

Resonance® Educating for better tomorrow

- CADVANGEDJ2023

QUESTIONS \& TEXT SOLUTION

PAPER-2

DATE \& DAY: $\mathbf{4}^{\text {th }}$ JUNE 2023, SUNDAY

PAPER-1
Duration: 3 Hrs.
Time: 09:00-12:00 IST

PAPER-2
Duration: 3 Hrs .
Time: 14:30-17:30 IST

SUBJECT: MATHEMATICS

ADMISSIONS OPEN FOR CLASS 12 PASSED STUDENTS

100\% SCHOLARSHIP ON THE BASIS OF JEE CADV.] / JEE [MAIN] 2023 SCORE
® REGISTERED \& CORPORATE OFFICE (CIN: U80302RJ2007PLC024029): CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Rajasthan) - 324005

[^0]
TARGET: JEE (AdV.) 2024

VIJAY COURSE

For $12^{\text {th }}$ Passed Students
Course Features*
Course Duration: $\mathbf{3 2}$ Weeks
Total No. of Lectures: $\mathbf{5 3 3}$ (P: $\mathbf{1 7 8 | \mathrm { C } : 1 7 7 | \text { M: 178) }}$
Duration of One Lecture: $\mathbf{1 . 5}$ Hrs. (90 Minutes)
Classroom Teaching Hours.: $\mathbf{8 0 0}$ Hrs.
Testing Duration: $\mathbf{6 0}$ Hrs.
Total Academic Hours.: $\mathbf{8 6 0}$ Hrs.

TARGET: JEE (Main) 2024

AJAY COURSE

For $12^{\text {th }}$ Passed Students

Course Features*

- Course Duration: 33 Weeks
- Total No. of Lectures: 571 (P:184 |C: 203 | M: 184)
- Duration of One Lecture: 1.5 Hrs. (90 Minutes)
- Classroom Teaching Hours.: $\mathbf{8 5 7}$ Hrs.
- Testing Duration: $\mathbf{3 3}$ Hrs.
- Total Academic Hours.: $\mathbf{8 9 0}$ Hrs.

schoLarship upto 100%

Based on JEE (Main) 2023 Score, Scholarship Test (ResoNET) \& $12^{\text {th }}$ Board

PART-I : MATHEMATICS

SECTION 1 : 12 Marks

- This section contains FOUR (04) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks
: +3 If ONLY the correct option is chosen;
Zero Marks : \mathbf{O} If none of the options is chosen (i.e. the question is unanswered);
Negative Marks : -1 In all other cases.

1. Let $f:[1, \infty) \rightarrow R$ be a differentiable function such that $f(1)=\frac{1}{3}$ and $3 \int_{1}^{x} f(t) d t=x f(x)-\frac{x^{3}}{3}, x \in[1, \infty)$. Let e denote the base of the natural logarithm. Then the value of $f(e)$ is
(A) $\frac{e^{2}+4}{3}$
(B) $\frac{\log _{e} 4+e}{3}$
(C) $\frac{4 e^{2}}{3}$
(D) $\frac{e^{2}-4}{3}$

Ans. (C)
Sol. $\quad 3 \int_{1}^{x} f(t) d t=x f(x)-\frac{x^{3}}{3}$
Differentiate w.r.t. x
$3(f(x) .1-0)=1 . f(x)+x f^{\prime}(x)-\frac{3 x^{2}}{3}$
$\Rightarrow 2 f(x)=x f^{\prime}(x)-x^{2}$
$x \frac{d y}{d x}-2 y=x^{2} \Rightarrow \frac{d y}{d x}-\frac{2}{x} y=x$
I. F. $=e^{\int-\frac{2}{x} d x}=e^{-2 \ln x}=\frac{1}{x^{2}}$

