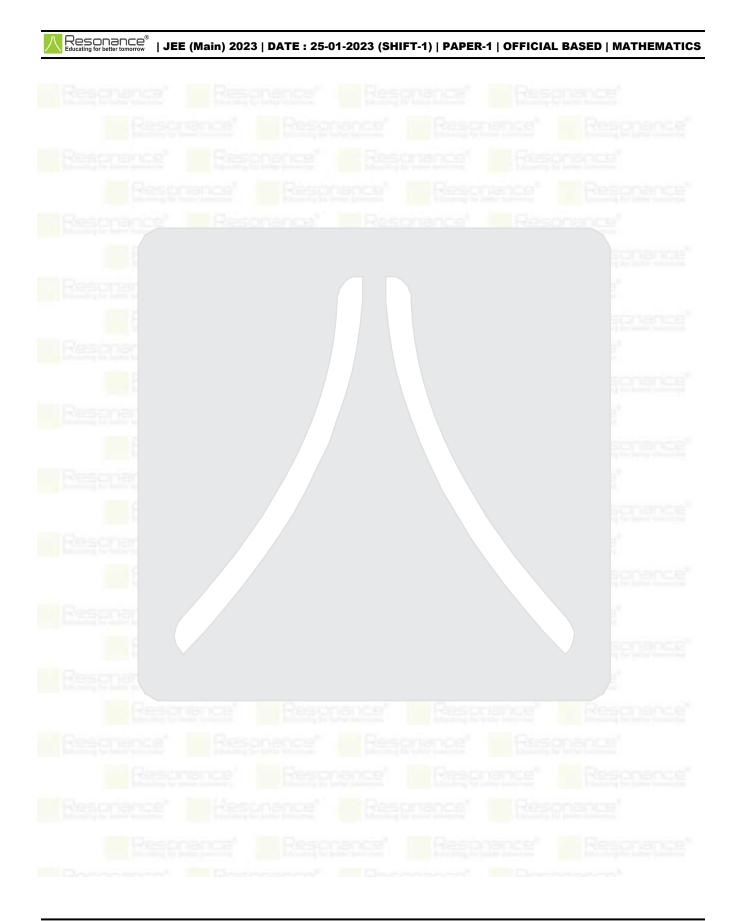

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

$$\frac{1}{2} = \sum_{r=0}^{10} r^3 - 22\sum_{r=0}^{10} r^2 + 124\sum_{r=0}^{10} r = \left(\frac{10(10+1)}{2}\right)^2 - 22x \frac{10(10+1)(20+1)}{6} + 121x \frac{10\cdot11}{2}$$

