

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

J.	An alastromagnatia waya ia tran		direction. At acrtain point and cortain							
Reduc	An electromagnetic wave is transporting energy in the negative z direction. At certain p time the direction of electric field of the wave is along positive y direction. What will be the magnetic field of the wave at that point and instant? (1) Positive direction of z (2) Negative direction of y									
Ans			Resonance"							
Sol.	As K (propagation constant), E (Electric field) & B (Magnetic field) are mutually for to each other.									
	$B = k \times E$ or right hand thumb rule	e usating for better tomorrow Educating for								
	$B = -\hat{z} \times \hat{y}$									
	$\hat{B} = -(-\hat{x}) = \hat{x}$									
	direction of \vec{B} is along x-axis.									
4.	The root mean square velocity of	f molecules of gas is								
	(1) Inversely proportional to squa									
	(2) Proportional to square root of	temperature (\sqrt{T})								
	(2) Proportional to square of temperature (T^2)									
	(4) Proportional to temperature (7)	T)								
Ans.	(2)									
Sol.	$V_{rms} = \sqrt{\frac{3RT}{m}}$									
	$V_{\rm rms} \propto T^{1/2}$									
	• 1113									
5. B	Electron beam used in an electron	n microscope. When accelerated	by a voltage of 20 kV, has a de-Broglie							
5.	Electron beam used in an electron wavelength of λ_0 . If the voltage i electron beam would be :	n microscope. When accelerated is increased 40kV, then the de-B	by a voltage of 20 kV, has a de-Broglie roglie wavelength associated with the							
5. Re	Electron beam used in an electron wavelength of λ_0 . If the voltage is electron beam would be : (1) $\frac{\lambda_0}{2}$ (2) $3\lambda_0$	n microscope. When accelerated is increased 40kV, then the de-B $(3) \ \frac{\lambda_0}{\sqrt{2}}$	by a voltage of 20 kV, has a de-Broglie roglie wavelength associated with the (4) λ_0							
5. R	Electron beam used in an electron wavelength of λ_0 . If the voltage is electron beam would be : (1) $\frac{\lambda_0}{2}$ (2) $3\lambda_0$ (3)	n microscope. When accelerated is increased 40kV, then the de-B $(3) \ \frac{\lambda_0}{\sqrt{2}}$	by a voltage of 20 kV, has a de-Broglie roglie wavelength associated with the (4) λ_0							
5. Ans. Sol.	Electron beam used in an electron wavelength of λ_0 . If the voltage is electron beam would be : (1) $\frac{\lambda_0}{2}$ (2) $3\lambda_0$ (3) $\lambda_0 = \frac{h}{\sqrt{2m \times E}} = \frac{h}{\sqrt{2m \times 20}}$	n microscope. When accelerated is increased 40kV, then the de-B $(3) \ \frac{\lambda_0}{\sqrt{2}}$	by a voltage of 20 kV, has a de-Broglie roglie wavelength associated with the (4) λ_0							
5. Ans. Sol.	Electron beam used in an electron wavelength of λ_0 . If the voltage is electron beam would be : (1) $\frac{\lambda_0}{2}$ (2) $3\lambda_0$ (3) $\lambda_0 = \frac{h}{\sqrt{2m \times E}} = \frac{h}{\sqrt{2m \times 20}}$	n microscope. When accelerated is increased 40kV, then the de-B $(3) \ \frac{\lambda_0}{\sqrt{2}}$	by a voltage of 20 kV, has a de-Broglie roglie wavelength associated with the (4) λ_0							
5. Ans. Sol.	Electron beam used in an electron wavelength of λ_0 . If the voltage is electron beam would be : (1) $\frac{\lambda_0}{2}$ (2) $3\lambda_0$ (3) $\lambda_0 = \frac{h}{\sqrt{2m \times E}} = \frac{h}{\sqrt{2m \times 20}}$ $\lambda_2 = \frac{h}{\sqrt{2m \times 40}}$	n microscope. When accelerated is increased 40kV, then the de-B $(3) \frac{\lambda_0}{\sqrt{2}}$	by a voltage of 20 kV, has a de-Broglie roglie wavelength associated with the (4) λ_0							
5. Ans. Sol.	Electron beam used in an electron wavelength of λ_0 . If the voltage is electron beam would be : (1) $\frac{\lambda_0}{2}$ (2) $3\lambda_0$ (3) $\lambda_0 = \frac{h}{\sqrt{2m \times E}} = \frac{h}{\sqrt{2m \times 20}}$ $\lambda_2 = \frac{h}{\sqrt{2m \times 40}}$ $\lambda_2 = \frac{\lambda_0}{\sqrt{2}}$	n microscope. When accelerated is increased 40kV, then the de-B $(3) \frac{\lambda_0}{\sqrt{2}}$	by a voltage of 20 kV, has a de-Broglie roglie wavelength associated with the (4) λ_0							
5. Ans. Sol.	Electron beam used in an electron wavelength of λ_0 . If the voltage is electron beam would be : (1) $\frac{\lambda_0}{2}$ (2) $3\lambda_0$ (3) $\lambda_0 = \frac{h}{\sqrt{2m \times E}} = \frac{h}{\sqrt{2m \times 20}}$ $\lambda_2 = \frac{h}{\sqrt{2m \times 40}}$ $\lambda_2 = \frac{\lambda_0}{\sqrt{2}}$	n microscope. When accelerated is increased 40kV, then the de-B $(3) \frac{\lambda_0}{\sqrt{2}}$	by a voltage of 20 kV, has a de-Broglie roglie wavelength associated with the (4) λ_0							
5. Re Ans. Sol.	Electron beam used in an electron wavelength of λ_0 . If the voltage is electron beam would be : (1) $\frac{\lambda_0}{2}$ (2) $3\lambda_0$ (3) $\lambda_0 = \frac{h}{\sqrt{2m \times E}} = \frac{h}{\sqrt{2m \times 20}}$ $\lambda_2 = \frac{h}{\sqrt{2m \times 40}}$ $\lambda_2 = \frac{\lambda_0}{\sqrt{2}}$	n microscope. When accelerated is increased 40kV, then the de-B $(3) \frac{\lambda_0}{\sqrt{2}}$	by a voltage of 20 kV, has a de-Broglie roglie wavelength associated with the (4) λ_0							