Solution of D.E ;
$y .\left(\frac{1}{x^{2}}\right)=\int(x) \frac{1}{x^{2}} d x$
$\frac{y}{x^{2}}=\ln x+c$
$y=x^{2} \ell n x+c x^{2}$
$\because f(1)=\frac{1}{3}$
$\Rightarrow \frac{1}{3}=0+c .1^{2} \Rightarrow c=\frac{1}{3}$
$f(x)=x^{2} \ln x+x^{2} / 3$
$f(e)=e^{2}+\frac{e^{2}}{3}=\frac{4 e^{2}}{3}$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
2. Consider an experiment of tossing a coin repeatedly until the outcomes of two consecutive tosses are same. If the probability of a random toss resulting in head is $\frac{1}{3}$, then the probability that the experiment stops with head is
(A) $\frac{1}{3}$
(B) $\frac{5}{21}$
(C) $\frac{4}{21}$
(D) $\frac{2}{7}$

Ans. (B)
Sol. Probability $=(\mathrm{HH}+\mathrm{HTHH}+\mathrm{HTHTHH}+\ldots \ldots . . \infty)+(\mathrm{THH}+\mathrm{THTHH}+\mathrm{THTHTHH}+\ldots \ldots \infty)$

$$
\begin{aligned}
& =\frac{\mathrm{HH}}{1-\mathrm{HT}}+\frac{\mathrm{THH}}{1-\mathrm{TH}}=\frac{\mathrm{HH}+\mathrm{THH}}{1-\mathrm{TH}} \\
& =\frac{\frac{1}{3} \cdot \frac{1}{3}+\frac{2}{3} \cdot \frac{1}{3} \cdot \frac{1}{3}}{1-\frac{2}{3} \times \frac{1}{3}}=\frac{\frac{5}{27}}{\frac{7}{9}}=\frac{5}{21}
\end{aligned}
$$

3. For any $y \in R$, let $\cot ^{-1}(y) \in(0, \pi)$ and $\tan ^{-1}(y) \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Then the sum of all the solutions of the equation $\tan ^{-1}\left(\frac{6 y}{9-y^{2}}\right)+\cot ^{-1}\left(\frac{9-y^{2}}{6 y}\right)=\frac{2 \pi}{3}$ for $0<|y|<3$, is equal to
(A) $2 \sqrt{3}-3$
(B) $3-2 \sqrt{3}$
(C) $4 \sqrt{3}-6$
(D) $6-4 \sqrt{3}$

Ans. (C)
Sol. Case-1
When $-3<y<0$
$\tan ^{-1}\left(\frac{6 y}{9-y^{2}}\right)+\pi+\tan ^{-1}\left(\frac{6 y}{9-y^{2}}\right)=\frac{2 \pi}{3}$
$\Rightarrow 2 \tan ^{-1}\left(\frac{6 y}{9-y^{2}}\right)=\frac{-\pi}{3}$
$\Rightarrow \frac{6 y}{9-y^{2}}=\frac{-1}{\sqrt{3}}$
$\Rightarrow y^{2}-6 \sqrt{3} y-9=0$
$y^{2}-6 \sqrt{3} y-9=0$
$\because-3<y<0$
$\Rightarrow \mathrm{y}=\frac{6 \sqrt{3}-12}{2}$
$\Rightarrow y=3 \sqrt{3}-6$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 180025855557340010333 f facebook.com/ResonanceEdu Y twitter.com/ResonanceEdu wiwn ww.youtube.com/resowatch Θ blog.resonance.ac.in

