

SUBJECT : CHEMISTRY

KARNATAKA COMMON ENTRANCE TEST (KCET) 2019

Date: 30 April, 2019 | Total Duration: 80 Minutes Maximum Time for Answering: 70 Min. | Max. Marks: 60

Dos:

- 1. Once again confirm whether the CET No. and name printed on the OMR Answer Sheet and the Admission Ticket are same.
- 2. This question booklet is issued to you by the invigilator after the 2' bell i.e., after 02.30 Pm.
- 3. Confirm whether the OMR Answer Sheet and the Question Paper issued to you are with same version code.
- 4. The Version Code and Serial Number of this question booklet should be entered on the Nominal Roll without any mistakes.
- 5. Compulsorily affix the complete signature at the bottom portion of the OMR answer sheet in the space provided.

DONTs :

- 1. The timing and marks printed on the OMR answer sheet should not be damaged / mutilated / spoiled.
- 2. The 3rd Bell rings at 02.40 pm, till then;
- Do not remove the seal present on the right hand side of this question booklet.
- Do not look inside this question booklet.
- Do not start answering on the OMR answer sheet.

IMPORTANT INSTRUCTIONS TO CANDIDATES

- 1. This question booklet contains **60** questions and each question will have one statement and four distracters. (Four different options choices.)
- 2. After the 3rd Bell is rung at 02.40 pm, remove the seal on the right hand side of this question booklet and check that this booklet does not have any unprinted or torn or missing pages or items etc., if so, get it replaced immediately by complete test booklet by showing it to Room Invigilator. Read each item and start answering on the OMR answer sheet.
- 3. During the subsequent 70 minutes:
- Read each question carefully.
- Choose the correct answer from out of the four available distracters (options / choices) given under each question / statement.
- Completely darken / shade the relevant circle with a blue or black ink ballpoint pen against the question number on the OMR answer sheet.

CORRECT METHOD	WRONG METHOD		
	0 3 8 X A B C D	 A B C Ø A O C D 	

- 4. Please note that even a minute unintended ink dot on the OMR answer sheet will also be recognized and recorded by the scanner. Therefore, avoid multiple markings of any kind on the OMR answer sheet.
- 5. Use the space provided on each page of the question booklet for Rough Work. Do not use the OMR answer sheet for the same.
- 6. After the last hell is rung at 03.50 pm, stop writing on the OMR answer sheet and affix your left hand thumb impression on the OMR answer sheet as per the instructions.
- 7. Hand over the OMR answer sheet to the room invigilator as it is.
- 8. After separating the top sheet (KEA copy), the invigilator will return the bottom sheet replica (Candidate's copy) to you to carry home for self-evaluation.
- 9. Preserve the replica of the OMR answer sheet for a minimum period of ONE year.
- 10. In case of any discrepancy in the English and Kannada Versions, the English version will be taken as final.

Resonance Eduventures Ltd.

Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Toll Free: 1800 258 5555 | Fax: +91-022-39167222 | 💿 08003 444 888 Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free : 1800 258 5555 💿 08003 444 888 F facebook.com/ResonanceEdu У twitter.com/ResonanceEdu 腸 www.youtube.com/resowatch 🕒 blog.resonance.ac.in

HIGHEST number of CLASSROOM Students Qualified for JEE (Advanced) 2019 from any Institute of India*

Resonance Eduventures Limited

REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph.No. :** 0744-2777777, 0744-2777700 | **Toll Free :** 1800 258 5555 | **FAX No. :** +91-022-39167222 | **To Know more :** sms **RESO** at **56677**

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

 Toll Free : 1800 258 5555 (\$73400 10333)
 If facebook.com/ResonanceEdu
 Image: Www.youtube.com/resonance.ac.in

This solution was download from Resonance KCET 2019 Solution portal

CHEMISTRY

REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph.No. :** 0744-2777777, 0744-2777700 | **Toll Free :** 1800 258 5555 | **FAX No. :** +91-022-39167222 | **To Know more :** sms **RESO** at **56677**

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

 Toll Free : 1800 258 5555 (\$73400 10333)

