

Resomance

(Main)

 PAPER-1 (B.E./B. TECH.)

COMPUTER BASED TEST (CBT) Memory Based Questions \& Solutions

Date: 27 July, 2021 (SHIFT-1) | TIME : (9.00 a.m. to 12.00 p.m) Duration: $\mathbf{3}$ Hours | Max. Marks: 300

SUBJECT: PHYSICS

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

PART : PHYSICS

1. In the given arrangement, block A of mass moving with speed $9 \mathrm{~m} / \mathrm{s}$. strikes with block B of mass 2 m elastically. Then block B strikes with block C of mass $2 m$ perfect in-elastically. Find the final speed of block C?

(1) $3 \mathrm{~m} / \mathrm{s}$
(2) $4 \mathrm{~m} / \mathrm{s}$
(3) $5 \mathrm{~m} / \mathrm{s}$
(4) $6 \mathrm{~m} / \mathrm{s}$

Ans. (1)
Sol. $\quad 9 m=m v_{A}+2 m v_{B}$

$$
\begin{equation*}
9=v_{A}+2 v_{B} \tag{1}
\end{equation*}
$$

$9=V_{B}-V_{A}$
Thus $\mathrm{v}_{\mathrm{B}}=6 \mathrm{~m} / \mathrm{s}$
Collision between B \& C
$2 \mathrm{mv} \mathrm{v}_{\mathrm{B}}=4 \mathrm{mv} \mathrm{C}$
$v_{c}=3 \mathrm{~m} / \mathrm{s}$
2. A particle is thrown upward at $t=0$. It attains maximum height of h. It is found at height $h / 3$ at $t=t_{1}$ \& $t=t_{2}$. Find t_{1} / t_{2} :
(1) $\frac{\sqrt{3}-1}{\sqrt{3}+1}$
(2) $\frac{1}{3}$
(3) $\frac{\sqrt{6}-\sqrt{5}}{\sqrt{6}+\sqrt{5}}$
(4) $\frac{1}{2}$

Ans. (3)
Sol.

$V=\sqrt{2 g h}$
$\frac{h}{3}=\sqrt{2 g h t}-\frac{1}{2} g t^{2}$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

$$
\begin{aligned}
& \mathrm{gt}^{2}-2 \sqrt{2 g h t}+\frac{2 h}{3}=0 \\
& \begin{aligned}
& \mathrm{t}=\frac{2 \sqrt{2 g h} \pm \sqrt{8 g h-4 g \times \frac{2 h}{3}}}{2 g}=\frac{2 \sqrt{2 g h} \pm \sqrt{\frac{16 g h}{3}}}{2 g} \\
&=\frac{2 \sqrt{2 g h} \pm 4 \sqrt{\frac{g h}{3}}}{2 g} \\
& \frac{t_{1}}{\mathrm{t}_{2}}=\frac{2 \sqrt{2 g h}-4 \sqrt{\frac{g h}{3}}}{2 \sqrt{2 g h}+4 \sqrt{\frac{g h}{3}}} \\
&=\frac{2 \sqrt{2}-\frac{4}{\sqrt{3}}}{2 \sqrt{2}+\frac{4}{\sqrt{3}}}=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}
\end{aligned}
\end{aligned}
$$

3. In YDSE, if the light-used is shifted from orange to blue then which of the following is correct.
(1) Fringe width first increases then decreases
(2) Fringe width increase
(3) Fringe width decreases
(4) Fringe width first decreases than increases

Ans. (3)
Sol. $\quad \beta=\frac{\lambda D}{d}$
$\lambda_{\text {blue }}<\lambda_{\text {orange }}$
$\beta_{\text {blue }}<\beta_{\text {orange }}$
4. In the circuit shown in the figure, S_{1} remains closed for a long time and S_{2} remains open. Now S_{2} is closed and S_{1} is opened. Find out the di/dt just after that moment.

(1) $-\frac{4 \varepsilon}{L}$
(2) $-\frac{6 \varepsilon}{L}$
(3) $-\frac{2 \varepsilon}{L}$
(4) $-\frac{\varepsilon}{L}$

Ans. (2)

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 18002585555 Q 7340010333 facebook.com/ResonanceEdu y twitter.com/ResonanceEdu yute www.youtube.com/resowatch -3 blog.resonance.ac.in

Sol. Before S_{2} is closed and S_{1} is opened current in the left part of the circuit $=\frac{\varepsilon}{\mathrm{R}}$. Now when S_{2} closed S_{1} opened, current through the inductor cannot change suddenly, current $\frac{\varepsilon}{R}$ will continue to move in the inductor.

