

JEE (MAIN) 2025

QUESTIONS & SOLUTIONS

SHIFT-1

DATE & DAY: 29th January 2025 & Wednesday

PAPER-1

Duration: 3 Hrs. **Time:** 09:00 – 12:00 IST

SUBJECT: CHEMISTRY

Selections in JEE (Advanced)/ IIT-JEE Since 2002

52395

Selections in JEE (Main)/
AIEEE Since 2009

257576

Selections in NEET (UG)/ AIPMT/AIIMS Since 2012

22494

Admission Open for 2025-26

Target: JEE (Advanced) | JEE (Main) | NEET (UG) | PCCP (Class V to X)

100% Scholarship on the basis of Class 10th & 12th & JEE (Main) 2025 %ile/ AIR

№ REGISTERED & CORPORATE OFFICE (CIN: U80302RJ2007PLC024029):

CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Rajasthan) - 324005

🔾 0744-2777777 | 🖸 73400 10345 | 🙊 contact@resonance.ac.in | 🛞 www.resonance.ac.in | Follow Us: 🔠 🗹 f in 💟 @ResonanceEdu | 🞯 @Resonance_Edu

This solutions was download from Resonance JEE (Main) 2025 Solution Portal

TO KNOW MORE

Call: 0744-2777777,

2777700

TARGET: JEE (Adv.) 2024

VISHESH COURSE

For 12th Passed Students

Course Features*

- ▶ Course Duration: 42 Weeks
- ▶ Total No. of Lectures: 630 (P:210 | C: 210 | M: 210)
- ▶ Duration of One Lecture: 1.5 Hrs. (90 Minutes)
- ▶ Classroom Teaching Hours.: 945 Hrs.
- ▶ Testing Duration: 51 Hrs.
- ▶ Total Academic Hours.: 996 Hrs.

7th April 2025

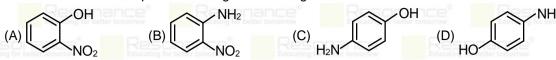
TARGET: JEE (Main) 2026

ABHYAAS COURSE

For 12th Passed Students

Course Features^{*}

- ▶ Course Duration: 39 Weeks
- ▶ Total No. of Lectures: 577 (P: 192 | C: 193 | M: 192)
- ▶ Duration of One Lecture: 1.5 Hrs. (90 Minutes)
- ▶ Classroom Teaching Hours.: 865 Hrs.
- ▶ Testing Duration: 36 Hrs.
- Total Academic Hours.: 901 Hrs.



SCHOLARSHIP UPTO 100%

on the basis of Class 10th & 12th & JEE (Main) 2025 %ile/ AIR

PART : CHEMISTRY

51. The steam volatile compounds among the following are:

Choose the correct answer from the options given below:

- (1) (A) and (B) only
- (2) (A) and (C) only
- (3) (B) and (D) only
- (4) (A), (B) and (C) only

- Ans.
- Sol. Due to intra molecular H-bonding in A & B.
- The standard reduction potential values of some of the p-block ions are given below. Predict the one 52. with the strongest oxidising capacity.

(1)
$$E_{Sn}^{-}$$
⁴⁺/ Sn^{2+} = + 1.15V

(2)
$$E_{Pb^{4+}/Pb^{2+}}^{-} = + 1.67V$$

(3)
$$E_{AI}^{-3} = -1.66V$$

(4)
$$E_{T\ell^{3+}/T\ell}^- = + 1.26V$$

- Ans.
- Oxidising agent is itself reduced and as S.R.P1; Tendency to get reduced1; Tendency of oxidising Sol. behaviour[↑]. Hence Pb⁺⁴ is best Oxidising agent.
- Match List I with List II. 53.

List - I		List – II		
(Carbohydrate)		(Linkage Source)		
(A)	Amylose	(I)	β-C ₁ -C ₄ , plant	
(B)	Cellulose	(II)	α-C ₁ –C ₄ , animal	
(C)	Glycogen	(III)	α -C ₁ –C ₄ , α -C ₁ –C ₆ , plant	
(D)	Amylopectin	(IV)	α-C ₁ -C ₄ , plant	

Choose the correct answer from the options given below:

- (1) (A) (IV), (B) (I), (C) (II); (D) (III)
- (2) (A) (II), (B) (III), (C) (I); (D) (IV)
- (3) (A) (IV), (B) (I), (C) (III); (D) (II)
- (4) (A) (III), (B) (II), (C) (I); (D) (IV)