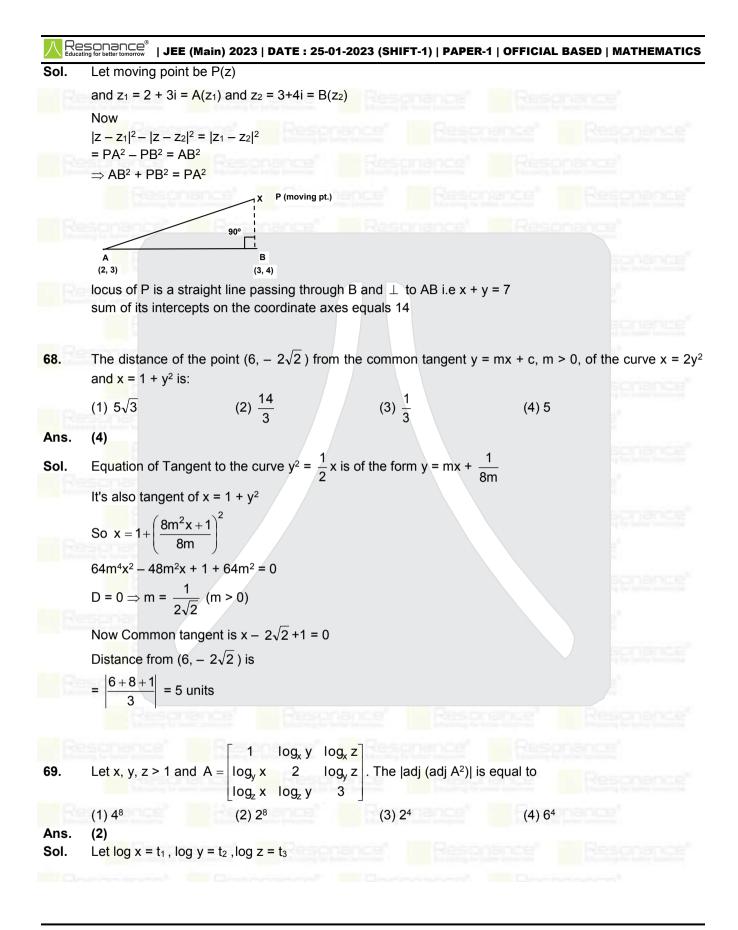
= 55² - 11 x 11 x 70 + 5 x 11³ = 11²(25 - 70 + 55] = 11² x 10 = 1210
63. Let y = y(x) be the solution curve of the differential equation $\frac{dy}{dx} - \frac{y}{x}(1 + xy^2 (1 + \log_8 x)), x > 0, y(1) = 3.$
Then $\frac{y^2(x)}{9}$ is equal to :
(1) $\frac{x^2}{5-2x^3(2 + \log_8 x^2)}$ (2) $\frac{x^2}{3x^3(1 + \log_8 x^2) - 2}$
(3) $\frac{x^2}{7-3x^3(2 + \log_8 x^2)}$ (4) $\frac{x^2}{2x^3(2 + \log_8 x^3) - 3}$
Ans. (1)
Sol. $\frac{dy}{dx} = \frac{y}{x} + y^3(1 + \ln x)$
 $y^3 \frac{dy}{dx} - \frac{1}{x}y^2 = 1 + \ln x$
Put $y^2 = t \Rightarrow -2y^{-3} dy = dt$
 $\Rightarrow -\frac{1}{2} \frac{dt}{dx} - \frac{1}{x} = (1 + \ln x)$
 $\Rightarrow \frac{dt}{dx} + \frac{2}{x} t = -2(1 + \ln x)$ (i)
LF. $= e^{\frac{1}{2}x^3} = e^{2\ln x} + x^2$
Hence solution of linear differential equation is given by
 $b^2 = \int -2(1 + \ln x) \cdot x^3 dx + C$
 $\frac{x^2}{y^2} = -2\left\{(1 + \ln x) \cdot x^3 - \int_{\frac{1}{x}} \frac{x^3}{3} dx\right\} + C$
 $\frac{x^2}{y^2} = -2\left\{(1 + \ln x) \cdot \frac{2}{9} \cdot x^3 + C\right\}$
As $y(1) = 3 - C = \frac{5}{9} = \frac{x^2}{y^2} = -\frac{2}{3}x^3(1 + \ln x) + \frac{2}{9}x^3 + \frac{5}{9}$
So, $\frac{y^2(k)}{9} = \frac{x^2}{5-2x^3(2 + \log_8 x^3)}$


Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

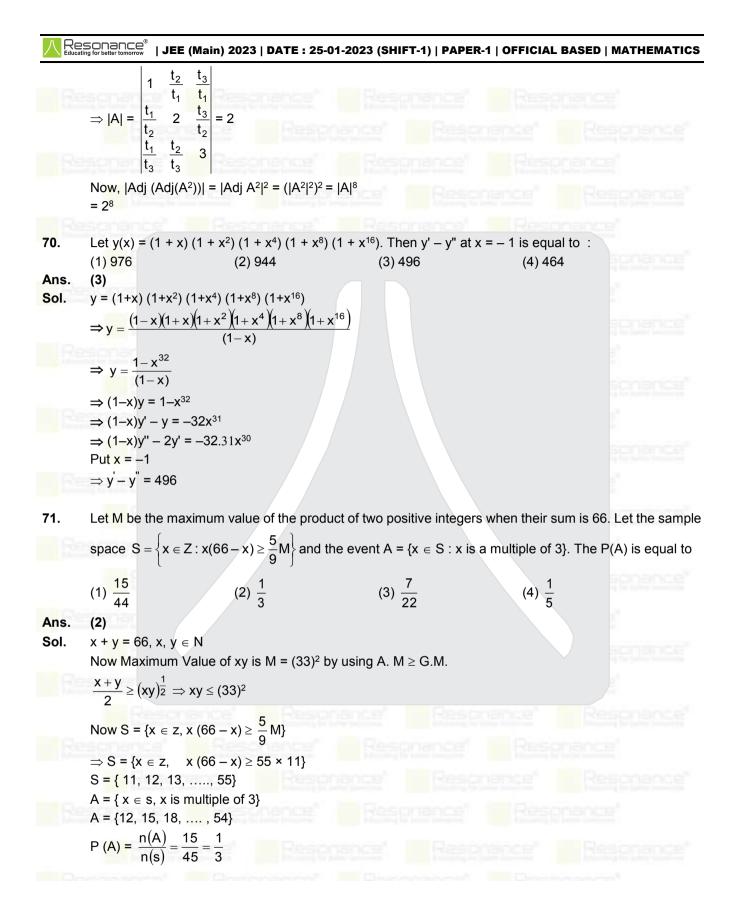
Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🗾 twitter.com/ResonanceEdu


Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 **| FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

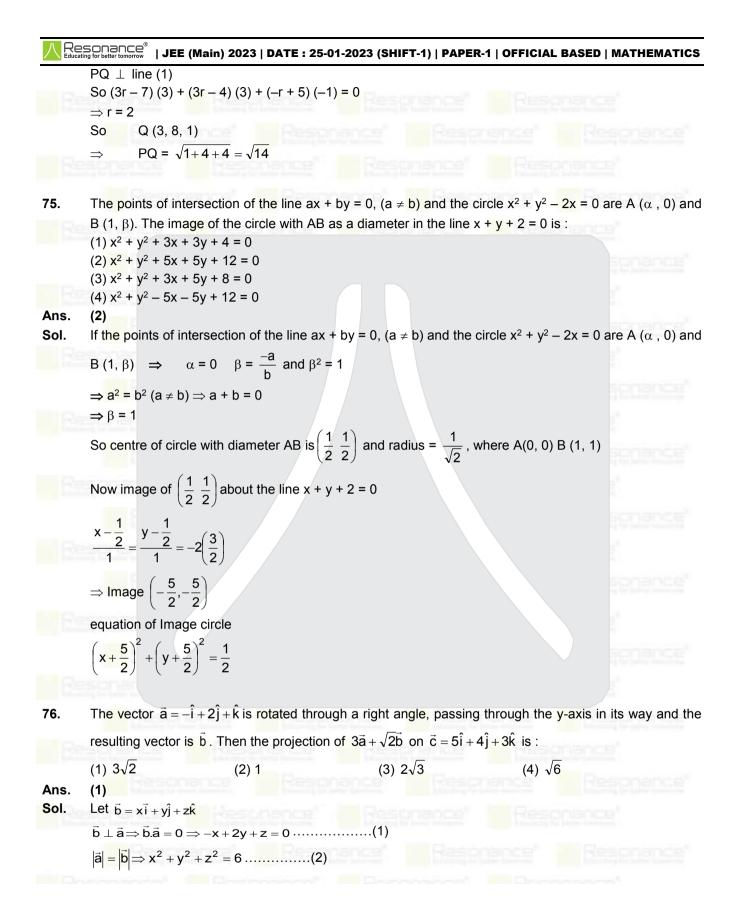
C-3	x ≥ 2				
	$F(x) = \int_{0}^{2} e^{(x-t)} dt = e^{x} (-e^{-t})^{2}$				
	$F(x) = \int_{0}^{2} e^{(x-t)} dt = e^{x} (-e^{-t})_{0}^{2}$ $= -e^{x} (e^{-2} - 1)$				
	$= -e^{x}(e^{-2}-1)$				
	$= (1 - e^{-2})e^{x}$				
	Hence				
	$e^{-x}(e^2-1)$ x < 0				
	$F(x) = \begin{bmatrix} e^{-x}(e^2 - 1) & x < 0 \\ e^{x} + e^{-x}e^2 - 2 & 0 \le x < 2 \\ (1 - e^{-2})e^{x} & x \ge 2 \end{bmatrix}$				
	$F(x)$ is decreasing function for $x < 0$ & increasing function for $x \ge 2$				
	Now for $0 \le x < 2$, F(x) is minimum at x = 1, by using A.M \ge G.M				
	∴ Minimum value of $F(x)$ is $F(1) = 2$ (e –1)				
66.	Let f: (0, 1) \rightarrow IR be a function defined by f(x) = $\frac{1}{1-e^{-x}}$, and g(x) = f(-x) - f(x)). Consider two statements				
	(I) g is an increasing function in (0, 1)				
	(II) g is one-one in (0, 1)				
	Then,				
	(1) Only (I) and (II) are true				
	(2) Both (I) and (II) are true				
	(3) Neither (I) nor (II) is true (4) Only (II) is true.				
Ans.	(2)				
Sol.	f(x) = f(x) + f(x) = 1 + 1				
30 1.	$g(x) = f(-x) - f(x) = \frac{1}{1 - e^{x}} - \frac{1}{1 - e^{-x}}$ $\Rightarrow g(x) = \frac{1 + e^{x}}{1 - e^{x}}$ $g'(x) = \frac{(1 - e^{x})(e^{x}) - (1 + e^{x})(-e^{x})}{(1 - e^{x})^{2}}$				
	$\Rightarrow a(x) = -\frac{1+e^x}{e^x}$				
	$\rightarrow g(x) = 1 - e^x$				
	$(1 - e^{x}) = (1 - e^{x}) (-e^{x}) (-e^{x})$				
	$(x) = (1 - e^{x})^{2}$				
	g'(x) = $\frac{2e^{x}}{(1-e^{x})^{2}} > 0$				
	g (x) is increasing as well as one-one.				
67.	Let $z_1 = 2 + 3i$ and $z_2 = 3 + 4i$. The set $S = \{z \in C : z - z_1 ^2 - z - z_2 ^2 = z_1 - z_2 ^2\}$ represents a				
	(1) straight line with the sum of its intercepts on the coordinate axes equals –18				
	(2) hyperbola with eccentricity 2				
	(3) hyperbola with the length of the transverse axis 7				
	(4) straight line with the sum of its intercepts on the coordinate axes equal to 14				


Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 S 7340010333 F acebook.com/ResonanceEdu vww.youtube.com/resowatch bog.resonance.ac.in

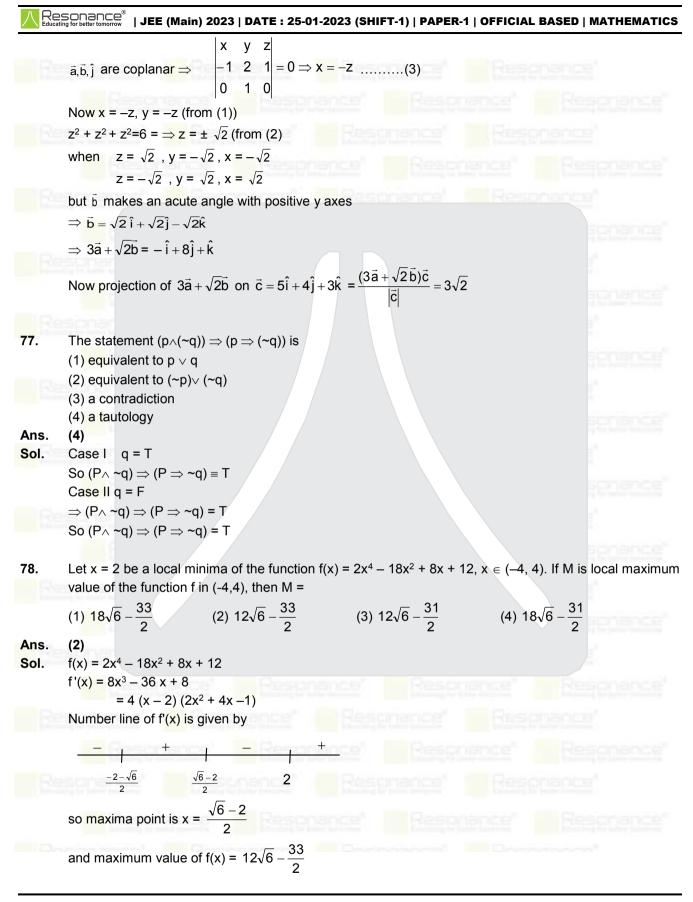
Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu



Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu


72.	Consider the lines L_1 and L_2 given by		
	$L_1: \frac{x-1}{2} = \frac{y-3}{1} = \frac{z-2}{2}$		
	$L_2: \frac{x-2}{1} = \frac{y-2}{2} = \frac{z-3}{3}$		
	A line L ₃ having direction ratios 1, -1 , -2 , intersects L length of the line segment PQ is	$_{1}$ and L_{2} at the poin	t P and Q respectively. The th
	(1) $3\sqrt{2}$ (2) 4 (3) 2	2√6	(4) $4\sqrt{3}$
Ans.	(3)	onance) 🦷 🛙	lesonance
Sol.	Let P on L ₁ be P (2r, +1, r_1 + 3, $2r_1$ + 2) and Q on L ₂ be Q (r_2 + 2, $2r_2$ + 2, $3r_2$ + 3)		
	$\Rightarrow D.R. of PQ = 2r_1 - r_2 - 1, r_1 - 2r_2 + 1, 2r_1 - 3r_2$ which are equivalent to -1, 1, 2	-1	
	i.e. $\frac{2r_1 - r_2 - 1}{-1} = \frac{r_1 - 2r_2 + 1}{1} = \frac{2r_1 - 3r_2 - 1}{2}$		
	$\Rightarrow r_1 = 3 = r_2$		
	\Rightarrow P(7, 6, 8) and Q (5, 8, 12) \Rightarrow length PQ = 2 $$	6	
73.	Let S1 and S2 be respectively the sets of all $a \in R - ax + 2ay - 3az = 1$ (2a + 1) x + (2a + 3) y + (a + 1) z = 2 (3a + 5) x + (a + 5) y + (a + 2) z = 3 has unique solution and infinitely many solution. The (1) S ₁ = ϕ and S ₂ = R - {0}	{0} for which the sys	stem of linear equations
	(2) S ₁ is an infinite set and $n(S_2) = 2$ (3) S ₁ =R – {0} and S ₂ = ϕ		
Ans.	(4) $n(S_1) = 2$ and S_2 is an infinite set (3) $\begin{vmatrix} a & 2a & -3a \end{vmatrix}$		
Sol.	$D = \begin{vmatrix} a & 2a \\ 2a + 1 & 2a + 3 & a + 1 \\ 3a + 5 & a + 5 & a + 2 \end{vmatrix} = a (15a^2 + 31a + 37)$		
	$\Rightarrow D \neq 0$ for all $a \in R - \{0\}$		
<mark>74.</mark>	The distance of the point P (4, 6 – 2) from the line pa line with direction ratios 3, 3, -1 is equal to:	assing through the p	point (-3, 2, 3) and parallel to
	(1) $2\sqrt{3}$ (2) $\sqrt{14}$	(3) 3	(4) √6
Ans.	(2)	unance'	Resonance'
Sol.	Equation of line passing through (-3, 2, 3) with direct $\frac{x+3}{3} = \frac{y-2}{3} = \frac{z-3}{-1}$ (1)	ion ratios 3, 3, –1 is	
	Chest managed (Deers		
	Consider Q $(3r - 3, 3r + 2, -r + 3)$ on the line (1) such D.R. of PQ = $3r - 7, 3r - 4, -r + 5$	i that PQ is \perp to line	9(1)
		entures Lt	