 If facebook.com/ResonanceEdu

 Image: Www.youtube.com/resonance.ac.in

This solution was download from Resonance KCET 2019 Solution portal

Resonance[®] | Karnataka Common Entrance**Test** (KCET) 2019 | DATE : 30-04-2019 | CHEMISTRY

12.	One litre solution of MgCl ₂ is electrolyzed completely by passing a current of 1A for 16 min 5 sec. The original concentration of MgCl ₂ solution was (Atomic mass of Mg = 24)			
Ans.	(A) 0.5 × 10 ^{−3} M (C)	(B) 1.0 × 10 ^{−2} M	(C) 5×10^{-3} M	(D) $5 \times 10^{-2} \mathrm{M}$
Sol.	$m = \frac{EIZ}{96500} = \frac{12 \times 1}{965}$	$\frac{\times 965}{500} = 12 \times 10^{-2}$	g	
	Molarity, $M = \frac{W_2}{M_2} \times \frac{10}{M_2}$	$\frac{000}{V_{\rm sol}} = \frac{12 \times 10^{-2}}{24} \times \frac{1}{1}$	$\frac{000}{000} = 0.5 \times 10^{-2} = 5 \times 10^{-3} \text{N}$	Λ
13.	An aqueous solution of will (A) decrease (B) increase or decreas (C) increase (D) remains unchange	of CuSO₄ is subjec use depending on t ed	ted to electrolysis using inert	electrodes. The pH of the solution
Ans.	(A) At cathode : ca 2t			
	At anode : 2H ₂ O Production of H ⁺ ions	$\rightarrow O_2 + 4H^+ + 4e^-$ will decrease pH.		
14.	Given: $E^0_{Mn^{+7} Mn^{+2}} = 1.5$	V and $E^{0}_{Mn^{+4} Mn^{+2}} =$:1.2 V, then $E^0_{Mn^{\rm +7} Mn^{\rm +4}}$ is	
•	(A) 1.7 V	(B) 2.1 V	(C) 0.3 V	(D) 0.1 V
Ans. Sol.	(A) $Mn^{+7} + 5e^{-} \rightarrow Mn^{2+}$	∆G⁰ = –nFE⁰	$\Delta G^{\circ} = -5 \text{ F 1.5},$	
	$Mn^{+4} + 2e^- \rightarrow Mn^{2+}$ Required equation		$\Delta G^{\circ} = -2 F 1.2,$	
	$\begin{array}{l} Mn^{\scriptscriptstyle +7} + 3\mathrm{e}^{\scriptscriptstyle -} \to Mn^{4\scriptscriptstyle +} \\ \therefore - 3FE^{\scriptscriptstyle 2} = - \ 7.5 \ F \ + \end{array}$	2.4 F	$\Delta G^{\varrho} = - 3FE^{\varrho}$	
	∴ Eº = 1.7 V			
15.	The plot of t _{1/2} v/s [R]	for a reaction is a	a straight-line parallel to x-ax	is. The unit for the rate constant of
	this reaction is $(\Lambda) \perp mo1^{-1} c^{-1}$	(B) c ⁻¹	(C) mol 1^{-1} c	(D) mol 1^{-1} c ⁻¹
Ans.	(B)	(D) 5		
Sol.	t _{1/2}			
	[R]₀			

t_{1/2} is independent of initial concentration of the reactant and is first order reaction.

Resonance Eduventures Limited

REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph.No. :** 0744-2777777, 0744-2777700 | **Toll Free :** 1800 258 5555 | **FAX No. :** +91-022-39167222 | **To Know more :** sms **RESO** at **56677**

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

 Toll Free : 1800 258 5555 (\$73400 10333)
 f facebook.com/ResonanceEdu
 vww.youtube.com/resonance.ac.in