Rescinance

case-2 when $0<y<3$
$\tan ^{-1}\left(\frac{6 y}{9-y^{2}}\right)+\tan ^{-1}\left(\frac{6 y}{9-y^{2}}\right)=\frac{2 \pi}{3}$
$\Rightarrow 2 \tan ^{-1}\left(\frac{6 y}{9-y^{2}}\right)=\frac{2 \pi}{3}$
$\Rightarrow \frac{6 y}{9-y^{2}}=\sqrt{3}$
$\sqrt{3} y^{2}+6 y-9 \sqrt{3}=0$
$\sqrt{3} y^{2}+9 y-3 y-9 \sqrt{3}=0$
$\sqrt{3} y(y+3 \sqrt{3})-3(y+3 \sqrt{3})=0$
So $y=\sqrt{3}$ is selected
Hence sum of all solutions $=4 \sqrt{3}-6$
4. Let the position vector of the points P, Q, R and S be $\vec{a}=\hat{i}+2 \hat{j}-5 \hat{k}, \vec{b}=3 \hat{i}+6 \hat{j}+3 \hat{k}$, $\vec{c}=\frac{17}{5} \hat{i}+\frac{16}{5} \hat{j}+7 \hat{k}$ and $\vec{d}=2 \hat{i}+\hat{j}+\hat{k}$, respectively. Then which of the following statements is true ?
(A) The points P, Q, R and S are NOT coplanar
(B) $\frac{\vec{b}+2 \vec{d}}{3}$ is the position vector of a point which divides PR internally in the ratio $5: 4$
(C) $\frac{\vec{b}+2 \vec{d}}{3}$ is the position vector of a point which divides PR externally in the ratio $5: 4$
(D) The square of the magnitude of the vector $\vec{b} \times \vec{d}$ is 95

Ans. (B)
Sol. $\quad \overrightarrow{\mathrm{PQ}}=2 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+8 \hat{k}$
$\overrightarrow{P R}=\frac{12}{5} \hat{i}+\frac{6}{5} \hat{j}+12 \hat{k}$
$\overrightarrow{P S}=\hat{i}-\hat{j}+6 \hat{k}$
now $\mid \overrightarrow{\mathrm{PQ}} \overrightarrow{\mathrm{PR}} \overrightarrow{\mathrm{PS}}]=\frac{1}{5}\left|\begin{array}{ccc}2 & 4 & 8 \\ 12 & 6 & 60 \\ 1 & -1 & 6\end{array}\right|=\frac{12}{5}\left|\begin{array}{ccc}1 & 2 & 4 \\ 2 & 1 & 10 \\ 1 & -1 & 6\end{array}\right|$
$=\frac{12}{5}(16-4-12)=0$
So option (A) is incorrect

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

$\frac{\overrightarrow{\mathrm{b}}+2 \overrightarrow{\mathrm{~d}}}{3}=\frac{7 \hat{\mathrm{i}}+8 \hat{\mathrm{j}}+5 \hat{k}}{3}$
$\frac{5 \overrightarrow{\mathrm{c}}+4 \vec{a}}{9}=\frac{21 \hat{i}+24 \hat{j}+15 \hat{k}}{9}=\frac{\vec{b}+2 \vec{d}}{3}$
So option (B) is correct and option (C) is incorrect
Now $\vec{b} \times \vec{d}=\left|\begin{array}{lll}\hat{i} & \hat{j} & \hat{k} \\ 3 & 6 & 3 \\ 2 & 1 & 1\end{array}\right|=3 \hat{i}+3 \hat{j}-9 \hat{k}$
$\Rightarrow|\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{d}}|^{2}=9+9+81=99$
So option (D) is incorrect

SECTION 2 : 12 Marks

- This section contains THREE (03) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If only (all) the correct option(s) is(are) chosen;
Partial Marks : +3 If all the four options are correct but ONLY three options are chosen;
Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of which are correct;
Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;
Zero Marks : 0 If unanswered;
Negative Marks : -2 In all other cases.

- For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then
choosing ONLY (A), (B) and (D) will get +4 marks;
choosing ONLY (A) and (B) will get +2 marks;
choosing ONLY (A) and (D) will get +2 marks;
choosing ONLY (B) and (D) will get +2 marks;
choosing $\operatorname{ONLY}(A)$ will get +1 mark;
choosing ONLY (B) will get +1 mark;
choosing ONLY (D) will get +1 mark;
choosing no option(s) (i.e. the question is unanswered) will get 0 marks and
choosing any other option(s) will get -2 marks.

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

$\underset{\text { Educating torbeter tomorow }}{\text { Res }}$ | JEE (ADVANCED) 2023 | DATE: 04-06-2023 | PAPER-2 | MATHEMATICS

5. Let $M=\left[a_{i j}\right], i, j \in\{1,2,3\}$, be the 3×3 matrix such that $a_{i j}=1$ if $j+1$ is divisible by i, otherwise $a_{i j}=0$.