Applying KVL in loop 1.
$\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}+\frac{\varepsilon}{\mathrm{R}}(2 \mathrm{R})+4 \varepsilon=0$
$\frac{d i}{d t}=-\frac{6 \varepsilon}{L}$
5. Two identical tennis balls of mass m and charge q are hinged by a common support with the help of a string of length ' ℓ '. If the system is in equilibrium, then find the distance between the balls? Ignore gravitational interactions between balls. (θ is very small)
(1) $\left(\frac{\mathrm{kq}^{2} \ell}{\mathrm{mg}}\right)^{1 / 3}$
(2) $\left(\frac{3 \mathrm{kq}^{2} \ell}{\mathrm{mg}}\right)^{1 / 3}$
(3) $\left(\frac{2 \mathrm{kq}^{2} \ell}{\mathrm{mg}}\right)^{1 / 3}$
(4) $\left(\frac{3 k q^{2} \ell}{2 m g}\right)^{1 / 3}$

Ans. (3)
Sol.

Force due to charge $=\frac{\mathrm{kq}^{2}}{\mathrm{~d}^{2}}$

$$
\begin{aligned}
& \tan \theta=\frac{\frac{{k q^{2}}_{d^{2}}^{m g}}{m g} \approx \sin \theta}{} \\
& \frac{\mathrm{kq}^{2}}{\mathrm{mg} \mathrm{~d}^{2}}=\frac{\mathrm{d}}{2 \ell} \\
& \mathrm{~d}^{3}=\frac{2 \mathrm{kq}^{2} \ell}{\mathrm{mg}} \quad \Rightarrow \quad d=\left(\frac{2 k q^{2} \ell}{\mathrm{mg}}\right)^{1 / 3}
\end{aligned}
$$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
6. For the given semicircle with centre O. choose the correct relation? If $A, B, C \& D$ are points on the semicircle such that $|\overrightarrow{A B}|=|\overrightarrow{B C}|=|\overrightarrow{C D}|$.

(1) $2|\overrightarrow{\mathrm{BO}}|=2|\overrightarrow{\mathrm{AO}}|=|\overrightarrow{\mathrm{AD}}|$
(2) $|\overrightarrow{\mathrm{BO}}|=2|\overrightarrow{\mathrm{AO}}|=|\overrightarrow{\mathrm{AD}}|$
(3) $2|\overrightarrow{\mathrm{BO}}|=|\overrightarrow{\mathrm{AO}}|=|\overrightarrow{\mathrm{AD}}|$
(4) $|\overrightarrow{\mathrm{BO}}|=|\overrightarrow{\mathrm{AO}}|=|\overrightarrow{\mathrm{AD}}|$

Ans. (1)
Sol. For the given semicircle

$$
\begin{aligned}
& |\overrightarrow{\mathrm{AO}}|=|\overrightarrow{\mathrm{BO}}|=|\overrightarrow{\mathrm{CO}}|=|\overrightarrow{\mathrm{DO}}|=\text { radius of circle } \\
& |\overrightarrow{\mathrm{AD}}|=\text { Diameter of circle } \\
& |\overrightarrow{\mathrm{AD}}|=2|\overrightarrow{\mathrm{AO}}|=2|\overrightarrow{\mathrm{BO}}|
\end{aligned}
$$

7. A monoatomic gas is kept in a 1 litre container at pressure 1 atm . If average energy per molecule is $2 \times 10^{-9} \mathrm{~J}$, find no. of molecules in the container :
(1) 0.75×10^{-6}
(2) 0.75×10^{9}
(3) 0.5×10^{11}
(4) 0.75×10^{11}

Ans. (4)
Sol. Total energy $=\frac{f}{2} n R T=\frac{3}{2} P V$
According to question $\frac{3}{2} \mathrm{PV}=\mathrm{N} \times 2 \times 10^{-9} \mathrm{~J}$
$\frac{3}{2} \times 10^{5} \times 1000 \times 10^{-6}=\mathrm{N} \times 2 \times 10^{-9}$
$\mathrm{N}=\frac{3}{4} \times \frac{10^{5} \times 10^{3} \times 10^{-6}}{10^{-9}}=\frac{3}{4} \times 10^{11}=0.75 \times 10^{11}$
8. The relative permittivity of distilled water is 81. The velocity of light in it will be $\left(\mu_{r}=1\right)$
(1) 3.3×10^{7}
(2) 5.3×10^{7}
(3) 4.3×10^{7}
(4) None