- Ans. (1)
- Sol. Conceptual.
- 54. The correct options with order of melting points of the pairs (Mn, Fe), (Tc, Ru) and (Re, Os) is:
 - (1) Mn < Fe, Tc < Ru and Os < Re
- (2) Fe < Mn, Ru < Tc and Os < Re
- (3) Mn < Fe, Tc < Ru and Re < Os
- (4) Fe < Mn, Ru < Tc and Re < Os

- Ans.
- Sol.
- The correct increasing order of stability of the complexes based on Δ_0 value is : 55.
 - I. [Mn(CN)₆]³-
- II. [Co(CN)₆]⁴⁻
- III. [Fe(CN)₆]⁴⁻
- IV. [Fe(CN)₆]3-

(NTA ans. 1, Reso ans. Bonus) Ans.

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029 Toll Free : 1800 258 5555 🔘 7340010333 f facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu 🛗 www.youtube.com/resowatch 🕒 blog.resonance.ac.in

As C.F.S-E becomes more '-Ve' stability increases. Sol.

[Mn(CN)₆]³⁻

[Co(CN)₆]⁴⁻

[Fe(CN)₆]⁴⁻

O.N. = +3

Fe = +2

$$Mn = 3d^54s^2$$

$$Co = 3d^{7}4s^{2}$$

$$Fe(+2) = 3d^6$$

$$Mn = (+3) = 3d^4$$

$$Co(+2) = 3d^7$$

$$t_{20}^{2,2,2}$$
 eg^{0,0}

$$t_{2g}^{2,1,1}$$
 eg^{0,0}

C.F.S.E =
$$-0.16\Delta_0$$
.

$$C.F.S.E = -1.8\Delta_0$$

C.F.S.E =
$$-2.4\Delta_0$$

|Fe(CN)6|3-

$$O.N = +3$$

$$Fe(+3) = 3d^5$$

$$t_{2g}^{2,2,1} eg^{0,0}$$

$$C.F.S.E = -2.0\Delta_0$$

Hence (1) is correct.

The reaction $A_2 + B_2 \rightarrow 2AB$ follows the mechanism 56.

$$A_2 \xrightarrow{k_1} A + A \text{ (fast)}$$

$$A + B_2 \xrightarrow{k_2} AB + B \text{ (slow)}$$

$$A + B \longrightarrow AB$$
 (fast)

The overall order of the reaction is:

(4) Ans.

Sol. A & B are intermediates from r.d.s.

$$r = K[A][B_2]$$

$$K_{eq} = \frac{k_1}{k_{-1}} = \frac{[A]^2}{[A_2]}$$

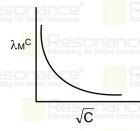
or
$$[A] = \sqrt{k_{eq}} [A_2]^{\frac{1}{2}}$$

Substituting value of [A] from (2) to (1)

$$r = k \sqrt{k_{eq}} [A_2]^{\frac{1}{2}} [B_2]$$

$$r = k'[A_2]^{\frac{1}{2}}[B_2]$$

$$order = 1.5$$


- 57. The molar conductivity of a weak electrolyte when plotted against the square root of its concentration, which of the following is expected to be observed?
 - (1) A small increase in molar conductivity is observed at infinite dilution.
 - (2) Molar conductivity increases sharply with increase in concentration.
 - (3) Molar conductivity decreases sharply with increase in concentration.
 - (4) A small decrease in molar conductivity is observed at infinite dilution.

Ans. (3)

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029 Toll Free : 1800 258 5555 🔘 7340010333 f facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu 🛗 www.youtube.com/resowatch 🕒 blog.resonance.ac.in Sol. For weak electrolyte

58. For a Mg | Mg²⁺(aq)| |Ag⁺(aq) | Ag the correct Nernst Equation is :

(1)
$$E_{cell} = E_{cell}^{\circ} - \frac{RT}{2F} ln \frac{[Mg^{2+}]}{[Ag^{+}]}$$

(2)
$$E_{cell} = E_{cell}^{\circ} + \frac{RT}{2F} ln \frac{[Ag^{+}]^{2}}{[Mg^{2+}]}$$

(3)
$$E_{cell} = E_{cell}^{\circ} - \frac{RT}{2F} ln \frac{[Ag^+]}{[Mg^{2^+}]}$$

(4)
$$E_{cell} = E_{cell}^{\circ} - \frac{RT}{2F} ln \frac{[Ag^+]^2}{[Mg^{2+}]}$$

Ans.

