## Mathematics K CET - 2018 (Version E)

1. $\int_{0}^{1} \frac{d x}{e^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}}$ is equal to
(A) $\frac{\pi}{4}-\tan ^{-1}(e)$
(B) $\tan ^{-1}(e)-\frac{\pi}{4}$
(C) $\tan ^{-1}(e)+\frac{\pi}{4}$
(D) $\tan ^{-1}(\mathrm{e})$

Ans (B)
2. $\int_{0}^{1 / 2} \frac{d x}{\left(1+x^{2}\right) \sqrt{1-x^{2}}}$ is equal to
(A) $\frac{1}{\sqrt{2}} \tan ^{-1} \sqrt{\frac{2}{3}}$
(B) $\frac{2}{\sqrt{2}} \tan ^{-1}\left(\frac{3}{\sqrt{2}}\right)$
(C) $\frac{\sqrt{2}}{2} \tan ^{-1}\left(\frac{3}{2}\right)$
(D) $\frac{\sqrt{2}}{2} \tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)$

Ans (A)
3. The area of the region bounded by the curve $y=\cos x$ between $x=0$ and $x=\pi$ is
(A) 1 sq. unit
(B) 4 sq. units
(C) 2 sq. units
(D) 3 sq. units

Ans (C)
4. The area bounded by the line $y=x, x$-axis and ordinates $x=-1$ and $x=2$ is
(A) $\frac{3}{2}$
(B) $\frac{5}{2}$
(C) 2
(D) 3

Ans (B)
5. The degree and the order of the differential equation $\frac{d^{2} y}{d x^{2}}=\sqrt[3]{1+\left(\frac{d y}{d x}\right)^{2}}$ respectively are
(A) 2 and 3
(B) 3 and 2
(C) 2 and 2
(D) 3 and 3

Ans (B)
6. The solution of the differential equation $x \frac{d y}{d x}-y=3$ represents a family of
(A) straight lines
(B) circles
(C) parabolas
(D) ellipses

Ans (A)
7. The integrating factor of $\frac{d y}{d x}+y=\frac{1+y}{x}$ is
(A) $x e^{x}$
(B) $x e^{1 / x}$
(C) $\frac{e^{x}}{x}$
(D) $\frac{x}{e^{x}}$

Ans (C)
8. If $|\vec{a} \times \vec{b}|^{2}+|\vec{a} \cdot \vec{b}|^{2}=144$ and $|\vec{a}|=4$, then the value of $|\vec{b}|$ is
(A) 1
(B) 2
(C) 3
(D) 4

Ans (C)
9. If $\vec{a}$ and $\vec{b}$ are mutually perpendicular unit vectors, then $(3 \vec{a}+2 \vec{b}) \cdot(5 \vec{a}-6 \vec{b})=$
(A) 5
(B) 3
(C) 6
(D) 12

Ans (B)
10. If the vector $a \hat{i}+\hat{j}+\hat{k}, \hat{i}+b \hat{j}+\hat{k}$ and $\hat{i}+\hat{j}+c \hat{k}$ are coplanar $(a \neq b \neq c \neq 1)$, then the value of $a b c-(a+b+c)=$
(A) 2
(B) -2
(C) 0
(D) -1

Ans (B)
11. If $\vec{a}=\hat{i}+\lambda \hat{j}+2 \hat{k} ; \vec{b}=\mu \hat{i}+\hat{j}-\hat{k}$ are orthogonal and $|\vec{a}|=|\vec{b}|$ then $(\lambda, \mu)=$
(A) $\left(\frac{1}{4}, \frac{7}{4}\right)$
(B) $\left(\frac{7}{4}, \frac{1}{4}\right)$
(C) $\left(\frac{1}{4}, \frac{9}{4}\right)$
(D) $\left(\frac{-1}{4}, \frac{9}{4}\right)$

Ans (A)
12. The image of the point $(1,6,3)$ in the line $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$ is
(A) $(1,0,7)$
(B) $(7,0,1)$
(C) $(2,7,0)$
(D) $(-1,-6,-3)$