This solution was download from Resonance KCET 2019 Solution portal

	esonance [®] Karnataka Common EntranceT	est (KCET) 2019 DATE : 30-04-2019 CHEMISTRY
16.	The mass of AgCl precipitated when a solut containing 3.4 g of AgNO ₃ is [Atomic mass of A (A) 2.87 g (B) 6.8 g	tion containing 11.70 g of NaCl is added to a solution Ag = 108, Atomic mass of Na = 23] (C) 5.74 g (D) 1.17 g
Ans.	(A)	
Sol.	NaCl + AgNO ₃ \rightarrow NaNO ₃ + AgCl	
	58.5 g + 170 \rightarrow 143.5 g	
	(Limiting reagent)	
	NaCl : AgNO ₃	
	Required ratio 58.5 : 170	
	Given ratio 11.70 : 3.4	
	(limiting reage	ent)
	170 g AgNO ₃ \rightarrow 143.5 g AgCl	
	\therefore 3.4 g AgNO ₃ \rightarrow x	
	$x = \frac{3.4 \times 143.5}{170} = 2.87 \text{ g}$	
17.	Two particles A and B are in motion. If the way	velength associated with 'A' is 33.33 nm, the wavelength
	associated with 'B' whose momentum is $\frac{1}{2}$ rd o	of 'A' is
Ans.	(A) 1.25×10^{-7} m (B) 1.0×10^{-7} m (B)	(C) 1.0×10^{-8} m (D) 2.5×10^{-8} m
Sol.	$\frac{\lambda_{A}}{\lambda_{B}} = \frac{P_{B}}{P_{A}} \qquad \frac{33.33}{\lambda_{B}} = \frac{1}{3}$ $\lambda_{B} = 99.99 \text{ nm} = 0.99 \times 10^{-7} \text{ m}$	
10	The first ionization onthe law of the following alo	amonte ere in the erder
10.	(A) $P < Si < C < N$ (B) $Si < P < C < N$	(C) $C < N < Si < P$ (D) $P < Si < N < C$
Ans.	(B)	
Sol.	First ΔH_{IE} order is : Si < P < C < N	
19.	Solubility of AgCl is least in	
_	(A) 0.1 M BaCl ₂ (B) 0.1 M AlCl ₃	(C) 0.1 M NaCl (D) Pure water
Ans.	(B) This is due to common ion offect (CL-)	
501.	This is due to common ion effect (CI).	
20.	Which of the following equations does NOT rep pressure?	present Charles's law for a given mass of gas at constant
	(A) $\log K = \log V + \log T$	(B) $\frac{d(\ln V)}{dT} = \frac{1}{T}$

(C)
$$\frac{V}{T} = K$$

Ans. (A)

Sol. Charles law: $\frac{V}{T} = k$

Resonance Eduventures Limited

(D) $\log V = \log K + \log T$

REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph.No. :** 0744-2777777, 0744-2777700 | **Toll Free :** 1800 258 5555 | **FAX No. :** +91-022-39167222 | **To Know more :** sms **RESO** at **56677**

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

 Toll Free : 1800 258 5555 (\$73400 10333)
 facebook.com/ResonanceEdu
 twitter.com/ResonanceEdu
 www.youtube.com/resowatch
 blog.resonance.ac.in