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 f acebook.com/ResonanceEdu vww.youtube.com/resowatch com/resowatch building b

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

人 Resonance" | JEE (Main) 2023 | DATE : 25-01-2023 (SHIFT-1) | PAPER-1 | OFFICIAL BASED | MATHEMATICS

The value of $\lim_{n\to\infty} \frac{1+2-3+4+5-6+\dots(3n-2)+(3n-1)-3n}{\sqrt{2n^4+4n+3}-\sqrt{n^4+5n+4}}$ is : 79. (1) $3(\sqrt{2}+1)$ (2) $\frac{3}{2}(\sqrt{2}+1)$ (3) $\frac{\sqrt{2}+1}{2}$ $(4) \frac{\zeta}{2\sqrt{2}}$ Ans. (2) $\lim_{n \to \infty} \frac{\sum_{r=1}^{n} \left((3r-1) + (3r-2) - 3r \right)}{\sqrt{2n^4 + 4n + 3} - \sqrt{n^4 + 5n + 4}} = \frac{\sum_{r=1}^{n} (3r-3)}{\sqrt{2n^4 + 4n + 3} - \sqrt{n^4 + 5n + 4}}$ Sol. $\lim_{n \to \infty} \frac{3\left(n\left(\frac{n+1}{2}\right) - 3n}{\sqrt{2n^4 + 4n + 3} - \sqrt{n^4 + 5n + 4}} = \lim_{n \to \infty} \frac{\frac{3}{2}\left(1 + \frac{1}{n}\right) - \frac{3}{n}}{\sqrt{2 + \frac{4}{n^3} + \frac{3}{n^4}} - \sqrt{1 + \frac{5}{n^3} + \frac{4}{n^4}}} = \frac{3}{2}\left(\sqrt{2} + 1\right)$ Let \vec{a}, \vec{b} and \vec{c} be three non zero vectors such that $\vec{b}.\vec{c} = 0$ and $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{b - \vec{c}}{2}$. If \vec{d} be a vector 80. such that $\vec{b}.\vec{d} = \vec{a}.\vec{b}$, then $(\vec{a} \times \vec{b}).(\vec{c} \times \vec{d})$ is equal to (1) $\frac{3}{4}$ $(3) - \frac{1}{4}$ (4) $\frac{1}{4}$ (2) $\frac{1}{2}$ (4) Ans. $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{\vec{b} - \vec{c}}{2} \Rightarrow (\vec{a}, \vec{c})\vec{b} - (\vec{a}, \vec{b})\vec{c} = \frac{\vec{b}}{2} - \frac{\vec{c}}{2}$ Sol. $\Rightarrow \vec{a}, \vec{c} = \frac{1}{2}, \ \vec{a}.\vec{b} = \frac{1}{2} \ (\because \vec{b}.\vec{c} = 0)$ Given $\vec{b}.\vec{d} = \vec{a}.\vec{b}$ Now $(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = (\vec{a} \cdot \vec{c}) (\vec{b} \cdot \vec{d}) - (\vec{a} \cdot \vec{d}) (\vec{b} \cdot \vec{c}) = \frac{1}{4}$ The vertices a hyperbola H are (±6, 0) and its eccentricity is $\frac{\sqrt{5}}{2}$. Let N be the normal to H at a point in 81. the first quadrant and parallel to the line $\sqrt{2}x + y = 2\sqrt{2}$. If d is the length of the line segment of N between H and the y-axis then d² is equal to _ (216) Ans. Let equation of hyperbola be $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \Rightarrow a = 6$, $e = \frac{\sqrt{5}}{2} \Rightarrow b = 3$ Sol. Equation of normal 6 cos θ x + 3 cot θ y = 45 with slope = $-\sqrt{2} \Rightarrow \theta = \frac{\pi}{4}$ and equation of normal $\sqrt{2x + y} = 15$