Ans. (1)
Sol. $v=\frac{c}{\sqrt{\mu_{r} \varepsilon_{r}}}$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

9. Match the following column if all the rods have same density and same radius.
(i)

(ii)

(iii)

(a) $\frac{\mathrm{M} \ell^{2}}{12}$
(b) $\frac{\mathrm{M} \ell^{2}}{3}$
(c) $\frac{2 \mathrm{M} \ell^{2}}{3}$
(d) $\frac{8 \mathrm{M} \ell^{2}}{3}$
(1) (i) b (ii) d (iii) a (iv) c
(2) (i) c (ii) d (iii) a (iv) d
(3) (i) a
(ii) c (iii) b (iv) d
(3) (i) d (ii) a (iii) c (iv) b

Ans. (1)
Sol.
(1) $\frac{\mathrm{M} \ell^{2}}{3}$
(a)
(2)

$$
\frac{2 \mathrm{M}(2 \ell)^{2}}{3} \Rightarrow \quad \frac{8 \mathrm{M} \ell^{2}}{3}
$$

(b)
(3) $\frac{\mathrm{M} \ell^{2}}{12}$
(c)
(4) $\quad \frac{2 \mathrm{M} 4 \ell^{2}}{12} \Rightarrow \frac{2 \mathrm{M} \ell^{2}}{3}$
(d)
10. A particle executing SHM having maximum kinetic energy ' E ' and amplitude ' A '. Find displacement from mean position when its kinetic energy is $\frac{3 E}{4}$:
(1) $\frac{A}{2}$
(2) $\frac{A}{\sqrt{2}}$
(3) $\frac{\sqrt{3}}{2} \mathrm{~A}$
(4) A

Ans. (1)

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 18002585555 Q 7340010333 facebook.com/ResonanceEdu y twitter.com/ResonanceEdu vine www.youtube.com/resowatch Θ blog.resonance.ac.in

Sol. $\mathrm{V}=\mathrm{A} \omega$,
$K E_{\max }=\frac{1}{2} m \omega^{2} A^{2}$
$V=\omega \sqrt{A^{2}-x^{2}} \quad K E x=\frac{1}{2} m \omega^{2}\left(A^{2}-x^{2}\right)$
$\frac{3}{4} K E_{\text {max }}=K E_{x}$
$\frac{3}{4} \frac{1}{2} m \omega^{2} A^{2}=\frac{1}{2} m \omega^{2}\left(A^{2}-x^{2}\right)$
$\frac{3}{4} A^{2}=A^{2}-x^{2}$
$x^{2}=\frac{A^{2}}{4}$
$x= \pm \frac{A}{2}$
11. For given $P V$ diagram $A B$ is isothermal at T_{1} temperature, $C D$ is also isothermal at T_{2} temperature. given that $T_{1}>T_{2}$. Then which one of the following is correct.

(1) $W_{A B}>W_{B C}$
(2) $W_{B C}=W_{A D}$
(3) $W_{A B}<W_{B C}$
(4) $W_{A B}=W_{B C}$

Ans. (1)
12. A container of area ' A ' filled with liquid, a small hole of area ' a ' is made at the bottom of curved surface as shown. Find the coefficient of friction between container and ground in order to prevent it from sliding.

(1) $\frac{a}{A}$
(2) $\frac{2 a}{A}$
(3) $\frac{a}{2 A}$
(4) $\frac{3 a}{2 A}$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

Ans. (2)
Sol. Force exerted by leaving water on the container,

$$
\begin{aligned}
F & =\left(\frac{d m}{d t}\right) v=(\rho a v) v \\
& =\rho a v^{2}
\end{aligned}
$$

By conservation of energy $v=\sqrt{2 g h}$

$$
\begin{gathered}
\mu \mathrm{mg}=\rho \mathrm{a}(2 \mathrm{gh}) \\
\mu \rho(\mathrm{Ah}) \mathrm{g}=\rho \mathrm{a} 2 \mathrm{gh} \\
\mu=\frac{2 \mathrm{a}}{\mathrm{~A}}
\end{gathered}
$$

13. Two solid spheres of radius $4 R$ and R and having same mass density ρ kept at a distance of 8 R. Find Moment of Inertia of the system about the axis passes through centre of line joining their centres.
(1) $\frac{9660}{5} \pi \rho R^{5}$
(2) $\frac{5800}{3} \pi \rho R^{5}$
(3) $\frac{9664}{4} \pi \rho R^{5}$
(4) $\frac{9664}{3} \pi \rho R^{5}$

Ans. (2)

Sol.

