

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 () 7340010333 f facebook.com/ResonanceEdu vitter.com/ResonanceEdu blog.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Resonance[®] | JEE (Main) 2023 | DATE : 24-01-2023 (SHIFT-2) | PAPER-1 | PHYSICS

12. Re Educat	Given below are two statement : one is laber Assertion (A) : Steel is used in the constru- Reason (R) : Steel is more elastic and its e In the light of above statements, choose the (1) Both A and R are correct but R is the co (2) Both A and R are correct and R is the co (3) A is not correct but R is correct (4) A is expected by t R is correct	elled as Assertion A and the ction of buildings and bridg lastic limit is high. e most appropriate answer f rrect explanation of A prrect explanation of A	e other is labelled as Reason R es. from the options given below
Ans.	(4) A is correct but R is not correct (2)		
13.	The frequency (v) of an oscillating liquid drop may depend upon radius (r) of the drop, density (ρ) of liquid and the surface tension (s) of the liquid as v = r ^a r ^b s ^c . The values of of a, b and respectively are :		
	$(1) \left(-\frac{3}{2}, \frac{1}{2}, \frac{1}{2}\right) \qquad (2) \left(-\frac{3}{2}, -\frac{1}{2}, \frac{1}{2}\right)$	$(3)\left(\frac{3}{2},\frac{1}{2},-\frac{1}{2}\right)$	$(4)\left(\frac{3}{2},-\frac{1}{2},\frac{1}{2}\right)$
Ans. Sol.	(2) [r] = [c] $\rho = \frac{m}{v} = ML^{-3}$		
	$S = \frac{F}{\ell} = \frac{MLT^{-2}}{L} = MT^{-2}$		
	$r = \frac{1}{T} = T^{-1}$		
	T ⁻¹ = L ^a .[ML ⁻³] ^b .[MT ⁻²] ^c		
	$T^{-1} = L^{a-3b}.M^{b+c}T^{-2c}$		
	by comparing		
	a - 3b = 0 $b + c = 0$ $+2c = +1$		
	$a - 3 \times \frac{-1}{2} = 0$ $b = -\frac{1}{2}$ $c = \frac{1}{2}$		
	$a = -\frac{3}{2}$		
14. Re	The electric field and magnetic field components of an electromagnetic wave going through vacuum is described by : $E_x = E_0 \sin(kz - \omega t)$		
	B <mark>y</mark> <mark>= B</mark> ₀sin(kz – ωt)		
	Then the correct relation between E_0 and B_1	o is given by	
Ans	(1) $E_0B_0 = \omega K$ (2) $E_0 = KB_0$ (3)	(3) $KE_0 = \omega B_0$	$(4) \ \omega E_0 = K B_0$
0.0	E <mark>o @Resonance' Resona</mark>		
Sol.	$\frac{\mathbf{U}}{\mathbf{B}_0} = \frac{1}{\mathbf{k}}$		
	\Rightarrow kE ₀ = ω B ₀		
15.	A cell of emf 90 V is connected across seri voltmeter of resistance 400 Ω is used to reading of the voltmeter will be	es combination of two resis measure the potential diffe	stors each of 100 Ω resistance. A prence across each resistor. The
	(1) 45V (2) 40V	(3) 80V	(4) 90 V
	Resonance	Eduventures L	.td.
Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 FAX No. : +91-022-39167222 To Know more : sms RESO at 56677 Website : www.resonance.ac.in E-mail : contact@resonance.ac.in CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 T340010333 f facebook.com/ResonanceEdu twitter.com/ResonanceEdu			

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No. :** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 🔊 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Resonance[®] | JEE (Main) 2023 | DATE : 24-01-2023 (SHIFT-2) | PAPER-1 | PHYSICS

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 () 7340010333 f facebook.com/ResonanceEdu vitter.com/ResonanceEdu blog.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Resonance" | JEE (Main) 2023 | DATE : 24-01-2023 (SHIFT-2) | PAPER-1 | PHYSICS

Resonance Eduventures Ltd.

 $\frac{m_1}{m_2} = \left(\frac{1}{2}\right)^2 = \frac{1}{4}$

 $\frac{m_1}{m_1+3} = \frac{1}{4}$

 $m_1 = 1 \text{ kg}$

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Resonance | JEE (Main) 2023 | DATE : 24-01-2023 (SHIFT-2) | PAPER-1 | PHYSICS

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🗾 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🗾 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