This solution was download from Resonance KCET 2019 Solution portal

	esonance [®] Karnat:	aka Common Entra	nce Test (KCET) 2019 DA	FE : 30-04-2019 CHEMISTRY	
21.	Which is the most suitable reagent for the following conversion?				
	$\begin{array}{c} O \\ II \\ II \\ CH_3-CH=CH-CH_2-C-CH_3 \longrightarrow CH_3-CH=CH-CH_2-C-OH \end{array}$				
	(A) Benzoyl peroxide (C) Tollen's reagent	9	(B) Sn and NaOH sol (D) I₂ and NaOH solu	ution tion	
Ans.	(D)	ſ	<u> </u>		
Sol	CH3-CH=CH-CH2-(Ŭ G–CH3 – l₂ CH			
001.		NaOH	OH		
22	Which of the followin	na is least soluble in t	water at 298 K2		
22.	(A) $(CH_3)_2NH$	(B) $C_6H_5NH_2$	(C) CH_3NH_2	(D) (CH ₃) ₃ N	
Ans. Sol.	(D) "D" is least soluble a	is there is no scope o	of H-bonding		
23.	formed nearly in equ	hith 1 : 1 mixture of co al amounts. This is c	onc. HNO ₃ and con. H ₂ SO ₄ , p- due to	nitroaniline and m-nitroaniline are	
	(A) m & p directing p	property of –NH2 grou	ıp.		
	(B) isomerization of	some p-nitroaniline ii	nto m-nitroaniline.		
	(C) m-directing prop (D) protonation of –	erty or –in∺₂ group. NH₂ which causes de	activation of benzene ring.		
Ans.	(D)				
Sol.	In presence of acid a	aniline gets protonate	ed to anilinium ion which is me	eta directing.	
24.	In nucleic acids, the	nucleotides are joine	ed together by		
	(A) Phosphodisulphi	de linkage	(B) Sulphodiester link	age	
Ans.	(C) Phosphoester IIr (D)	ikage	(D) Phosphodiester III	пкаде	
Sol.	It is fact				
25	Which of the followin	na is generally water	insoluble?		
20.	(A) Amylose	(B) Glycine	(C) Fibrous protein	(D) Vitamin-C	
Ans.	(C)	apporally incoluble i	nwatar		
501.	Fibrous proteins are	generally insoluble i	n water		
26.	Which of the followin	ng possess net dipole	e moment?		
Ans.	(A) BeCl ₂ (C)	(B) CO ₂	(C) SO ₂	(D) BF ₃	
Sol	•				
501.	0 ^{≠ S} ≈0				
	BeCl ₂ and CO ₂ have	linear geometry and	I BF₃ has triangular planar geo	ometry with zero dipole moment.	
27.	The number of π -bor	nds and σ -bonds pre	sent in naphthalene are respe	ctively	
Ane	(A) 5, 11 (D)	(B) 5, 20	(C) 6, 19	(D) 5, 19	
AII3.					
	I	Resonance I	Eduventures Limi	ted	

REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph.No. : 0744-2777777, 0744-2777700 | Toll Free : 1800 258 5555 | FAX No. : +91-022-39167222 | To Know more : sms RESO at 56677

Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 f facebook.com/ResonanceEdu 😏 twitter.com/ResonanceEdu 🔡 www.youtube.com/resowatch 🕒 blog.resonance.ac.in Toll Free : 1800 258 5555 (\$ 73400 10333

This solution was download from Resonance KCET 2019 Solution portal

31. Match the following pKa values.

		Acid				K	oKa		
	(a)	Phenol			(i)	16			
	(b)	p-Nit	p-Nitrophenol		(ii)	0.78			
	(c)	Ethanol			(iii)	10			
	(d)	Picrio	c acid		(iv)	7.1			
а	b	С	d			а	b	С	d
iii	i	iv	ii		(B)	iv	ii	iii	i
iii	iv	i	ii		(D)	ii	i	ii	iv

Ans. (C)

(A) (C)

Sol. Presence of nitro group (EWG) increases the acidic strength, and picric acid is trinitrophenol.

Resonance Eduventures Limited

REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph.No. :** 0744-2777777, 0744-2777700 | **Toll Free :** 1800 258 5555 | **FAX No. :** +91-022-39167222 | **To Know more :** sms **RESO** at **56677**

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

 Toll Free : 1800 258 5555 (\$73400 10333)
 f facebook.com/ResonanceEdu
 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu
 twitter.com/Resonance.ac.in