Let mass density $=\rho$

$$
\begin{aligned}
& m_{2}=\frac{4}{3} \pi R^{3} \rho \\
& m_{1}=\frac{4}{3} \pi(4 R)^{3} \rho \\
& m_{1}=64 m_{2} \\
& l_{\text {final }}=\left[I_{2}+m_{2}(4 R)^{2}\right]+\left[I_{1}+m_{1}(4 R)^{2}\right] \\
& =\frac{2}{5} m_{2} R^{2}+16 m_{2} R^{2}+\frac{2}{5} m_{1}(4 R)^{2}+m_{1}(4 R)^{2} \\
& =\frac{2}{5} m_{2} R^{2}+16 m_{2} R^{2}+\frac{2}{5} 64 m_{2}(4 R)^{2}+64 m_{2}(4 R)^{2}=\frac{5800}{3} \pi \rho R^{5}
\end{aligned}
$$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

Resonance
Educating for better tomorrow
14. For the given circuit, switch is closed at $t=0$ find time after which voltage across capacitor becomes 50 V

(1) $69.3 \mu \mathrm{sec}$
(2) $60 \mu \mathrm{sec}$
(3) $50 \mu \mathrm{sec}$
(4) $40 \mu \mathrm{sec}$

Ans. (1)
Sol. $V=V_{0} e^{-\frac{t}{R C}}$

$$
\begin{aligned}
& 50=100 e^{-\frac{t}{R C}} \\
& t=R C \ln 2 \\
& =100 \times 10^{-6} \ln 2=10^{-4} \times 0.693 \mathrm{sec}=69.3 \mu \mathrm{sec}
\end{aligned}
$$

15. Figure shows two capacitors in steady state. Now the cell is removed and a dielectric of dielectric constant k is inserted between the plates of the capacitor of capacitance C. Find new potential difference across any of the capacitors :

(1) $\frac{V}{2+k}$
(2) $\frac{2 V}{2+k}$
(3) $\frac{3 V}{2+k}$
(4) $\frac{V}{1+2 k}$

Ans. (3)
Sol. Just after removing cell
After inserting dielectric

Conservation of charge

$$
\begin{array}{ll}
& 2 C V+C V=2 C . V_{a b}+C k V_{a b} \\
\therefore \quad & V_{a b}=\frac{3 C V}{2 C+C K} \\
& V_{a b}=\frac{3 V}{2+K}
\end{array}
$$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 18002585555 Q 7340010333 facebook.com/ResonanceEdu y twitter.com/ResonanceEdu vine www.youtube.com/resowatch Θ blog.resonance.ac.in
16. A particle of mass $9.1 \times 10^{-31} \mathrm{~kg}$ is moving with velocity $6 \mathrm{~m} / \mathrm{s}$. Momentum of photon is $2 \times 10^{-27} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$. If de-Broglie wavelength of the particle is K times of the wavelength of photon. Find value of K :
(1) 366
(2) 566
(3) 322
(4) 166

Ans. (1)
Sol. De-Broglie wavelength of particle

$$
\lambda=\frac{\mathrm{h}}{\mathrm{p}}=\frac{\mathrm{h}}{9.1 \times 10^{-31} \times 6}
$$

Wavelength of photon

$$
\lambda_{\text {photon }}=\frac{\mathrm{h}}{\mathrm{p}}=\frac{\mathrm{h}}{2 \times 10^{-27}}
$$

From question

$$
\begin{aligned}
& \mathrm{K} \lambda_{\text {photon }}=\lambda_{\text {particle }} \\
\Rightarrow \quad & \mathrm{K}=\frac{2 \times 10^{-27}}{9.1 \times 10^{-31} \times 6}=366
\end{aligned}
$$

