or rotating the coil by 180° again (4) 1.15 μJ . At the centre of the solenoid, a <i>v</i> ith the solenoid axis. The current f the resistance of the coil is 10π ² s	heard IA are not the coil of
Ans. 106. Ans. 107. Ans.	respectively. The c by the driver of the (1) 350 Hz (4) A 250 – Turn rect subjected to a mat torque is : (1) 9.1 μ J (1) A long solenoid of 100 turns and radius solenoid reduces a total charge flowing (1) 32 $\pi\mu$ C (3)	driver of the first car blow second car is [velocity o (2) 361 Hz tangular coil of length 2 gnetic field of strength (2) 4.55 μJ diameter 0.1 m has 2 × us 0.01 m is placed with at a constant rate to 0A f g through the coil during (2) 16 μC	ws a horn having a f of sound 340 m/s] : (3) 411 Hz 2.1 cm and width 1. 0.85T. Work done fo (3) 2.3 μJ (3) 2.3 μJ (4) 10 ⁴ turn per meter its axis coinciding w from 4 A in 0.05 s. If this time is : (3) 32 μC	requency 400 Hz. The frequency (4) 448 Hz 25 cm carries a current of 85 μ or rotating the coil by 180° again (4) 1.15 μJ . At the centre of the solenoid, a <i>v</i> ith the solenoid axis. The current f the resistance of the coil is 10π ² s	heard A are not the coil of in the Ω , the
Ans. 106. Ans. 107. Ans.	respectively. The c by the driver of the (1) 350 Hz (4) A 250 – Turn rect subjected to a mat torque is : (1) 9.1 μ J (1) A long solenoid of 100 turns and radiu solenoid reduces a total charge flowing (1) 32 $\pi\mu$ C (3) Suppose the charge	driver of the first car blow second car is [velocity o (2) 361 Hz tangular coil of length 2 gnetic field of strength (2) 4.55 μ J diameter 0.1 m has 2 × us 0.01 m is placed with at a constant rate to 0A f g through the coil during (2) 16 μ C	ws a horn having a f of sound 340 m/s] : (3) 411 Hz 2.1 cm and width 1. 0.85T. Work done fo (3) 2.3 μJ 4 10 ⁴ turn per meter its axis coinciding w from 4 A in 0.05 s. If this time is : (3) 32 μC	requency 400 Hz. The frequency (4) 448 Hz 25 cm carries a current of 85 μ or rotating the coil by 180° again (4) 1.15 μJ . At the centre of the solenoid, a <i>v</i> ith the solenoid axis. The current f the resistance of the coil is 10π ² s (4) 16 πμC	heard A are ist the coil of in the Ω , the + Δe).
Ans. 106. Ans. 107. Ans.	respectively. The c by the driver of the (1) 350 Hz (4) A 250 – Turn rect subjected to a mat torque is : (1) 9.1 μ J (1) A long solenoid of 100 turns and radiu solenoid reduces a total charge flowing (1) 32 $\pi\mu$ C (3) Suppose the charg If the net of electro	driver of the first car blow second car is [velocity o (2) 361 Hz tangular coil of length 2 gnetic field of strength (2) 4.55 μ J diameter 0.1 m has 2 × us 0.01 m is placed with at a constant rate to 0A f g through the coil during (2) 16 μ C the of a proton and an elect static force and gravitation	ws a horn having a f of sound 340 m/s] : (3) 411 Hz 2.1 cm and width 1. 0.85T. Work done fo (3) 2.3 μJ (3) 2.3 μJ (3) 2.3 μJ (3) 2.3 μJ (3) 2.3 μJ (3) 2.3 μJ (4) 10 ⁴ turn per meter its axis coinciding w from 4 A in 0.05 s. If this time is : (3) 32 μC (5) and force between two	requency 400 Hz. The frequency (4) 448 Hz 25 cm carries a current of 85 μ or rotating the coil by 180° again (4) 1.15 μ J At the centre of the solenoid, a with the solenoid axis. The current f the resistance of the coil is $10\pi^{2}$ (4) 16 $\pi\mu$ C Dne of them is – e, the other is (e	hearch iA are not the coil of in the Ω , the + Δe) stance