This solution was download from Resonance KCET 2019 Solution portal

	esonance" Karnataka Common Entrance Test (KCET) 2019 DATE : 30-04-2019 CHEMISTRY				
32. Ans. Sol.	Which of the following can be used to test the acidic nature of ethanol?(A) NaHCO3(B) Na metal(C) Blue litmus solution(D) Na ₂ CO ₃ (B)(D) Na ₂ CO3(B)(D) Vith sodium metal, ethanol evolves H ₂ gas.(2) $C_2H_5OH + Na \longrightarrow C_2H_5ONa + H_2$				
	c cH₂OH				
33.	HOH_2C $A HOH_2C$ HOH_2C				
Ans.	The reagents A, B and C respectively are(A) NaBH4, PCC, H2/Pd(B) H2/Pd, alk. KMnO4, NaBH4(C) H2/Pd, PCC, NaBH4(D) NaBH4, alk. KMnO4, H2/Pd				
Sol.	PCC and NaBH₄ does not affect the double bond				
34.	Propanoic acid undergoes HVZ reaction to give chloropropanoic acid. The product obtained is (A) weaker acid than propanoic acid (B) stronger than dichloropropanoic acid (C) stronger acid than propanoic acid (D) as stronger as propanoic acid				
Ans. Sol.	(C) EWG increases the acidic strength				
35.	$P \xrightarrow{H_2/Pd-BaSO_4} Q \xrightarrow{(i) \text{ conc. NaOH}} R + S$				
Ans. Sol.	R and S form benzyl benzoate when treated with each other. Hence, P is (A) C ₆ H ₅ COCI (B) C ₆ H ₅ COOH (C) C ₆ H ₅ CHO (D) C ₆ H ₅ CH ₂ OH (A) C ₆ H ₅ COCI $\xrightarrow{H_2/pd-BaSO_4} C_6H_5CHO \xrightarrow{(i) Conc. NaOH}_{(ii) dil. HCl} C_6H_5COOH + C_6H_5CH_2OH$ (S)				
36.	Which of the following is a network crystalline solid?				
Ans.	(A) NaCl (B) Ice (C) I ₂ (D) AIN (D)				
37.	The number of atoms in 2.4 g of body centred cubic crystal with edge length 200 pm is (density = 10 g cm ⁻³ , N _A = 6 × 10 ²³ atoms/mol)				
Anc	(A) 6×10^{23} (B) 6×10^{19} (C) 6×10^{22} (D) 6×10^{20}				
Alis.	(C) , ZM				
501.	$d = \frac{1}{a^3 N_A}$				
	$M = \frac{d \times a^3 \times N_A}{Z} = \frac{10 \times (200)^3 \times 10^{-30} \times 6 \times 10^{23}}{2} = 24$				
	24 g contains 6×10^{23}				
	6×10^{22}				

Resonance Eduventures Limited

REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph.No. :** 0744-2777777, 0744-2777700 | **Toll Free :** 1800 258 5555 | **FAX No. :** +91-022-39167222 | **To Know more :** sms **RESO** at **56677**

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

 Toll Free : 1800 258 5555 (\$73400 10333)
 If facebook.com/ResonanceEdu
 Image: Wither.com/ResonanceEdu
 Image: Wither.com/ResonanceEdu

This solution was download from Resonance KCET 2019 Solution portal

	esonance [®] Karnatal	a Common EntranceT	est (KCET) 2019 DA	TE : 30-04-2019 CHEMISTRY
38.	1 mole of NaCl is dop will be:	ed with 10⁻⁵ mole of SrC	Cl2. The number of catio	onic vacancies in the crystal lattice
•	(A) 6.022×10^{23}	(B) 12.044×10^{20}	(C) 6.022×10^{18}	(D) 6.022×10^{15}
Ans. Sol.	(C) 1 mol SrCl₂ gives 1 ca	tionic vacancy.		
	10 ⁻⁵ moles of SrCl ₂ give	ves 10 ⁻⁵ mole cationic va	acancies.	
	The number of cat	ionic vacancy in 1 mole	es of NaCI when it is o	doped with 10 ⁻⁵ moles of SrCl ₂ is
	6.022×10^{18} .			
39.	A non-volatile solute,	A' tetramerises in water	to the extent of 80%. 2	.5 g of 'A' in 100 g of water, lowers
	the freezing point by (.3°C. the molar mass of	A in g mol ⁻¹ is (K _f for w	rater = $1.86 \text{ K kg mol}^{-1}$
Ans.	(A) 155 (C)	(B) 354	(C) 62	(D) 221
Sol.	$\alpha = \frac{80}{100} = 0.8$			
	$\alpha = \frac{1 - i}{1 - \frac{1}{n}} = \frac{1 - i}{1 - \frac{1}{4}}$			
	$0.8 = \frac{1-i}{\frac{3}{i}}$			
	4 i – 0 4			
	$\Delta T_{\rm f} = 0.3$			
	$\Delta T_{f} = \frac{\mathbf{i} \times \mathbf{K}_{f} \times \mathbf{W}_2 \times 10}{\mathbf{M}_2 \times 100}$	00		
	$M_2 = \frac{0.4 \times 1.86 \times 2.52}{0.3}$	<u><10</u>		
	$M_2 = 62 \text{ g mol}^{-1}$			