Then which of the following statements is(are) true ?
(A) M is invertible
(B) There exists a nonzero column matrix $\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right)$ such that $M\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right)=\left(\begin{array}{l}-a_{1} \\ -a_{2} \\ -a_{3}\end{array}\right)$
(C) The set $\left\{X \in R^{3}: M X=0\right\} \neq\{0\}$ where $0=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
(D) The matrix $(M-2 I)$ is invertible, where I is the 3×3 identity matrix

Ans. (BC)
Sol. $\quad M=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$
$|M|=1(0-1)-(0-1)=-1+1=0$
$\Rightarrow M$ is singular

$$
\text { option }(A) \text { is wrong }
$$

Now, $M\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right]=\left[\begin{array}{l}-a_{1} \\ -a_{2} \\ -a_{3}\end{array}\right] \Rightarrow\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right]=\left[\begin{array}{l}-a_{1} \\ -a_{2} \\ -a_{3}\end{array}\right]$
$\Rightarrow \mathrm{a}_{1}+\mathrm{a}_{2}+\mathrm{a}_{3}=-\mathrm{a}_{1}$

$$
\mathrm{a}_{1}+\mathrm{a}_{3}=-\mathrm{a}_{2}
$$

$\mathrm{a}_{2}=-\mathrm{a}_{3}$
$\Rightarrow \mathrm{a}_{1}=0, \mathrm{a}_{2}+\mathrm{a}_{3}=0$ infinite solutions exists
option (B) is correct
Now $\mathrm{MX}=0 \Rightarrow\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right] \Rightarrow \begin{gathered}x+y+z=0 \\ x+z=0 \\ y=0\end{gathered}$
Infinite solution
Option (C) is correct
Now $\mathrm{M}-2 \mathrm{I}=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]-2\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}-1 & 1 & 1 \\ 1 & -2 & 1 \\ 0 & 1 & -2\end{array}\right]$
$\therefore|\mathrm{M}-2 \mathrm{I}|=-3+3=0$
option (D) is wrong

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
6. Let $\mathrm{f}:(0,1) \rightarrow R$ be the function defined as $f(x)=[4 x]\left(x-\frac{1}{4}\right)^{2}\left(x-\frac{1}{2}\right)$, where $[x]$ denotes the greatest integer less than or equal to x. Then which of the following statements is(are) true?
(A) The function f is discontinuous exactly at one point in $(0,1)$
(B) There is exactly one point in $(0,1)$ at which the function f is continuous but NOT differentiable.
(C) The function f is NOT differentiable at more than three points in $(0,1)$.
(D) The minimum value of the function f is $\frac{-1}{512}$

Ans. (AB)
Sol. $\quad f:(0,1) \rightarrow R, f(x)=[4 x]\left(x-\frac{1}{4}\right)^{2}\left(x-\frac{1}{2}\right)$ where [.] is G.I.F

$$
\left\{\begin{array}{cl}
0, & 0<x<\frac{1}{4} \\
\left(x-\frac{1}{4}\right)^{2}\left(x-\frac{1}{2}\right), & \frac{1}{4} \leq x<\frac{1}{2} \\
2\left(x-\frac{1}{4}\right)^{2}\left(x-\frac{1}{2}\right), & \frac{1}{2} \leq x<\frac{3}{4} \\
3\left(x-\frac{1}{4}\right)^{2}\left(x-\frac{1}{2}\right), & \frac{3}{4} \leq x<1
\end{array}\right.
$$

Clearly $f(x)$ continuous at $x=\frac{1}{4}, \frac{1}{2}$ but not continuous at $x=\frac{3}{4}$
$f(x)$ is continuous at $x=\frac{1}{2}$ but not differentiable at $x=\frac{1}{2}$
clearly $\min f(x)=-\frac{1}{432}$ at $x=\frac{5}{12}$
7. Let S be the set of all twice differentiable functions from R to R such that $\frac{d^{2} f}{d x^{2}}(x)>0$ for all $x \in(-1,1)$.