Now point on y axes is (0, 15) and point on hyperbola (a sec θ , b tan θ) = $(6\sqrt{2},3)$ d² = 16

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

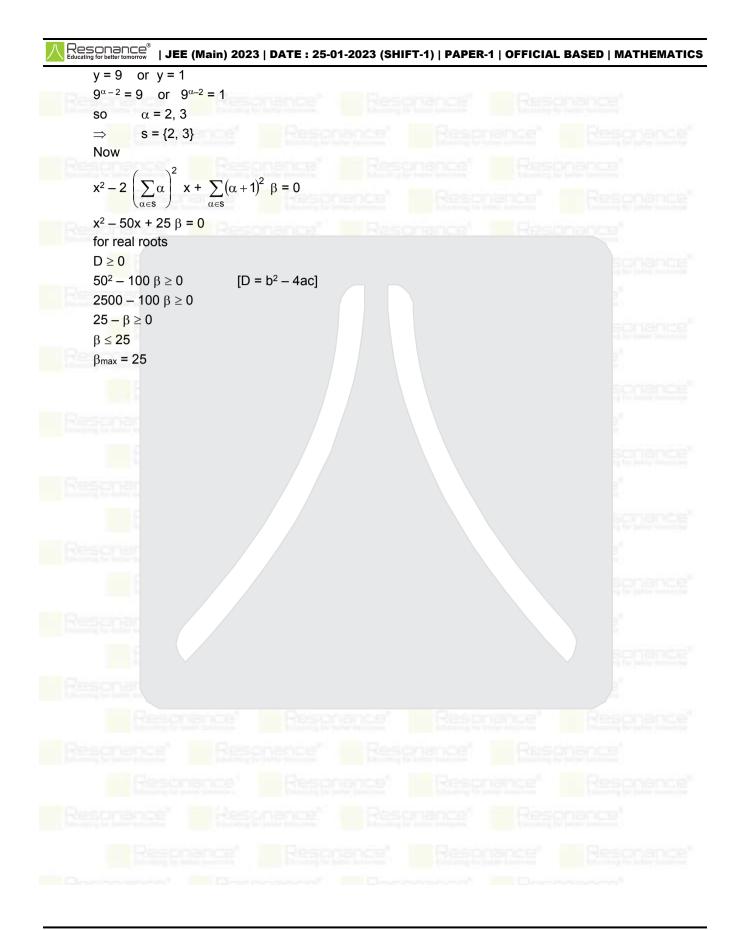
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 f acebook.com/ResonanceEdu vww.youtube.com/resowatch com/resowatch building b