 $Mg|Mg_{aq}^{+2}||Ag^{+}(aq)|Ag$ Sol.

$$Mg(s) \Longrightarrow Mg_{aq}^{+2} + 2e^-$$

over all cell reation

$$Mg(s) + 2Ag^+aq \longrightarrow Mg_{aq}^{+2} + 2Ag.$$

Applying nearest eqution.

$$\mathsf{E}_{\mathsf{cell}} \ \mathsf{E}_{\mathsf{cell}}^{\circ} - \frac{\mathsf{RT}}{\mathsf{2F}} \mathsf{In} \frac{[\mathsf{Mg}^{2+}]}{[\mathsf{Ag}^{+}]^{2}}$$

$$E_{cell}^{\circ} + \frac{RT}{2F} ln \frac{[Ag^{+}]^{2}}{[Mg^{+2}]}$$

59. If a₀ is denoted as the Bohr radius of hydrogen atom, then what is the de-Broglie wavelength (λ) of the electron present in the second orbit of hydrogen atom? [n: any integer]

(1)
$$\frac{4\pi a_0}{n}$$

(2)
$$\frac{2a_0}{n\pi}$$

(3)
$$\frac{8\pi a_0}{n}$$

(4)
$$\frac{4n}{\pi a_0}$$

Ans. (NTA ans. 3, Reso ans. Bonus)

For H atom z = 1; $a0 = 0.529 \text{ A}^{\circ}$; n = 2Sol.

$$2\pi r_2 = 2\lambda$$

$$\Rightarrow 2\pi \times \frac{0.529 \times 4}{1} = 2\lambda$$

$$2\pi \times 4a_0 = 2\lambda$$

$$\lambda = \frac{8\pi a_0}{2}$$

Ans.
$$(1)$$
 for $n = 1$

Ans. (3) for
$$n = 2$$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029 Toll Free : 1800 258 5555 🔘 7340010333 f facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu 🛗 www.youtube.com/resowatch 🕒 blog.resonance.ac.in

60. In the following substitution reaction:

Product 'P' formed is:

Ans.

S_N2-Ar mechanism. Sol.

61. Match List-II with List-II.

List - I		List - II			
(Complex)		(Hybridisation & Magnetic characters)			
(A)	[MnBr ₄] ^{2–}	(I)	d ² sp ³ & diamagnetic		
(B)	[FeF ₆] ^{3–}	(II)	sp ³ d ² & paramagnetic		
(C)	$[Co(C_2O_4)_3]^{3-}$	(III)	sp ³ & diamagnetic		
(D)	[Ni(CO) ₄]	(IV)	sp ³ & paramagnetic		

Choose the correct answer from the options given below:

$$(1) (A) - (III), (B) - (I), (C) - (II); (D) - (IV)$$

$$\begin{array}{l} \text{(2) (A)} - \text{(IV), (B)} - \text{(II), (C)} - \text{(I) ; (D)} - \text{(III)} \\ \text{(4) (A)} - \text{(IV), (B)} - \text{(I), (C)} - \text{(II) ; (D)} - \text{(III)} \end{array}$$

 $\begin{array}{l} \text{(1) (A) - (III), (B) - (I), (C) - (II); (D) - (IV)} \\ \text{(3) (A) - (III), (B) - (II), (C) - (I); (D) - (IV)} \end{array}$

$$(4) (A) - (IV), (B) - (I), (C) - (II); (D) - (III)$$

Ans. (2)Sol.

62. The product (P) formed in the following reaction is:

Ans. (2)

(3)

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029 Toll Free: 1800 258 5555 🔯 7340010333 🗗 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu 🔛 www.youtube.com/resowatch 🕒 blog.resonance.ac.in

(Clemmenson reduction) It is reduced carbonyl compounds ($\gt C=O$) into ($\gt CH_2$).

63. Match List - I with List - II.

List – I (Structure)			List – II (IUPAC Name)		
(A)	H ₃ C-CH ₂ -CH-CH ₂ -CH-C ₂ H ₅ C ₂ H ₅ CH ₃	(1)	4-Methylpent-1-ene		
(B)	(CH ₃) ₂ C(C ₃ H ₇) ₂	(II)	3-Ethyl-5-methylheptane		
(C)		(III)	4, 4-Dimethylheptane		
(D)		(IV)	2-Methyl-1,3-pentadiene		

Choose the correct answer from the options given below:

$$(1)$$
 (A) (III) , (B) (II) , (C) (I) ; (D) (IV)

$$(2) (A) - (III), (B) - (II), (C) - (IV); (D) - (I)$$

$$(3)$$
 (A) – (II) , (B) – (III) , (C) – (I) ; (D) – (IV)

$$(4) (A) - (II), (B) - (III), (C) - (IV); (D) - (I)$$

Ans. (4)

Conceptual. Sol.