Ans. 106. Ans. 107. Ans.	respectively. The of by the driver of the (1) 350 Hz (4) A 250 – Turn rect subjected to a mat torque is : (1) 9.1 μ J (1) A long solenoid of 100 turns and radiu solenoid reduces a total charge flowing (1) 32 $\pi\mu$ C (3) Suppose the charg If the net of electroid d (much greater the mh = 1.67 × 10 ⁻²⁷ k	driver of the first car blow second car is [velocity o (2) 361 Hz tangular coil of length 2 gnetic field of strength (2) 4.55 μ J diameter 0.1 m has 2 × us 0.01 m is placed with at a constant rate to 0A f g through the coil during (2) 16 μ C the of a proton and an ele static force and gravitation (2) an atomic size) apart is (2)	ws a horn having a f of sound 340 m/s]: (3) 411 Hz 2.1 cm and width 1. 0.85T. Work done for (3) 2.3 μ J 4 10 ⁴ turn per meter its axis coinciding w from 4 A in 0.05 s. If this time is : (3) 32 μ C ectron differ slightly. Conal force between two s zero, then Δe is of	requency 400 Hz. The frequency (4) 448 Hz 25 cm carries a current of 85 μ or rotating the coil by 180° again (4) 1.15 μ J . At the centre of the solenoid, a with the solenoid axis. The current f the resistance of the coil is $10\pi^{2}$ (4) 16 $\pi\mu$ C Due of them is – e, the other is (e wo hydrogen atoms placed at a dis f the order of [Given mass of hydrogen atoms of hydrogen	hearch iA are not the coil of in the Ω , the + Δe), stance
Ans. 106. Ans.	respectively. The of by the driver of the (1) 350 Hz (4) A 250 – Turn rect subjected to a mat torque is : (1) 9.1 μ J (1) A long solenoid of 100 turns and radiu solenoid reduces a total charge flowing (1) 32 $\pi\mu$ C (3) Suppose the charg If the net of electroid d (much greater the	driver of the first car blow second car is [velocity o (2) 361 Hz tangular coil of length 2 gnetic field of strength (2) 4.55 μ J diameter 0.1 m has 2 × us 0.01 m is placed with at a constant rate to 0A f g through the coil during (2) 16 μ C ge of a proton and an ele static force and gravitation nan atomic size) apart is	ws a horn having a f of sound 340 m/s] : (3) 411 Hz 2.1 cm and width 1. 0.85T. Work done fo (3) 2.3 μJ (3) 2.3 μJ (3) 2.3 μJ (3) 2.3 μJ (3) 2.3 μJ (3) 2.3 μJ (4) 10 ⁴ turn per meter its axis coinciding w from 4 A in 0.05 s. If this time is : (3) 32 μC (5) and force between two	requency 400 Hz. The frequency (4) 448 Hz 25 cm carries a current of 85 μ or rotating the coil by 180° again (4) 1.15 μ J At the centre of the solenoid, a with the solenoid axis. The current the resistance of the coil is $10\pi^{2}$ (4) 16 $\pi\mu$ C One of them is – e, the other is (e wo hydrogen atoms placed at a dis	heard A are heard $Coil of in the \Omega, the+ \Delta e).stance$