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu


86.	Let x and y be distinct integers where $1 \le x \le 25$ and $1 \le y \le 25$. Then, the number of ways of choosin								
8	and y, such that x + y is divisible by 5, is								
Ans.									
Sol.			the second se	$x \in N$ in to follow					
	lst		IIIrd	IV th	V th				
	1	2	3	4	5				
	6	12	8	9	10				
	11	12	13	14	15				
	16	17	18	19	20				
	21	22	23	24	25				
	x + y is divisible by 5 if $x \in I^{st}$ and $y \in IV^{th} \Rightarrow {}^{5}C_{1} \times {}^{5}C_{1} = 25$								
	$x \in II^{nd}$ and $y \in III^{rd} \Rightarrow {}^{5}C_{1} \times {}^{5}C_{1} = 25$								
	$x \in III^{rd}$ and $y \in II^{rd} \Rightarrow {}^{5}C_{1} \times {}^{5}C_{1} = 25$								
		X∈	IV th and y∈I st ⇒	$5^{5}C_{1} \times {}^{5}C_{1} = 25$					
		X∈	V^{th} and $y \in V^{th}$ =	$\Rightarrow {}^{5}C_{2} \times 2 = 20$					
	Total = 120								
37.	respectively. a 7 1	Let a, b, o	c be the 7 th ,	9 th , 17 th term	e d and having their first is of A_1 , A_2 , A_3 , is an AP whose first term	respectively such th			
37.	respectively. a 7 1 2b 17 1 c 17 1	Let a, b, 6 70 = 0. If a =	c be the 7 th , 29, the sum of f	9 th , 17 th term	-	respectively such th			
	respectively. a 7 1 2b 17 1 c 17 1 difference is	Let a, b, o	c be the 7 th , 29, the sum of f	9 th , 17 th term	is of A_1 , A_2 , A_3 , i	respectively such th			
Ans.	respectively. a 7 1 2b 17 1 c 17 1 difference is (495)	Let a, b, $(70 = 0. \text{ If } a = \frac{d}{12}$, is equal to	c be the 7 th , 29, the sum of f	9 th , 17 th term	is of A_1 , A_2 , A_3 , i	respectively such th			
Ans.	respectively. $\begin{vmatrix} a & 7 & 1 \\ 2b & 17 & 1 \\ c & 17 & 1 \end{vmatrix}$ difference is (495) A + 6 d = a	Let a, b, $(70 = 0. \text{ If } a = \frac{d}{12}, \text{ is equal tr}$	c be the 7 th , 29, the sum of f	9 th , 17 th term	is of A_1 , A_2 , A_3 , i	respectively such th			
Ans.	respectively. $\begin{vmatrix} a & 7 & 1 \\ 2b & 17 & 1 \\ c & 17 & 1 \end{vmatrix}$ difference is (495) A + 6 d = a A + 1 + 8 d = a	Let a, b, $(70 = 0. \text{ If } a = \frac{d}{12}$, is equal to (1)	c be the 7 th , 29, the sum of f	9 th , 17 th term	is of A_1 , A_2 , A_3 , i	respectively such th			
Ans.	respectively. $\begin{vmatrix} a & 7 & 1 \\ 2b & 17 & 1 \\ c & 17 & 1 \end{vmatrix}$ difference is (495) $A + 6 d = a_{-}$ A + 1 + 8 d = A + 2 + 16 d	Let a, b, $(70 = 0. \text{ If } a = \frac{d}{12}$, is equal to (1)	c be the 7 th , 29, the sum of f	9 th , 17 th term	is of A_1 , A_2 , A_3 , i	respectively such th			
Ans.	respectively. $\begin{vmatrix} a & 7 & 1 \\ 2b & 17 & 1 \\ c & 17 & 1 \end{vmatrix}$ + difference is (495) $A + 6 d = a_{-}$ A + 1 + 8 d = A + 2 + 16 d Now	Let a, b, $(70 = 0. \text{ If } a = \frac{d}{12}$, is equal to (1)	c be the 7 th , 29, the sum of f	9 th , 17 th term	is of A_1 , A_2 , A_3 , i	respectively such th			
Ans.	respectively. $\begin{vmatrix} a & 7 & 1 \\ 2b & 17 & 1 \\ c & 17 & 1 \end{vmatrix}$ difference is (495) $A + 6 d = a_{-}$ A + 1 + 8 d = A + 2 + 16 d Now $\begin{vmatrix} a & 7 & 1 \end{vmatrix}$	Let a, b, a^{-1} 70 = 0. If a = $\frac{d}{12}$, is equal to $\frac{1}{12}$, $\frac{1}{12}$, $\frac{1}{12}$ $\frac{1}{12}$, $\frac{1}{12}$, $\frac{1}{12}$ $\frac{1}{12}$, $\frac{1}{12}$, \frac	c be the 7 th , 29, the sum of f	9 th , 17 th term	is of A_1 , A_2 , A_3 , i	respectively such th			
Ans.	respectively. $\begin{vmatrix} a & 7 & 1 \\ 2b & 17 & 1 \\ c & 17 & 1 \end{vmatrix}$ difference is (495) A + 6 d = a A + 1 + 8 d = A + 2 + 16 d Now $\begin{vmatrix} a & 7 & 1 \\ 2b & 17 & 1 \end{vmatrix}$ +	Let a, b, $(70 = 0. \text{ If } a = \frac{d}{12}$, is equal to (1)	c be the 7 th , 29, the sum of f	9 th , 17 th term	is of A_1 , A_2 , A_3 , i	respectively such th			