17. Two prism of same angle of refraction are arranged as shown. If the light incident, on the system goes undeviated. Then find wave length of incident light

$$
\left(\begin{array}{rl}
\text { given } \eta_{1} & =1.2+\frac{10.8 \times 10^{-14}}{\lambda^{2}} \\
\eta_{2} & =1.45+\frac{1.8 \times 10^{-14}}{\lambda^{2}}
\end{array}\right)
$$

(1) 600 nm
(2) 675 nm
(3) 575 nm
(4) 475 nm

Ans. (1)

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029


```
\(\delta_{\text {net }}=A\left(n_{1}-1\right)-A\left(n_{2}-1\right)=0\)
\(\Rightarrow \quad \mathrm{n}_{1}=\mathrm{n}_{2}\)
\(\Rightarrow \quad 1.2+\frac{10.8 \times 10^{-14}}{\lambda^{2}}=1.45+\frac{1.8 \times 10^{-14}}{\lambda^{2}}\)
\(\lambda^{2}=\frac{(10.8-1.8) \times 10^{-14}}{(1.45-1.2)}\)
\(\lambda=600 \mathrm{~nm}\).
```

18. For the given circuit find current ' I ' and the phase difference between V and I :

(1) $8.8 \mathrm{~A}, \tan ^{-1} 1.83$
(2) $6.8 \mathrm{~A}, \tan ^{-1} 2.83$
(3) $5.8 \mathrm{~A}, \tan ^{-1} 0.83$
(4) $7.8 \mathrm{~A}, \tan ^{-1} 2.53$

Ans. (1)
Sol. $\omega=2 \pi f=100 \pi$
Thus $\mathrm{XL}=\omega \mathrm{L}=100 \times \frac{22}{7} \times 0.07=22 \Omega$

Thus,

$$
\begin{aligned}
& \mathrm{Z}=\sqrt{\mathrm{R}^{2}+\mathrm{x}_{\mathrm{L}}^{2}} \\
& \mathrm{z}=\sqrt{(12)^{2}+(22)^{2}} \\
& \mathrm{z} \approx 25.00 \\
& \mathrm{I}=\frac{220}{25}=8.8
\end{aligned}
$$

$\tan \phi=22 / 12=1.83$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

Ressanancea
19. A particle of mass ' m ' is projected from the surface of planet ' A ' of mass M and radius R. What should be the velocity of projection such that particle reaches to another planet ' B ', which is at a distance of $8 R$ from planet ' A '. Planet ' B ' has mass 9 M and radius $2 R$.

Ans. (2)
Sol. Let at a distance ' X ' from planet ' A ', the net gravitational field becomes zero

$$
\begin{aligned}
\frac{G M}{X^{2}} & =\frac{G \times 9 M}{(8 R-X)^{2}} \\
(3 X)^{2} & =(8 R-X)^{2} \\
X & =2 R
\end{aligned}
$$

Now, Particle should be projected such that it covers a minimum distance of '2R'.
Thus

$$
\begin{aligned}
\frac{1}{2} m v^{2}-\frac{G M m}{R}-\frac{G(9 M) m}{7 R} & =-\frac{G M m}{2 R}-\frac{G(9 M) m}{6 R} \\
\frac{1}{2} v^{2} & =\frac{2}{7} \frac{G M}{R} \Rightarrow v=\sqrt{\frac{4}{7} \frac{G M}{R}}
\end{aligned}
$$

20. Circular scale divisions of a screw gauge is 50 . Five full rotations advances circular scale by 5 mm .

Statement-1 : Least count of screw gauge is 0.001 cm
Statement-2 : Least count $=\frac{\text { pitch }}{\text { Total no. of divisions }}$
(1) Statement-1 \& 2 both are true
(2) Statement-1 \& 2 both are true statement-2 is correct explant of statement-1
(3) Statement-1 is false Statement-2 is true
(4) Statement-2 is true Statement- 1 is false.