Ans (A)
13. The angle between the lines $2 x=3 y=-z$ and $6 x=-y=-4 z$ is
(A) $0^{\circ}$
(B) $45^{\circ}$
(C) $90^{\circ}$
(D) $30^{\circ}$

Ans (C)
14. The value of $k$ such that the line $\frac{x-4}{1}=\frac{y-2}{1}=\frac{z-k}{2}$ lies on the plane $2 x-4 y+z=7$ is
(A) -7
(B) 4
(C) -4
(D) 7

Ans (D)
15. The locus represented by $x y+y z=0$ is
(A) a pair of perpendicular lines
(B) a pair of parallel lines
(C) a pair of parallel planes
(D) a pair of perpendicular planes

Ans (D)
16. The feasible region of an LPP is shown in the figure. If $z=3 x+9 y$, then the minimum value of $z$ occurs at
(A) $(5,5)$
(B) $(0,10)$
(C) $(0,20)$
(D) $(15,15)$


Ans (A)
17. For the LPP, maximize $z=x+4 y$ subject to the constraints $x+2 y \leq 2, x+2 y \geq 8, x, y \geq 0$
(A) $\mathrm{z}_{\text {max }}=4$
(B) $\mathrm{z}_{\text {max }}=8$
(C) $\mathrm{z}_{\text {max }}=16$
(D) has no feasible solution

Ans (D)
18. For the probability distribution given by

| $X=x_{i}$ | 0 | 1 | 2 |
| :---: | :--- | :--- | :--- |
| $P_{i}$ | $\frac{25}{36}$ | $\frac{5}{18}$ | $\frac{1}{36}$ |

the standard deviation $(\sigma)$ is
(A) $\sqrt{\frac{1}{3}}$
(B) $\frac{1}{3} \sqrt{\frac{5}{2}}$
(C) $\sqrt{\frac{5}{36}}$
(D) none of the above

Ans (B)
19. A bag contains 17 tickets numbered from 1 to 17 . A ticket is drawn at random, then another ticket is drawn without replacing the first one. The probability that both the tickets may show even numbers is
(A) $\frac{7}{34}$
(B) $\frac{8}{17}$
(C) $\frac{7}{16}$
(D) $\frac{7}{17}$

Ans (A)
20. A flashlight has 10 batteries out of which 4 are dead. If 3 batteries are selected without replacement and tested, then the probability that all 3 are dead is
(A) $\frac{1}{30}$
(B) $\frac{2}{8}$
(C) $\frac{1}{15}$
(D) $\frac{1}{10}$

Ans (A)
21. If $|x+5| \geq 10$ then
(A) $x \in(-15,5]$
(B) $x \in(-5,5]$
(C) $x \in(-\infty,-15] \cup[5, \infty)$
(D) $x \in[-\infty,-15] \cup[5, \infty)$

Ans (C)
22. Everybody in a room shakes hands with everybody else. The total number of handshakes is 45 . The total number of persons in the room is
(A) 9
(B) 10
(C) 5
(D) 15

Ans (B)
23. The constant term in the expansion of $\left(x^{2}-\frac{1}{x^{2}}\right)^{16}$ is
(A) ${ }^{16} \mathrm{C}_{8}$
(B) ${ }^{16} \mathrm{C}_{7}$
(C) ${ }^{16} \mathrm{C}_{9}$
(D) ${ }^{16} \mathrm{C}_{10}$

Ans (A)
24. If $P(n): " 2^{2 n}-1$ is divisible by $k$ for all $n \in N$ " is true, then the value of ' $k$ ' is
(A) 6
(B) 3
(C) 7
(D) 2

Ans (B)
25. The equation of the line parallel to the line $3 x-4 y+2=0$ and passing through $(-2,3)$ is
(A) $3 x-4 y+18=0$
(B) $3 x-4 y-18=0$
(C) $3 x+4 y+18=0$
(D) $3 x+4 y-18=0$

Ans (A)
26. If $\left(\frac{1-i}{1+i}\right)^{96}=a+i b$ then $(a, b)$ is
(A) $(1,1)$
(B) $(1,0)$
(C) $(0,1)$
(D) $(0,-1)$