64. Given below are two statements:

Statement (I): The radii of isoelctronic species increases in the order.

 $Mq^{2+} < Na^+ < F^- < O^{2-}$.

Statement (II): The magnitude of electron gain enthalpy of halogen decreases in the order.

Cl > F > Br > I.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Both statement I and Statement II are incorrect.
- (2) Both statement I and Statement II are correct.
- (3) Statement I is incorrect but Statement II is correct.
- (4) Statement I is correct but Statement II is incorrect

Ans. (2)

Sol.

g for bette	Mg ²⁺	Na ⁺	ating for be	O ² -
е	10	10	. 10	10
р	12	etter11orro	9	8

For isoelectronic species as Nuclear charge decreases, size increases.

E <mark>lem</mark> ent	CL	F	Br	2501
∆He.g kJ/mol	349	328	325	295

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

65. 1.24 g of AX₂ (molar mass 124 g mol⁻¹) is dissolved in 1 kg of water to form a solution with boiling point of 100.0156°C, while 25.4 g of AY₂ (molar mass 250 g mol⁻¹) in 2 kg of water constitutes a solution with a boiling point of 100.0260°C.

 $K_b(H_2O) = 0.52 \text{ K kg mol}^{-1}$

Which of the following is correct?

- (1) AX₂ is completely unionised while AY₂ is fully ionised.
- (2) AX₂ and AY₂ (both) are completely unionised.
- (3) AX₂ is fully ionised while AY₂ is completely unionised.
- (4) AX₂ and AY₂ (both) are fully ionised.

Ans. (3)

Sol. For solution of AX₂ in water

Molarity = 10^{-2}

 $(\Delta T_b)_{obs} = 0.0156$

 $(DT_f)_{obs} = i \times K_b \times molarity$

 $0.0156 = i \times 0.52 \times 10^{-2}$

i = 3

Hence AX₂ is 100% ionised.

For solution of AY2 in water

Molarity =
$$\frac{25.4/250}{2}$$
 = 0.0508

 $(\Delta T_b)_{obs} = 0.0260 = i \times K_b \times molarity$

$$\frac{0.0260}{0.52 \times 0.0508} = i = 1$$

completely unionised

- 66. An element 'E' has the ionisation enthalpy value of 374 kJ mol⁻¹. 'E' reacts with elements A, B, C and D with electron gain enthalpy values of –328, –349, –325 and –295 kJ mol⁻¹, respectively. The correct order of the products EA, EB, EC and ED in terms of ionic character is:
 - (1) EA > EB > EC > ED (2) ED > EC > EB > EA (3) EB > EA > EC > ED (4) ED > EC > EA > EB
- Ans. (NTA ans. (3), Reso ans. (BONUS).
- **Sol.** E is metal and A, B, C & D are non-metal.

For non metals as ΔH_{eg} becomes more negative more metallic character also increases.

- 67. 500 J of energy is transferred as heat to 0.5 mol of argon gas at 298 K and 1.00 atm. The final temperature and the change in internal energy respectively are:
 - (1) 368 K and 500 J
- (2) 348 K and 300 J
- (3) 378 K and 300 J
- (4) 378 K and 500 J

- Ans. NTA ans. (4), Reso ans. (2)
- At temperature T, compound $AB_{2(g)}$ dissociates as $AB_{2(g)} \rightleftharpoons AB_{(g)} + \frac{1}{2}B_{2(g)}$ having degree of dissociation x (small compared to unity). The correct expression for x in terms of K_p and p is:

$$(1) \sqrt[3]{\frac{2K_p}{p}}$$

(2)
$$\sqrt{K_p}$$

(3)
$$\sqrt[4]{\frac{2K_p}{p}}$$

(4)
$$\sqrt[3]{\frac{2K_p^2}{p}}$$

Ans. (4)

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 **| FAX No.:** +91-022-39167222

Sol.

$$AB_2(g) \Longrightarrow AB(g) + Y_2B_2(g)$$

$$AB(g) + Y_2B_2(g)$$

0 0

$$\frac{x}{2}$$
; $\sum_{n=1}^{\infty} 1 + \frac{x}{2}$

M.F.

$$\frac{1-x}{1+\frac{x}{2}}$$

$$\frac{x}{1+\frac{x}{2}}$$

$$\frac{x}{2\left(1+\frac{x}{2}\right)}$$

M.F.