For $f \in S$, let X_{f} be the number of points $x \in(-1,1)$ for which $f(x)=x$. Then which of the following statements is(are) true ?
(A) There exists a function $f \in S$ such that $X_{f}=0$
(B) For every function $f \in S$, we have $X_{f} \leq 2$
(C) There exists a function $f \in S$ such that $X_{f}=2$
(D) There does NOT exist any function f in S such that $X_{f}=1$

Ans. (ABC)
Sol.

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 180025855557340010333 ffacebook.com/ResonanceEdu \square twitter.com/Resonanceedu 婳www.youtube.com/resowatch Eblog.resonance.ac.in

$f(x)$ is concave function.
So intersection point of $f(x)$ and $y=x$ at most two and minimum zero.

SECTION-3: 24 Marks

- This section contains SIX (06) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 ONLY if the correct numerical value is entered;
Zero Marks : 0 In all other cases.
8. For $x \in R$, let $\tan ^{-1} x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Then the minimum value of the function $f: R \rightarrow R$ defined by
$f(x)=\int_{0}^{x \tan ^{-1} x} \frac{e^{(t-\cos t)}}{1+t^{2023}} d t$ is
Ans. (0)
Sol. $f^{\prime}(x)=\frac{e^{x \tan ^{-1} x-\cos \left(x \tan ^{-1} x\right)}}{1+\left(x \tan ^{-1} x\right)^{2023}}\left[\frac{x}{1+x^{2}}+\tan ^{-1} x\right]$
$f^{\prime}(x)=0$
$\frac{x}{1+x^{2}}+\tan ^{-1} x=0$
$x+\left(1+x^{2}\right) \tan ^{-1} x=0$
$x=0$

So $x=0$ will be point of minima.
So minimum value of $f(x)$
$f(0)=0$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
9. For $x \in R$, let $y(x)$ be a solution of differential equation $\left(x^{2}-5\right) \frac{d y}{d x}-2 x y=-2 x\left(x^{2}-5\right)^{2}$ such that $y(2)=7$. Then the maximum value of the function $y(x)$ is
Ans. (16)
Sol. $\quad\left(x^{2}-5\right) \frac{d y}{d x}-2 x y=-2 x\left(x^{2}-5\right)^{2}$
$\Rightarrow \quad \frac{d y}{d x}-\frac{2 x}{x^{2}-5} y=-2 x\left(x^{2}-5\right)$
$\Rightarrow \quad$ I.F. $=e^{-\int \frac{2 x}{x^{2}-5} d x}=\frac{1}{\left|x^{2}-5\right|}$
So solution
y. $\frac{1}{\left|x^{2}-5\right|}=\int \frac{1}{\left|x^{2}-5\right|}\left(-2 x\left(x^{2}-5\right)\right) d x+C$

If $x^{2}>5$ then $\frac{y}{x^{2}-5}=-x^{2}+C$
If $x^{2}<5$ then $\frac{y}{5-x^{2}}=x^{2}+C$
using $y(2)=7 \quad \Rightarrow C=3$
$\Rightarrow \quad y=\left(3+x^{2}\right)\left(5-x^{2}\right)=-x^{4}+2 x^{2}+15$
$\Rightarrow \quad \frac{d y}{d x}=-4 x^{3}+4 x=0 \Rightarrow x=0,1,-1$
Maximum at $x=1$ or -1 and $y_{\text {maximum }}=16$ Ans.
10. Let X be the set of all five digit numbers formed using digits 1, 2, 2, 2, 4, 4, 0 . For example 22240 is in X while 02244 and 44422 are not in X. Suppose that each element of X has an equal chance of being chosen. Let p be the conditional probability that an element chosen at random is a multiple of 20 given that it is a multiple of 5 . Then the value of $38 p$ is equal to
Ans. (31)
Sol. $\quad A=$ Number of elements in ' X ' which is multiple of 5
1, 2, 2, 2