Ans (B)
27. The distance between the foci of a hyperbola is 16 and its eccentricity is $\sqrt{2}$. Its equation is
(A) $x^{2}-y^{2}=32$
(B) $\frac{x^{2}}{4}-\frac{y^{2}}{9}=1$
(C) $2 x^{2}-3 y^{2}=7$
(D) $y^{2}-x^{2}=32$

Ans (A)
28. The number of ways in which 5 girls and 3 boys can be seated in a row so that no two boys are together is
(A) 14040
(B) 14440
(C) 14000
(D) 14400

Ans (D)
29. If $a, b, c$ are three consecutive terms of an $A P$ and $x, y, z$ are three consecutive terms of a G.P., then the value of $x^{b-c}, y^{c-a}, z^{a-b}$ is
(A) 0
(B) $x y z$
(C) -1
(D) 1

Ans (D)
30. The value of $\lim _{x \rightarrow 0} \frac{[x]}{x}$ is
(A) 1
(B) -1
(C) 0
(D) Does not exist.

Ans (D)
31. Let $f(x)=x-\frac{1}{x}$ then $f(-1)$ is
(A) 0
(B) 2
(C) 1
(D) -2

Ans (B)
32. The negation of the statement " 72 is divisible by 2 and 3 " is
(A) 72 is not divisible by 2 or 72 is not divisible by 3
(B) 72 is divisible by 2 or 72 is divisible by 3
(C) 72 is divisible by 2 and 72 is divisible by 3
(D) 72 is not divisible by 2 and 3

Ans (A)
33. The probability of happening of an event A is 0.5 and that of B is 0.3 . If A and B are mutually exclusive events, then the probability of neither $A$ nor $B$ is
(A) 0.4
(B) 0.5
(C) 0.2
(D) 0.9

Ans (C)
34. In a simultaneous throw of a pair of dice, the probability of getting a total more than 7 is
(A) $\frac{7}{12}$
(B) $\frac{5}{36}$
(C) $\frac{5}{12}$
(D) $\frac{7}{36}$

Ans (C)
35. If $A$ and $B$ are mutually exclusive events, given that $P(A)=\frac{3}{5}, \mathrm{P}(B)=\frac{1}{5}$, then $\mathrm{P}(\mathrm{A}$ or B$)$ is
(A) 0.8
(B) 0.6
(C) 0.4
(D) 0.2

Ans (A)
36. Let $\mathrm{f}, \mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ be two functions defined as $\mathrm{f}(\mathrm{x})=|\mathrm{x}|+\mathrm{x}$ and $\mathrm{g}(\mathrm{x})=|\mathrm{x}|-\mathrm{x} \quad \forall \mathrm{x} \in \mathrm{R}$. Then $(\mathrm{f} \circ \mathrm{g})(\mathrm{x})$ for $x<0$ is
(A) 0
(B) $4 x$
(C) $-4 x$
(D) 2 x

Ans (A)
37. A is a set having 6 distinct elements. The number of distinct functions from $A$ to $A$ which are not bijections is
(A) $6!-6$
(B) $6^{6}-6$
(C) $6^{6}-6$ !
(D) 6 !

Ans (C)
38. Let $\mathrm{f}: R \rightarrow R$ be defined by $f(x)=\left\{\begin{array}{ccc}2 x & ; & x>3 \\ x^{2} & ; & 1<x \leq 3 \\ 3 x & ; & x \leq 1\end{array}\right.$. Then $f(-1)+f(2)+f(4)$ is
(A) 9
(B) 14
(C) 5
(D) 10

Ans (A)
39. If $\sin ^{-1} x+\cos ^{-1} y=\frac{2 \pi}{5}$, then $\cos ^{-1} x+\sin ^{-1} y$ is
(A) $\frac{2 \pi}{5}$
(B) $\frac{3 \pi}{5}$
(C) $\frac{4 \pi}{5}$
(D) $\frac{3 \pi}{10}$