 Pre Medical Division:- CG Tower-2, A-51(A), IPIA, Behind City Mall, Jhalawar Road, KOTA - 324005 (Rajasthan)

 CORPORATE OFFICE : CG TOWER, A-46 & 52, IPIA, NEAR CITY MALL, JHALAWAR ROAD, KOTA (RAJ.) - 324005

 REG. OFFICE : J-2, JAWAHAR NAGAR, MAIN ROAD, KOTA (RAI.)-324005 | PH. NO.: +91-744-3192222 | FAX NO. : +91-022-39167222

 PH.NO. : +91-744-3012222, 6635555 | TO KNOW MORE : SMS RESO AT 56677

 WEBSITE : WWW.RESONANCE.AC.IN | E-MAIL : CONTACT@RESONANCE.AC.IN | CIN : U80302RJ2007PLC024029

 Toll Free : 1800 258 5555 [S] 08003 444 888

	2SONANCe®	NEET-201	7 07-05-2017	CODE-W		
109.	Two astronauts are floating in gravitational free space after having lost contact with their spaceship.					
	The two will :					
	(1) keep floating at the same distance between them					
	(2) move towards each other					
	(3) move away from(4) will become static					
Ans.	(4) will become static (2)	Jilal y				
/	(-)					
110.	The ratio of waveleng	gths of the last line	of Balmer series and th	e last line of Lyman series is		
	(1) 2	(2) 1	(3) 4	(4) 0.5		
Ans.	(3)					
111.	-	-	on in thermal equilibriu	m with heavy water at a temperature T		
	(Kelvin) and mass m	_	Oh			
	(1) <u>h</u> √mkT	(2) $\frac{h}{\sqrt{3mkT}}$	(3) $\frac{2h}{\sqrt{3mkT}}$	(4) $\frac{2h}{\sqrt{mkT}}$		
Ano		√3MK I	√3mk I	√mk i		
Ans.	(2)					
112.	combined with anoth without deviation. Th (1) 4°	ner thin prism of gla		of refractive index 1.42. This prism is 7. This combination produces dispersion be : (4) 10°		
Ans.	(2)					
113.	Thormodynaic proco	ssos are indicated i	in the following diagram			
113.		700 K 500 K	in the following diagran			
	Match the following :					
	Column-l		Column-2			
	P Process I	a.	Adiabatic			
	Q Process II	b.	Isobaric			
	R Process III	C.	Isochoric			
	S Process IV	d.	Isothermal			
		c, $R \rightarrow d$, $S \rightarrow b$		c, $Q \rightarrow a$, $R \rightarrow d$, $S \rightarrow b$ d, $Q \rightarrow b$, $R \rightarrow a$, $S \rightarrow c$		
Ans.		d, $R \rightarrow b$, $S \rightarrow a$	$(4) \qquad P \to c$	$u, \ Q \to U, \ R \to a, \ S \to C$		
AII3.	(2)					

 Pre Medical Division:- CG Tower-2, A-51(A), IPIA, Behind City Mall, Jhalawar Road, KOTA - 324005 (Rajasthan)

 CORPORATE OFFICE : CG TOWER, A-46 & 52, IPIA, NEAR CITY MALL, JHALAWAR ROAD, KOTA (RAJ.) - 324005

 REG. OFFICE : J-2, JAWAHAR NAGAR, MAIN ROAD, KOTA (RAI.)-324005 | PH. NO.: +91-744-3192222 | FAX NO. : +91-022-39167222

 PH.NO. : +91-744-3012222, 6635555 | TO KNOW MORE : SMS RESO AT 56677

 WEBSITE : WWW.RESONANCE.AC.IN | E-MAIL : CONTACT@RESONANCE.AC.IN | CIN : U80302RJ2007PLC024029

 Toll Free : 1800 258 5555 [S] 08003 444 888

	2SONANCe [®] ating for better tomorrow	NEET-2017	07-05-2017	CODE-W	
114.	A U tube with both en	ds open to the atmos	phere, is partially fi	lled with water. Oil, which is immiscible	
	with water, is poured into one side until it stands at a distance of 10 mm above the water level				
		the water rises by 65	mm from its origina	I level (see diagram). The density of the	
	oil is :				
		Pa Pa F A E Oil 65mm D X B	a ☆ - 10 mm ☆ - Final water le Initial water le		
			Water		
Ans.	(1) 650 kg m ^{−3} (4)	(2) 425 kg m ⁻³	(3) 800 kg m ^{−3}	(4) 928 kg m ⁻³	
115.	A spring of force cons	tant k is cut into leng	ths of ratio 1 : 2 : 3	3. They are connected in series and the	
	new force constnt is k'	. Then they are conne	cted in parallel and	force constant is k". Then k' : k" is :	
	(1) 1 : 6	(2) 1 : 9	(3) 1 : 11	(4) 1 : 14	
Ans.	(3)				
116. Ans.	(c) A couple on a body	a body always coincid a body is the point at v produce both transla	es with the centre of which the total gravit tional and rotational	tational torque on the body is zero.	
117.	the source. The beam	is reflected back as a gh a small angle θ , the	a spot on a scale pla	mirror fixed at a certain distance x from aced just above the source L. When the found to move through a distance y on	
	(1) $\frac{y}{2x}$	(2) $\frac{y}{x}$	(3) $\frac{x}{2y}$	$(4) \frac{x}{y}$	
Ans.	(1)				
118.	A gas mixture consists modes, the total intern (1) 4 RT			emperature T. Neglecting all vibrational (4) 11 RT	
Ans					
Ans.	(4)				

 Pre Medical Division:- CG Tower-2, A-51(A), IPIA, Behind City Mall, Jhalawar Road, KOTA - 324005 (Rajasthan)