$$\frac{x}{2}$$

P.P

$$p_{\frac{1}{2}}$$

$$k_p = \frac{p_x \times \sqrt{p_x}}{\sqrt{2p}} = \frac{\sqrt{p}x_{\frac{3}{2}}}{\sqrt{2}}$$

$$x^3 = \frac{\sqrt{2} \, K_p}{\sqrt{p}}$$

$$x^3 = \frac{2K_p^2}{p}$$

$$x = \sqrt[3]{\frac{2Kp^2}{p}}$$

- **69.** Choose the correct statements.
 - (A) Weight of a substance is the amount of matter present in it.
 - (B) Mass is the force exerted by gravity on an object.
 - (C) Volume is the amount of space occupied by a substance.
 - (D) Temperatures below 0°C are possible in Celsius scale, but in Kelvin scale negative temperature is not possible.
 - (E) Precision refers to the closeness of various measurements for the same quantity. Choose the correct answer from the options given below:

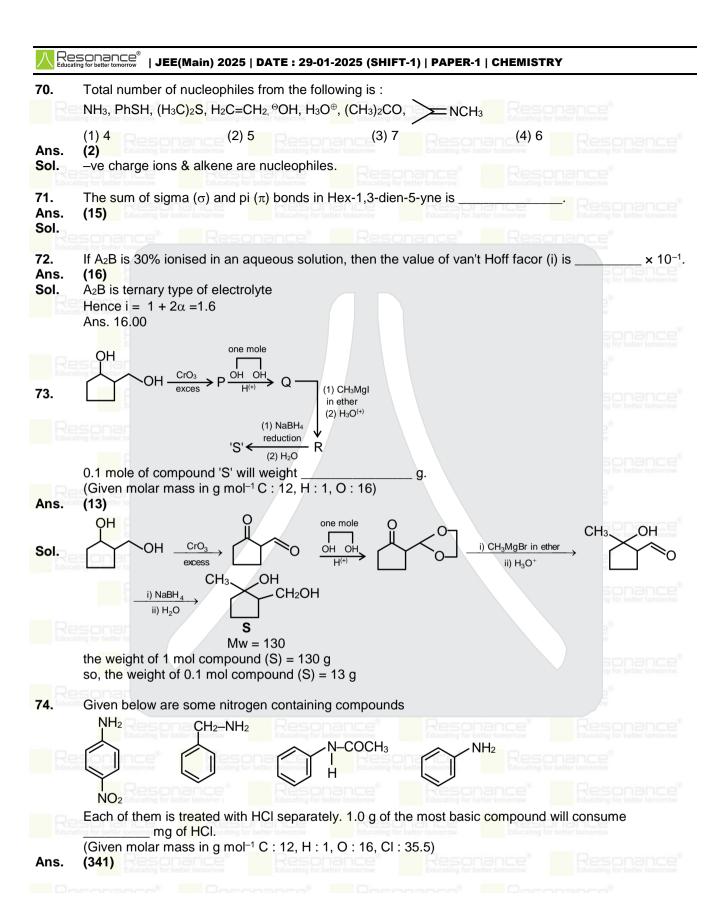
Sol. For
$$A_r$$
 $n = \frac{1}{2}$

$$C_{VM} = \frac{1}{2}R = \frac{3}{2}R$$

$$\Delta E = q_v = 500 = nC_{VM} \Delta T$$

so
$$\Delta E = 500J$$

$$500 = \frac{1}{2} \times \frac{3}{2} \times 8.3 \times \Delta T$$


$$\frac{2000}{24.9} = \Delta T \approx 80$$

$$T_2 - 298 = 80$$

$$T_2 = 378 \text{ K}$$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 **| FAX No.:** +91-022-39167222

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

1 mole of Ph–CH₂–NH₂ \equiv 1 mole of HCl Molar mass of Ph–CH₂–NH₂ = 107 g mol⁻¹ Molar mass of HCl = 36.5 g mol⁻¹ 107 g will react with = 36.5 g HCl

1 g will react with = $\frac{36.5}{107}$ g HCl = $\frac{36.5}{107}$ × 10³ mg of HCl = 341 mg

CH2-NH3CI-

75. The molar mass of the water insoluble product formed from the fusion of chromite ore (FeCr₂O₄) with Na₂CO₃ in presence of O₂ is _____ g mol⁻¹.

Ans. (160)

Sol. $4F_{eOC}r_2O_3 + 8NaCO_3 + 7O_2 \longrightarrow 8Na_2CrO_4 + 2Fe_2O_3 + 8CO_2 \uparrow$

water soluble insoluble Molar mass = 160

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222