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

Toll Free : 1800 258 5555 🔊 7340010333 🚹 facebook.com/ResonanceEdu 🔽 twitter.com/ResonanceEdu 🛗 www.youtube.com/resowatch 🕒 blog.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🗾 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Cal		1		1	1	1	ω ₁				
50I. Re	$\omega_1 = -$	/LC	ω2 =	$\sqrt{2L \times 80}$	$\overline{C} = \overline{\sqrt{16LC}}$	$= \frac{1}{4\sqrt{LC}}$	= <u>.</u>				
	ω2	1 1									
	ω ₁ =	4									
9.	A sole	noid of 1	200 1	turns is v	vound unifor	mly in a s	ingle layer	on a g	lass tube	2 m lon	g and 0.2 m ii
	(1) 24	ter. The r $\sim 10^3 \text{ A}$	magne m-1		sity at the ce $2 \times 10^3 \text{ A m}$	ntre of the	solenoid w	nen a c	current of $(4) 24$	$\frac{2}{10}$ A flows	s through it is.
Ans.	(1) 2.4	× 10° A		(2) 1.	2 × 10' A III	(3)	onance		(4) 2.4	× 10 · F	
Sol.	Magne	etic intens	sity eo	qual							
	B = μΗ	l = μni	-								
	H = ni										
	$=\left(\frac{N}{\ell}\right)$	$\times i = \frac{120}{2}$	<u>0</u> ×2								
	H = 12	200									
	= 1.2 ×	< 10 ³ Am ⁻	-1								
		E .									sonance
20.	A car to The av	ravels a c /erage sp	distan beed o	ce of 'x' w of the car	vith speed v ₁ is :	and then s	ame distar	וce 'x' w	ith speed	v ₂ in the	same direction
	(1) <u>-</u> 2(v	$\frac{v_1 v_2}{v_1 + v_2}$		(2)	$\frac{2x}{v_1 + v_2}$	(3)	$\frac{2v_1v_2}{v_1+v_2}$		(4) <u>v</u> ₁	$\frac{+V_{2}}{2}$	
Ans.	(3)										
Sol.	Avera	ge Speed		$\frac{x+x}{x+x} = -$	2x						
			$\frac{x}{y}$	$-+\frac{x}{y}$	$\left(\frac{v_1 + v_2}{v_1 + v_2}\right)$						
			v.	1 •2	$(\mathbf{v}_1\mathbf{v}_2)$						
	Av <mark>era</mark> ç	ge Speec	$d = \frac{2}{v_1}$	$\frac{v_1v_2}{+v_2}$							
Re		<u>.</u>									2
21.	A unifo electro	orm elect	ric fie the f	ld of 10 N ield symi	I/C is created metrically be	d between tween the	two paralle plates with	el charg n a kine	ed plates etic energ	(as shov y 0.5 eV	vn in figure). Ar ′. The length o
	each p is	olate is 1 (in de	I0 cm gree).	i. The ar	ngle (θ) of d	eviation o	f the path	of elec	tron as it	comes	out of the field
					+++++	+++++		sonar			
							Δθ	-			
					• • • • • • • • • • • • • • • • • • • •	Education	for better tomorroy				
					10	cm	+ Res				
Ans.	45.00										
Educ											
Educ											

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 💟 bwitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 🔯 7340010333 🛉 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu 🔡 www.youtube.com/resowatch 🕒 blog.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

From snell's law $\mu_1 \sin(i) = \mu_2 \sin(r)$

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🗾 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