Solution 'A contains acetone dissolved in chloroform and solution 'B' contains acetone dissolved in carbon disulphide. The type of deviations from Raoult's law shown by solutions A and B, respectively are (A) Negative and negative
 (B) negative and positive

	-		-	-
(C) Positive and po	sitive	(D) po	ositive and	negative

Ans. (B)

- Sol.Acetone and chloroform negative deviationAcetone and carbon disulphide positive deviation
- **41.** Among the following, the main reactions occurring in blast furnace during extraction of iron from haematite are:

i. $Fe_2O_3 + 3CO \longrightarrow 2Fe + 3CO_2$

ii. $FeO + SiO_2 \longrightarrow FeSiO_3$

iii. $Fe_2O_3 + 3C \longrightarrow 2Fe + 3CO$

iv. $CaO + SiO_2 \longrightarrow CaSiO_3$

(A) ii and iii (B) i and iv

(C) i and ii

(D) iii and iv

Ans. (B)

Resonance Eduventures Limited

REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph.No. :** 0744-2777777, 0744-2777700 | **Toll Free :** 1800 258 5555 | **FAX No. :** +91-022-39167222 | **To Know more :** sms **RESO** at **56677**

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

 Toll Free : 1800 258 5555 (\$ 73400 10333)
 If facebook.com/ResonanceEdu
 Image: Wither com/ResonanceEdu
 Image: Wither com/ResonanceEdu

This solution was download from Resonance KCET 2019 Solution portal

Resonance[®] | Karnataka Common Entrance**Test (KCET)** 2019 | DATE : 30-04-2019 | CHEMISTRY

42.	Which of the following pair control (A) XeF_4 , NH_3	tains 2 lone pair $(B) SO_4^{2-}, H_2S$	of electrons on the centra (C) I_3^+ , H_2O	al atom? (D) H ₂ O, NF ₃
Ans.	(C)			
Sol.				
43.	Which of the following stateme (A) F_2 oxidises H_2O to O_2 but C (C) Cl_2 oxidises H_2O to O_2 but I	nt is correct? D ₂ does not F ₂ does not	(B) Fluoride is a good of(D) Cl₂ is a stronger ox	oxidizing agent dizing agent than F2
Alis.	(\mathbf{A})			
501.	$2\Gamma_{2(g)} + 2\Pi_{2}O_{(l)} \rightarrow 4\Pi_{(aq)} + 4\Gamma_{(l)}$	$(aq) + O_{2(g)}$		
	$X_{2_{(g)}} + H_2O_{(l)} \rightarrow HX_{(aq)} + HOX$	(aq)		
	$X = Cl_2 \text{ or } Br_2$			
44.	0.1 mole of XeF_6 is treated with (A) $XeOF_4$ (B) Xe	n 1.8 g of water. T + XeO₃	The product obtained is (C) XeO3	(D) XeO ₂ F ₂
Ans.	(A)			
Sol.	$XeF_6 + H_2O \rightarrow XeOF_4 + 2HF$ 1 : 1 1 1			
	0.1 mole of XeF_6 reacts with 0.		g) to give XeOF ₄	
45.	In the reaction of gold with aqu	aregia, oxidation	state of Nitrogen change	es from
•	(A) +5 to +2 (B) +3	to +1	(C) +4 to +2	(D) +6 to +4
Ans.	(A) +5	+2		
Sol.	$\underbrace{\operatorname{Au}+4\mathrm{H}^{+}+\mathrm{NO}_{3}^{-}+4\mathrm{C}l^{-}}_{\text{aqua-regia}}\rightarrow \mathrm{Au}$	$uCl_4^- + NO + 2H_2$	0	
46.	Addition of excess of AgNO ₃ to conductivity of this solution cor	an aqueous solut responds to	tion of 1 mole of $PdCl_2$.	NH₃ gives 2 moles of AgCl. The
	(A) 1 : 2 electrolyte		(B) 1 : 4 electrolyte	
Ans.	(C) 1 : 1 electrolyte (A)		(D) 1 : 3 electrolyte	
Sol.	$\left[\operatorname{Pd}(\operatorname{NH}_{3})_{4}\right]Cl_{2}\rightarrow\left[\operatorname{Pd}(\operatorname{NH}_{3})\right]$	$_{4}]^{2+} + 2 C l^{-}$		
	It is 1 : 2 i.e., AB ₂ type of electr	olyte.		
47.	The formula of penta aquanitra (A) $[Cr(H_2O)_5(NO_3)](NO_3)_2$ (C) $[Cr(H_2O)_6](NO_3)_3$	to chromium (III)	nitrate is, (B) [Cr(H ₂ O) ₅ (NO ₂)]NO (D) [Cr(H ₂ O) ₆](NO ₂) ₂	3