 CORPORATE OFFICE : CG TOWER, A-46 & 52, IPIA, NEAR CITY MALL, JHALAWAR ROAD, KOTA (RAJ.) - 324005

 REG. OFFICE : J-2, JAWAHAR NAGAR, MAIN ROAD, KOTA (RAI.)-324005 | PH. NO.: +91-744-3192222 | FAX NO. : +91-022-39167222

 PH.NO. : +91-744-3012222, 6635555 | TO KNOW MORE : SMS RESO AT 56677

 WEBSITE : WWW.RESONANCE.AC.IN | E-MAIL : CONTACT@RESONANCE.AC.IN | CIN : U80302RJ2007PLC024029

 Toll Free : 1800 258 5555 [S] 08003 444 888

	ting for better tomorrow	NEET-2017	07-05-2017	CODE-W		
119.				height of 1 km. It hits the ground with a		
	speed of 50 m/s. Take 'g' constant with a value 10 m/s ² . The work done by the (i) gravitational force and the (ii) resistive force of air is :					
	(1) (i) – 10 J	(ii) – 8.25 J	(2) (i) 1.25 J	(ii) – 8.25 J		
_	(3) (i) 100 J	(ii) 8.75 J	(4) (i) 10 J	(ii) – 8.75 J		
Ans.	(4)	1				
120.	A carnot engin	he having an efficiency of $\frac{1}{10}$	as heat engine, is	used as a refrigerator. If the work done		
	=			eservoir at lower temperature is :		
Anc	(1) 1 J	(2) 90 J	(3) 99 J	(4) 100 J		
Ans.	(2)					
121.	•	g the same direction is show		dicular to plane of paper carrying same de of force per unit length on the middle		
		B gi	d • C			
	(1) $\frac{\mu_0 i^2}{2\pi d}$	$(2) \frac{2\mu_0 l^2}{\pi d}$	$(3) \frac{\sqrt{2\mu_0}i^2}{\pi d}$	(4) $\frac{\mu_0 i^2}{\sqrt{2}\pi d}$		
Ans.	(4)					
122.		orrdinates of the particle at a eters and t in seconds. The a (2) 5 m/s ²		- $2t^2$ and y = 410t respectively, where x article at t = 2s is : (4) - 8 m/s ²		
Ans.	(3)	(2) 3 11/3	(0) – 111/3	(+) = 0 11/3		
123.	The ratio of rea	solving powers of an optical	microscope for two	wavelengths λ_1 = 4000 Å and λ_2 = 6000		
Ans.	(1) 8 : 27 (3)	(2) 9 : 4	(3) 3 : 2	(4) 16 : 81		

 Pre Medical Division:- CG Tower-2, A-51(A), IPIA, Behind City Mall, Jhalawar Road, KOTA - 324005 (Rajasthan)

 CORPORATE OFFICE : CG TOWER, A-46 & 52, IPIA, NEAR CITY MALL, JHALAWAR ROAD, KOTA (RAJ.) - 324005

 REG. OFFICE : J-2, JAWAHAR NAGAR, MAIN ROAD, KOTA (RAI.)-324005 | PH. NO.: +91-744-3192222 | FAX NO. : +91-022-39167222

 PH.NO. : +91-744-3012222, 6635555 | TO KNOW MORE : SMS RESO AT 56677

 WEBSITE : WWW.RESONANCE.AC.IN | E-MAIL : CONTACT@RESONANCE.AC.IN | CIN : U80302RJ2007PLC024029

 Toll Free : 1800 258 5555 [S] 08003 444 888

Ans. (2)

RESONANCE EDUVENTURES LTD.

 Pre Medical Division:- CG Tower-2, A-51(A), IPIA, Behind City Mall, Jhalawar Road, KOTA - 324005 (Rajasthan)