Ans.	respectively. $\begin{vmatrix} a & 7 & 1 \\ 2b & 17 & 1 \\ c & 17 & 1 \end{vmatrix}$ difference is (495) A + 6 d = a A + 1 + 8 d = A + 2 + 16 d Now $\begin{vmatrix} a & 7 & 1 \\ 2b & 17 & 1 \end{vmatrix}$ $c & 17 & 1 \end{vmatrix}$	Let a, b, a^{-1} 70 = 0. If a = $\frac{d}{12}$, is equal to $\frac{1}{12}$, $\frac{1}{12}$, $\frac{1}{12}$ $\frac{1}{12}$, $\frac{1}{12}$, $\frac{1}{12}$ $\frac{1}{12}$, $\frac{1}{12}$, \frac	c be the 7 th , 29, the sum of f	9 th , 17 th term	is of A_1 , A_2 , A_3 , i	respectively such th			
Ans.	respectively. $\begin{vmatrix} a & 7 & 1 \\ 2b & 17 & 1 \\ c & 17 & 1 \end{vmatrix}$ difference is (495) A + 6 d = a A + 1 + 8 d = A + 2 + 16 d Now $\begin{vmatrix} a & 7 & 1 \\ 2b & 17 & 1 \end{vmatrix}$ $\Rightarrow c - 2b = 7$	Let a, b, a^{-1} $70 = 0$. If $a = \frac{d}{12}$, is equal to $\frac{d}{12}$, is equal to $\frac{d}{12}$, a^{-1} (1) a^{-1} (2) a^{-1} (2) a^{-1} (3) 70 = 0	c be the 7 th , 29, the sum of f 0	9 th , 17 th term	an AP whose first term	respectively such th			
Ans.	respectively. $\begin{vmatrix} a & 7 & 1 \\ 2b & 17 & 1 \\ c & 17 & 1 \end{vmatrix}$ difference is (495) A + 6 d = a A + 1 + 8 d = A + 2 + 16 d Now $\begin{vmatrix} a & 7 & 1 \\ 2b & 17 & 1 \\ c & 17 & 1 \end{vmatrix}$ $\Rightarrow c - 2b = 7$ Using equation	Let a, b, a^{2} 70 = 0. If a = $\frac{d}{12}$, is equal to $\frac{1}{12}$, is equal to $\frac{1}{12}$, $\frac{1}{12}$ $\frac{1}{12}$, $\frac{1}{12}$, $\frac{1}{12}$ $\frac{1}{12}$, $\frac{1}{12}$, \frac	c be the 7 th , 29, the sum of f o	9 th , 17 th term	an AP whose first term	respectively such th			
Ans. Sol.	respectively. $\begin{vmatrix} a & 7 & 1 \\ 2b & 17 & 1 \\ c & 17 & 1 \end{vmatrix} + difference is$ (495) $A + 6 d = a$ $A + 1 + 8 d = $ $A + 2 + 16 d$ Now $\begin{vmatrix} a & 7 & 1 \\ 2b & 17 & 1 \\ c & 17 & 1 \end{vmatrix} + c & 2b = 7$ Using equation Now $a = -7$	Let a, b, a^{-1} $70 = 0$. If $a = \frac{1}{12}$, is equal to $\frac{1}{12}$, is equal to $\frac{1}{12}$, $\frac{1}{12}$, \frac	c be the 7 th , 29, the sum of f 0 re get A = -7 = 6	9 th , 17 th term	an AP whose first term	respectively such th n is c–a–b and comm			
Ans.	respectively. $\begin{vmatrix} a & 7 & 1 \\ 2b & 17 & 1 \\ c & 17 & 1 \end{vmatrix} + difference is$ (495) $A + 6 d = a$ $A + 1 + 8 d = $ $A + 2 + 16 d$ Now $\begin{vmatrix} a & 7 & 1 \\ 2b & 17 & 1 \\ c & 17 & 1 \end{vmatrix} + c & 2b = 7$ Using equation Now $a = -7$	Let a, b, a^{-1} $70 = 0$. If $a = \frac{1}{12}$, is equal to $\frac{1}{12}$, is equal to $\frac{1}{12}$, $\frac{1}{12}$, \frac	c be the 7 th , 29, the sum of f 0 re get A = -7 = 6	9 th , 17 th term	an AP whose first term	respectively such th n is c–a–b and comm			
Ans.	respectively. $\begin{vmatrix} a & 7 & 1 \\ 2b & 17 & 1 \\ c & 17 & 1 \end{vmatrix} + difference is$ (495) $A + 6 d = a$ $A + 1 + 8 d = $ $A + 2 + 16 d$ Now $\begin{vmatrix} a & 7 & 1 \\ 2b & 17 & 1 \\ c & 17 & 1 \end{vmatrix} + c & 2b = 7$ Using equation Now $a = -7$	Let a, b, a^{-1} $70 = 0$. If $a = \frac{1}{12}$, is equal to $\frac{1}{12}$, is equal to $\frac{1}{12}$, $\frac{1}{12}$, \frac	c be the 7 th , 29, the sum of f 0 re get A = -7 = 6	9 th , 17 th term	an AP whose first term	respectively such th n is c–a–b and comm			

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 **| FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 S 7340010333 F acebook.com/ResonanceEdu vww.youtube.com/resowatch bog.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No. :** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 S 7340010333 F acebook.com/ResonanceEdu vww.youtube.com/resowatch bog.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 **| FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 555
Tol