Ans. (3)
Sol. $L C=1 \mathrm{~mm} / 50=0.02 \mathrm{~mm}$
Statement -1 is wrong. Statement-2 is right

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 180025855557340010333 facebook.com/ResonanceEdu Y twitter.com/ResonanceEdu witu ww.youtube.com/resowatch Q blog.resonance.ac.in
21. Figure shows a conductor of tapered cone shape. As one goes from left to right on conductor, choose correct option

(1) current decreases
(2) drift velocity of electron increases
(3) electric field inside conductor decreases
(4) All of the above

Ans. (2)
Sol. $\quad i=n A e v_{d}$
$\therefore \quad v_{d}$ increases as area A decrease
22. A body cools down from $61^{\circ} \mathrm{C}$ to $49^{\circ} \mathrm{C}$ in 4 min . and the surrounding temperature is $30^{\circ} \mathrm{C}$. Find the time taken by this body to cool down from $49^{\circ} \mathrm{C}$ to $37^{\circ} \mathrm{C}$.
(1) 1.62 min
(2) 1.25 min
(3) 7.69 min
(4) 0.92 min .

Ans. (3)
Sol. $\quad \frac{61-49}{4}=K\left[\frac{61+49}{2}-30\right]$
$\frac{49-37}{\mathrm{t}}=\mathrm{k}\left[\frac{49+37}{2}-30\right]$
Dividing (1) and (2)

$$
\begin{aligned}
& \frac{t}{4}=\frac{25}{13} \\
& t=\frac{4 \times 25}{13}=7.69
\end{aligned}
$$

23. A bar-magnet of magnetic moment $9.85 \mathrm{~A}-\mathrm{m}^{2}$ and moment of inertia $\mathrm{I}=10^{-6} \mathrm{~kg}-\mathrm{m}^{2}$ makes 10 oscillations in 5 sec . in uniform magnetic field. Find intensity of magnetic field.
(Take $\pi^{2}=9.85$)
(1) $20 \mu \mathrm{~T}$
(2) $25 \mu \mathrm{~T}$
(3) $16 \mu \mathrm{~T}$
(4) $10 \mu \mathrm{~T}$

Ans. (3)

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail :contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 180025855557340010333 ffacebook.com/Resonanceedu \square twitter.com/Resonanceedu 目www.youtube.com/resowatch Eblog.resonance.ac.in

Sol. $\quad T=2 \pi \sqrt{\frac{\mathrm{I}}{\mathrm{MB}}}$

$$
\begin{aligned}
\frac{1}{2} & =2 \pi \sqrt{\frac{10^{-6}}{9.85 \times B}}=2 \pi \sqrt{\frac{10^{-6}}{\pi^{2} \times B}} \\
B & =16 \times 10^{-6} \mathrm{~T} \\
& =16 \mu \mathrm{~T}
\end{aligned}
$$

24. If two discs are of same mass density but having different radii R and r.
$I_{1}=$ Moment of inertia of disc of radius R, about an axis perpendicular to the plane of disc and passing through its centre.
$I_{2}=$ Moment of inertia of disc of radius r. about one of its diameter. Then choose correct option
(1) $\frac{I_{1}}{I_{2}}=\frac{2 r^{4}}{R^{2}}$
(2) $\frac{l_{1}}{I_{2}}=\frac{2 R^{4}}{r^{4}}$
(3) $\frac{I_{1}}{I_{2}}=\frac{2 r^{2}}{R^{2}}$
(4) $\frac{I_{1}}{I_{2}}=\frac{2 r}{R}$

Ans. (2)
Sol. Let mass density be σ

$$
\begin{aligned}
& \mathrm{M}_{1}=\pi \mathrm{R}^{2} \sigma, \mathrm{M}_{2}=\pi \mathrm{r}^{2} \sigma \\
& \mathrm{I}_{1}=\frac{1}{2} \mathrm{M}_{1} \mathrm{R}^{2}=\frac{\pi \sigma \mathrm{R}^{4}}{2} \\
& \mathrm{I}_{2}=\frac{1}{4} \mathrm{M}_{2} r^{2}=\frac{\pi \sigma r^{4}}{4} \\
& \frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=\frac{2 \mathrm{R}^{4}}{\mathrm{r}^{4}}
\end{aligned}
$$

25. Find the equivalent capacitance of shown arrangement if all the plates are identical having surface area A.

(1) $\frac{24}{15} \frac{A \varepsilon_{0} K}{d}$
(2) $\frac{17}{15} \frac{A \varepsilon_{0} K}{d}$
(3) $\frac{15}{34} \frac{A \varepsilon_{0} K}{d}$
(4) $\frac{34}{15} \frac{A \varepsilon_{0} K}{4 d}$

Ans. (3)

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

Sol.