Ans (B)
40. The value of the expression $\tan \left(\frac{1}{2} \cos ^{-1} \frac{2}{\sqrt{5}}\right)$ is
(A) $2-\sqrt{5}$
(B) $\sqrt{5}-2$
(C) $\frac{\sqrt{5}-2}{2}$
(D) $5-\sqrt{2}$

Ans (B)
41. If $A=\left[\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right]$, then $A^{n}=2^{k} A$, where $k=$
(A) $2^{n-1}$
(B) $\mathrm{n}+1$
(C) $\mathrm{n}-1$
(D) $2(\mathrm{n}-1)$

Ans (D)
42. If $\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}2 \\ 4\end{array}\right]$, then the values of $x$ and $y$ respectively are
(A) $-3,-1$
(B) 1,3
(C) 3,1
(D) $-1,3$

Ans (D)
43. If $\mathrm{A}=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$, then $\mathrm{AA}^{\prime}=$
(A) A
(B) zero matrix
(C) $\mathrm{A}^{\prime}$
(D) I

Ans (D)
44. If $x, y, z \in R$, then the value of determinant
$\left|\begin{array}{lll}\left(5^{x}+5^{-x}\right)^{2} & \left(5^{x}-5^{-x}\right)^{2} & 1 \\ \left(6^{x}+6^{-x}\right)^{2} & \left(6^{x}-6^{-x}\right)^{2} & 1 \\ \left(7^{x}+7^{-x}\right)^{2} & \left(7^{x}-7^{-x}\right)^{2} & 1\end{array}\right|$ is
(A) 10
(B) 12
(C) 1
(D) 0

Ans (D)
45. The value of determinant $\left|\begin{array}{lll}a-b & b+c & a \\ b-a & c+a & b \\ c-a & a+b & c\end{array}\right|$ is
(A) $a^{3}+b^{3}+c^{3}$
(B) 3 abc
(C) $a^{3}+b^{3}+c^{3}-3 a b c$
(D) $a^{3}+b^{3}+c^{3}+3 a b c$

## Ans

Question is wrong.
46. If $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ are the vertices of a triangle whose area is ' $k$ ' square units, then $\left|\begin{array}{lll}x_{1} & y_{1} & 4 \\ x_{2} & y_{2} & 4 \\ x_{3} & y_{3} & 4\end{array}\right|^{2}$ is
(A) $32 \mathrm{k}^{2}$
(B) $16 \mathrm{k}^{2}$
(C) $64 \mathrm{k}^{2}$
(D) $48 \mathrm{k}^{2}$

Ans (C)
47. Let A be a square matrix of order $3 \times 3$, then $|5 \mathrm{~A}|=$
(A) $5|\mathrm{~A}|$
(B) $125|\mathrm{~A}|$
(C) $25|\mathrm{~A}|$
(D) $15|\mathrm{~A}|$

Ans (B)
48. If $f(x)=\left\{\begin{array}{ccc}\frac{\sqrt{1+k x}-\sqrt{1-k x}}{x} & \text { if } & -1 \leq x<0 \\ \frac{2 x+1}{x-1} & \text { if } & 0 \leq x \leq 1\end{array}\right.$
is continuous at $\mathrm{x}=0$, then the value of k is
(A) $\mathrm{k}=1$
(B) $\mathrm{k}=-1$
(C) $\mathrm{k}=0$
(D) $\mathrm{k}=2$

Ans (B)
49. If $\cos y=x \cos (a+y)$ with $\cos a \neq \pm 1$, then $\frac{d y}{d x}$ is equal to
(A) $\frac{\sin a}{\cos ^{2}(a+y)}$
(B) $\frac{\cos ^{2}(a+y)}{\sin a}$
(C) $\frac{\cos a}{\sin ^{2}(a+y)}$
(D) $\frac{\cos ^{2}(a+y)}{\cos a}$

Ans (B)
50. If $f(x)=|\cos x-\sin x|$, then $f^{\prime}\left(\frac{\pi}{6}\right)$ is equal to
(A) $-\frac{1}{2}(1+\sqrt{3})$
(B) $\frac{1}{2}(1+\sqrt{3})$
(C) $-\frac{1}{2}(1-\sqrt{3})$
(D) $\frac{1}{2}(1-\sqrt{3})$