Ans. (A)

Resonance Eduventures Limited

REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph.No. :** 0744-2777777, 0744-2777700 | **Toll Free :** 1800 258 5555 | **FAX No. :** +91-022-39167222 | **To Know more :** sms **RESO** at **56677**

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

 Toll Free : 1800 258 5555 (\$73400 10333)

 If facebook.com/ResonanceEdu

 Image: Www.youtube.com/resonance.ac.in

This solution was download from Resonance KCET 2019 Solution portal

🔼 Resonance[®] | Karnataka Common Entrance**Test** (KCET) 2019 | DATE : 30-04-2019 | CHEMISTRY

Resonance Eduventures Limited

REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph.No. :** 0744-277777, 0744-2777700 | **Toll Free :** 1800 258 5555 | **FAX No. :** +91-022-39167222 | **To Know more :** sms **RESO** at **56677**

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

 Toll Free : 1800 258 5555 (\$73400 10333)
 If facebook.com/ResonanceEdu
 Image: Wither.com/ResonanceEdu
 Image: Wither.com/ResonanceEdu

This solution was download from Resonance KCET 2019 Solution portal

52. 1 L of 2 M CH₃COOH is mixed with 1 L of 3M C₂H₅OH to form an ester. The rate of the reaction with respect to the initial rate when each solution is diluted with an equal volume of water will be (C) 0.25 times (A) 0.5 times (B) 4 times (D) 2 times Ans. (C) Esterification is a second order reaction Sol. $CH_3COOH + C_2H_5OH \rightarrow CH_3COOC_2H_5 + H_2O$ $r = k [CH_3COOH] [C_2H_5OH]$ Order = 2When equal volume of two solutions are mixed, concentration of the solutions reduces to half the initial value. Hence, rate of reaction gets reduced to $\frac{1}{4}$ initial rate. 53. Which of the following is an example of homogeneous catalysis? (A) Oxidation of SO₂ in lead chamber process (B) Manufacture of NH₃ by Haber's process (C) Oxidation of NH₃ in Ostwald's process (D) Oxidation of SO₂ in contact process Ans. (A) $2SO_{2_{(g)}} + O_{2_{(g)}} \xrightarrow{NO_{(g)}} 2SO_{3_{(g)}}$ Sol. The reactions and catalyst are in the same phase. 54. Critical Micelle concentration for a soap solution is 1.5×10^{-4} mol L⁻¹. Micelle formation is possible only when the concentration of soap solution in mol L⁻¹ is (A) 7.5×10^{-5} (B) 1.1×10^{-4} (C) 2.0×10^{-3} (D) 4.6×10^{-5} Ans. (C) For formation of micelles, concentration of soap should exceed CMC value Sol. 55. Oxidation state of copper is +1 in (B) Chalcopyrite (A) Azurite (C) Malachite (D) Cuprite Ans. (D) Sol. Cu₂O – Cuprite 56. The metal nitrate that liberates NO₂ on heating (A) KNO3 (B) RbNO₃ (C) NaNO₃ (D) LiNO₃ Ans. (D)