 CORPORATE OFFICE : CG TOWER, A-46 & 52, IPIA, NEAR CITY MALL, JHALAWAR ROAD, KOTA (RAJ.) - 324005

 REG. OFFICE : J-2, JAWAHAR NAGAR, MAIN ROAD, KOTA (RAJ.)-324005 | PH. NO.: +91-744-3192222 | FAX NO. : +91-022-39167222

 PH.NO. : +91-744-3012222, 6635555 | TO KNOW MORE : SMS RESO AT 56677

 WEBSITE : WWW.RESONANCE.AC.IN | E-MAIL : <u>CONTACT@RESONANCE.AC.IN | CIN : U80302RJ2007PLC024029</u>

 Toll Free : 1800 258 5555 [S] 08003 444 888

		NEET-2017	07-05-2017	CODE-W	
130.				n in a medium other than air. It is found	
	that 8 th brigh fringe in the medium lies where 5 th dark fringe lies in air. The refractive index of the				
	medium is nearly :	(0) (=0		(1) (=0	
A	(1) 1.25	(2) 1.59	(3) 1.69	(4) 1.78	
Ans.	(4)				
131.	Which one of the follow	wing represents forwa	rd bias diode?		
	(1) <u>0V</u>	R – 2V	(2) - 4V	R – 3V	
		_////		} ////	
	(3) <u>- 2V</u>	R + 2V	(4) <u>3V</u>	R 5V	
			(4)	<u>}</u>	
Ans.	(1)				
132.				ar to each other. Unpolarised light I_0 is	
	incident on P ₁ . A thirc with that of P ₁ . The int			2 such that its axis makes an angle 45°	
	-	- T	-	I_0	
	(1) $\frac{l_0}{2}$	(2) $\frac{l_0}{4}$	(3) $\frac{I_0}{8}$	(4) $\frac{1_0}{16}$	
Ans.	(3)				
133.			e root mean square	value of the electric field is $E_{rms} = 6V/m$.	
	The peak value of the (1) 1.41 $\times 10^{-8}$ T	(2) 2.83 × 10^{-8} T	(3) 0.70 ×10 ^{−8} [−]	Г (4) 4.23 ×10 ⁻⁸ Т	
Ans.	(2)		. ,		
134.	If θ_1 and θ_2 be the ac	parent angles of dip o	observed in two verti	cal planes at right angles to each other,	
	then the true angle of	dip θ is given by			
	(1) $\cot^2 \theta = \cot^2 \theta_1 + \cot^2 \theta_2$		(2) $\tan^2 \theta = \tan^2 (4) \tan^2 \theta = \tan^2 \theta$		
Ans.	(3) $\cot^2 \theta = \cot^2 \theta_1 - \cot^2 \theta_1$	θ_2	(4) $\tan \theta = \tan \theta$	θ_1 – tan θ_2	
135.	The diagrams below s	how regions of equipo	otentials.		
	20 V 40 V	10)∨ 30 V	40 V	
	20	V 40 V		20 V	
		A B A	• •B	● B	
				10V	
	10 V 30 V 10 V	30 V	 20 V 40 V	30 V	
	(a)	(b)	(c)	(d)	
	A positive charge is m (1) Maximum work is r				
	(2) In all the four case	s the work done is the	same.		
	(3) Minimum work is re				
Ans.	(4) Maximum work is r (2)	equired to move q m	iigure (b).		

CREATES HISTORY NATIONALLY IN JEE (MAIN) 2017

FROM CLASSROOM PROGRAM | 2 students in top-10 (Gen) | 10 students in top-100 (Gen)

AIR-27

received

Result

AIR-44

AIR-52

DEVANSH SHRINGI Study Centre: Kota

AIR-54

SHIVAM GOYAL

o Roll No.:15143340 Study Centre: Kota Classroom Student Since Class-IX Classroom Student Since Class-XI

ANIKET GUPTA Study Centre: Kota

Result @ Resonance

PRAAGY RASTOGI

Total Students selected

in JEE (Main)

Classroom: 17360 | DLP+ELP: 599

soBASE Roll No.:1030035 ResoBASE Students Reso Boll No.:15102189 Study Centre: Kota Classroom Student Since Class-XI

Classroom Student Since Class-XI

Total Students Qualified

for JEE (Advanced)

room: 9157 | DLP+ELP: 4068

Study Centre: Nagpur Classroom Student Since Class-IX

Classroom Student Since Class-IX

NINAD HEMANTH HUIGOL Classroom Student Since Class-IX

ResoBASE Student

ADMISSIONS OPEN (FOR 2017-18)

Classes: V to XII & XII+

- JEE (MAIN+ADVANCED) JEE (MAIN) NEET
- AIIMS BOARD/ IJSO/ OLYMPIADS/ NTSE/ KVPY

Entrance Test Dates @101 Cities Across India: 14th & 28th MAY

RESONANCE EDUVENTURES LTD.

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Rajasthan)- 324005

Registered Office : J-2, Jawahar Nagar Main Road, Kota (Rajasthan)- 324005 | Tel. No.: 0744-3012100, 3012222, 6635555 | CIN: U80302RJ2007PLC024029

STUDY CENTRES (Self Owned): Jajour: 0141-6060661 | Bhuhaneswar, Udajour, Jodhnur, Agra, Ranchi, Allahabad, Aurangabad, Jabalour, Rajour, Gwalior, Vadodara, Surat: (STD Code) 6060660 Bhopal: 0755-6060660 | Indore: 0731-4046267 | Lucknow: 0522-3192222 | Nagpur: 0712-3017222 | Patna: 9304002215 | Kolkata, Mumbai, Ahmedabad: (STD Code) 60606600 Delhi: 011-60606601 | Nanded: 02462-250220 | Chandrapur: 07172-606066 | Gandhinagar: 079-60606611 | Nashik: 0253-6090028 | Rajkot: 0281-6002011