Ans (A)
51. If $y=\sqrt{x+\sqrt{x+\sqrt{x+\ldots \infty}}}$, then $\frac{d y}{d x}=$
(A) $\frac{1}{\mathrm{y}^{2}-1}$
(B) $\frac{1}{2 y+1}$
(C) $\frac{2 y}{y^{2}-1}$
(D) $\frac{1}{2 y-1}$

Ans (D)
52. If $f(x)=\left\{\begin{array}{cll}\frac{\log _{e} x}{x-1} & ; x \neq 1 \\ k & ; x=1\end{array}\right.$ is continuous at $x=1$, then the value of $k$ is
(A) e
(B) 1
(C) -1
(D) 0

Ans (B)
53. Approximate change in the volume $V$ of a cube of side $x$ metres caused by increasing the side by $3 \%$ is
(A) $0.09 \mathrm{x}^{3} \mathrm{~m}^{3}$
(B) $0.03 \mathrm{x}^{3} \mathrm{~m}^{3}$
(C) $0.06 \mathrm{x}^{3} \mathrm{~m}^{3}$
(D) $0.04 \mathrm{x}^{3} \mathrm{~m}^{3}$

Ans (A)
54. The maximum value of $\left(\frac{1}{x}\right)^{x}$ is
(A) e
(B) $e^{e}$
(C) $e^{1 / e}$
(D) $\left(\frac{1}{\mathrm{e}}\right)^{1 / \mathrm{e}}$

Ans (C)
55. $\mathrm{f}(\mathrm{x})=\mathrm{x}^{\mathrm{x}}$ has stationary point at
(A) $\mathrm{x}=\mathrm{e}$
(B) $\mathrm{x}=\frac{1}{\mathrm{e}}$
(C) $x=1$
(D) $x=\sqrt{e}$

Ans (B)
56. The maximum area of a rectangle inscribed in the circle $(x+1)^{2}+(y-3)^{2}=64$ is
(A) 64 sq. units
(B) 72 sq. units
(C) 128 sq. units
(D) 8 sq. units

Ans (C)
57. $\int \frac{1}{1+\mathrm{e}^{\mathrm{x}}} \mathrm{dx}$ is equal to
(A) $\log _{e}\left(\frac{e^{x}+1}{e^{x}}\right)+c$
(B) $\log _{e}\left(\frac{e^{x}-1}{e^{x}}\right)+c$
(C) $\log _{e}\left(\frac{e^{x}}{e^{x}+1}\right)+c$
(D) $\log _{e}\left(\frac{e^{x}}{e^{x}-1}\right)+c$

Ans (C)
58. $\int \frac{1}{\sqrt{3-6 x-9 x^{2}}} d x$ is equal to
(A) $\sin ^{-1}\left(\frac{3 x+1}{2}\right)+c$
(B) $\sin ^{-1}\left(\frac{3 x+1}{6}\right)+c$
(C) $\frac{1}{3} \sin ^{-1}\left(\frac{3 x+1}{2}\right)+c$
(D) $\sin ^{-1}\left(\frac{2 x+1}{3}\right)+c$

Ans (C)
59. $\int e^{\sin x} \cdot\left(\frac{\sin x+1}{\sec x}\right) d x$ is equal to
(A) $\sin \mathrm{x} \cdot \mathrm{e}^{\sin \mathrm{x}}+\mathrm{c}$
(B) $\cos \mathrm{x} . \mathrm{e}^{\sin \mathrm{x}}+\mathrm{c}$
(C) $e^{\sin x}+c$
(D) $e^{\sin x}(\sin x+1)+c$

Ans (A)
60. $\int_{-2}^{2}|x \cos \pi x| d x$ is equal to
(A) $\frac{8}{\pi}$
(B) $\frac{4}{\pi}$
(C) $\frac{2}{\pi}$
(D) $\frac{1}{\pi}$

## Ans (A)