$C_{1}=\frac{A \varepsilon_{0} K}{d} C_{2}=\frac{3 K A \varepsilon_{0}}{2 d} C_{3}=\frac{5 K A \varepsilon_{0}}{3 d}$
$\frac{1}{\mathrm{C}_{\mathrm{eq}}}=\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}+\frac{1}{\mathrm{C}_{3}}$
$=\frac{d}{A \varepsilon_{0} K}+\frac{2 d}{3 A \varepsilon_{0} K}+\frac{3 d}{5 A \varepsilon_{0} K}$
$=\frac{\mathrm{d}}{\mathrm{A} \varepsilon_{0} \mathrm{~K}}\left(1+\frac{2}{3}+\frac{3}{5}\right)=\frac{34}{15} \frac{\mathrm{~d}}{\mathrm{~A} \varepsilon_{0} \mathrm{~K}}$
Thus
$C_{e q}=\frac{15}{34} \frac{A \varepsilon_{0} K}{d}$
26. An electron is revolving in a circular orbit of radius 0.5 m , with a speed of $2.2 \times 10^{-6} \mathrm{~m} / \mathrm{s}$. Find equivalent current?
(1) $1.12 \times 10^{-25} \mathrm{~A}$
(2) $2.15 \times 10^{-25} \mathrm{~A}$
(3) $1.12 \times 10^{-15} \mathrm{~A}$
(4) $2.15 \times 10^{-13} \mathrm{~A}$

Ans. (1)
Sol. $\quad i=\frac{q}{t}=\frac{q}{2 \pi r / v}$

$$
=\frac{1.6 \times 10^{-19} \times 2.2 \times 10^{-6}}{2 \pi \times 0.5}=1.12 \times 10^{-25} \mathrm{~A}
$$

27. A capacitor $(C=100 \mu F)$ discharging against a resistor R, at same time a radioactive substance decays with mean life 30 ms , if the ratio of charge on capacitor and activity of substance remain same for all the time then, find the resistance :
(1) 300Ω
(2) 432Ω
(3) 450Ω
(4) 250Ω

Ans. (1)
Sol. $\quad q=q_{0} e^{\frac{-t}{R C}}$
$A=A_{0} e^{-\lambda t}$
Divide (1) \& (2)
$\Rightarrow \quad \frac{q}{A}=\frac{q_{0}}{A_{0}} \frac{e^{\frac{-t}{R C}}}{e^{-\lambda t}} \Rightarrow-\lambda t=-\frac{-t}{R C}$
$R C=1 / \lambda=30 \times 10^{-3} \mathrm{sec}$
$R=300$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

28. A wire of length 0.1 m and area of cross section $0.04 \times 10^{-4} \mathrm{~m}^{2}$ is stretched by 0.001 m , its young's modulus is $0.5 \times 10^{9} \mathrm{pa}$. The energy stored in this wire is transferred completely as kinetic energy to a particle of mass 20 grams. Find speed of this particle.
(1) $0.5 \mathrm{~m} / \mathrm{s}$
(2) $1 \mathrm{~m} / \mathrm{s}$
(3) $1.5 \mathrm{~m} / \mathrm{s}$
(4) $10 \mathrm{~m} / \mathrm{s}$

Ans. (2)
Sol. $\quad U=\frac{1}{2} K x^{2}$

$$
\begin{aligned}
& =\frac{1}{2} \times \frac{A Y}{L} \times(0.001)^{2} \\
& =\frac{1}{2} \times \frac{0.04 \times 10^{-4} \times 0.5 \times 10^{9}}{0.1} \times 10^{-6}=\frac{1}{2} \mathrm{mv}^{2}=\frac{1}{2} \times 20 \times 10^{-3} \times \mathrm{v}^{2} \\
& \quad \Rightarrow \quad v^{2}=\frac{0.04 \times 10^{-4} \times 0.5 \times 10^{3}}{0.1 \times 20 \times 10^{-3}}=1 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
= HIGHEST No. of ClassroomSelections $\overline{=}$ in JEE (Advanced) 2020 from any Institute of Kota

5 AIRs in TOP-50 in JEE (Adv.) 2020 from Classroom

Classroom: 1833 | Distance: $\mathbf{8 1 3}$

ADMISSION OPEN for Session 2021-22

ONLINE + OFFLINE PROGRAMS

CLASS 11, 12 \& 12+

Target: JEE (Main+Adv.) | JEE (Main) | NEET

Scholarship Upto 90\%*