Resonance[®] | Karnataka Common Entrance**Test (KCET)** 2019 | DATE : 30-04-2019 | CHEMISTRY

Sol. $4\text{LiNO}_3 \rightarrow 2\text{Li}_2\text{O} + 4\text{NO}_2 + \text{O}_2$

- **57.** Which of the following is NOT true regarding the usage of hydrogen as a fuel?
 - (A) Combustion product is ecofriendly.
 - (B) Hydrogen gas can be easily liquefied and stored.
 - (C) High calorific value
 - (D) The combustible energy of hydrogen can be directly converted to electrical energy in a fuel cell.
- Ans. (B)
- **Sol.** Hydrogen is highly inflammable and hence storage is difficult.
 - Hydrogen has low critical temperature and hence not easily liquefiable.

Resonance Eduventures Limited

REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph.No. :** 0744-2777777, 0744-2777700 | **Toll Free :** 1800 258 5555 | **FAX No. :** +91-022-39167222 | **To Know more :** sms **RESO** at **56677**

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

 Toll Free : 1800 258 5555 (\$ 73400 10333)
 If facebook.com/ResonanceEdu
 Item to the sonanceEdu
 Item to the sonance.ac.in
 Item to the sonance.ac.in

This solution was download from Resonance KCET 2019 Solution portal

八		n Entrance Test (KCET) 2019	DATE : 30-04-2019 CHEMISTRY		
58.	Resonance effect is not observed	d in			
	(A) $CH_2=CH-CI$	(B) CH ₂ =CH–CH	I ₂ NH ₂		
	(C) $CH_2=CH-CH=CH_2$	(D) $CH_2=CH-C=$	N		
Ans.	. (B)				
Sol.	In H ₂ C=CH–CH ₂ –NH ₂ , the lone system.)	In H ₂ C=CH–CH ₂ –NH ₂ , the lone pair of N is not on adjacent carbon with π bond. (Not in conjugated system.)			
59.	2-butyne is reduced to trans-but-	2-ene using			
Anc	(A) H ₂ Pd–C (B) Zn in	dil. HCl (C) H ₂ Ni	(D) Na in liq. NH₃		
Alls.	Birch reduction				
	$ \frac{\text{Na}}{\text{liq. NH}_3} //$				
60.	Eutrophication causes				
	(A) reduction in dissolved oxygen	(B) decreases B	OD		
Ans.	(C) increase of nutrients in water . (A)	(D) reduction in v	water pollution		
Sol.	Eutrophication refers to excessiv	Eutrophication refers to excessive increases in minerals and nutrients in aquatic system. Resulting in			
	excess of algae growth and reduction in dissolved oxygen.				

Resonance Eduventures Limited

REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph.No. :** 0744-2777777, 0744-2777700 | **Toll Free :** 1800 258 5555 | **FAX No. :** +91-022-39167222 | **To Know more :** sms **RESO** at **56677**

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

 Toll Free : 1800 258 5555 S 73400 10333

 If facebook.com/ResonanceEdu

 Image: Www.youtube.com/resonance.ac.in

This solution was download from Resonance KCET 2019 Solution portal

ALL FROM CLASSROOM PROGRAM

ADMISSIONS OPEN FOR 2019-20 Classes: V to XII & XII+ Target: JEE (Main+Advanced) JEE (Main) | AIIMS/ NEET Pre-foundation | Commerce & CLAT

ResoNET Dates 9th & 16th June 2019

Resonance Eduventures Limited Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Rajasthan) - 324005 Tel. No.: 0744-2777777, 2777700 | CIN: U80302RJ2007PLC024029 website: www.resonance.ac.in COURSE: VIJAY (JR) FOR CLASS: XIII Target: JEE (Main+Advanced) 2020 Course Starts from 10th June 2019