1, 4, 2, 2

			0

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

1, 2, 4, 4

$$
\begin{array}{|l|l|l:l|}
\hline & & & 0 \\
\hline
\end{array}
$$

4, 2, 2, 2

2, 2, 4, 4

			0

$n(A)=4+12+12+4+6=38$
$B^{\prime}=$ Number of elements in X which is not multiple of 20
2, 2, 2

			1	0

4, 2, 2

			1	0

2, 4, 4
$\left.\begin{array}{|l|l|l:l|}\hline & & & 1\end{array}\right) \rightarrow \frac{3!}{2!}=3$
So number of elements in X which is multiple of $20=n(B)=(4-1)+(12-3)+(12-3)+4+6=31$
$P\left(\frac{B}{A}\right)=\frac{n(A \cap B)}{n(A)} \quad[\therefore n(A \cap B)=n(B)]$
$\Rightarrow p=\frac{31}{38}=\Rightarrow 38 p=31$
11. Let $A_{1}, A_{2}, A_{3} \ldots \ldots . A_{8}$ be the vertices of a regular octagon that lie on a circle of radius 2 . Let P be a point on the circle and let $P A_{i}$ denote the distance between the points P and A_{i} for $i=1,2 \ldots \ldots 8$. If P varies over the circle, then the maximum value of the product $\mathrm{PA}_{1} \cdot \mathrm{PA}_{2} \ldots . \mathrm{PA}_{8}$ is
Ans. (512)
Sol. Let $z^{8}-2^{8}=0 \Rightarrow Z=2,2 \alpha, 2 \alpha^{2}, \ldots \ldots \ldots2 \alpha^{7}$, where $\alpha=e^{\frac{2 \pi i}{8}}$
$Z^{8}-2^{8}=(Z-2)(Z-2 \alpha)\left(Z-2 \alpha^{2}\right) \ldots \ldots \ldots \ldots . .\left(Z-2 \alpha^{7}\right)$
$\left|Z^{8}-2^{8}\right|=|Z-2||Z-2 \alpha|$.

$$
\begin{aligned}
& \left|Z-2 \alpha^{7}\right| \leq\left|Z^{8}\right|+\left|2^{8}\right| \\
& \leq|Z|^{8}+2^{8} \\
& \leq 2^{8}+2^{8} \\
& \leq 2^{9}
\end{aligned}
$$

$\operatorname{Max} \mathrm{PA}_{1} . \mathrm{PA}_{2}$ \qquad $\mathrm{PA}_{8}=2^{9}$, Equality will hold when $\arg \left(z^{8}\right)=\pi$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
12. Let $R=\left\{\left(\begin{array}{lll}a & 3 & b \\ c & 2 & d \\ 0 & 5 & 0\end{array}\right): a, b, c, d \in\{0,3,5,7,11,13,17,19\}\right\}$. Then the number of invertible matrices in R is

Ans. (3780)
Sol. $\Delta=\left|\begin{array}{lll}a & 3 & b \\ c & 2 & d \\ 0 & 5 & 0\end{array}\right|=-5(a d-b c)$
Number of invertible matrices $=$ total matrices - non invertible matrices $(\Delta=0)$
Total matrices $=8 \times 8 \times 8 \times 8=4096$
Now $\Delta=0 \Rightarrow \mathrm{ad}=\mathrm{bc}$
Case(1)
(i)When all four a, b, c, d are zero $=1$
(ii) When three zero, one non-zero $=7 \frac{4!}{3!}=28$
(iii) When two zero two non zero $={ }^{2} \mathrm{C}_{1} \cdot{ }^{2} \mathrm{C}_{1} \cdot 7.7=196$

Case(2) When all 4 non zero
(i) All 4 same $=7$
(ii) 2same +2 other same $={ }^{7} \mathrm{C}_{2} \cdot{ }^{2} \mathrm{C}_{1} \cdot{ }^{2} \mathrm{C}_{1}=21 \times 4=84$

Total non invertible matrices $=1+28+196+7+84=316$
Number of invertible matrices $=4096-316=3780$
13. Let C_{1} be the circle of radius 1 with centre at origin. Let C_{2} be the circle of radius r with centre at the point $A=(4,1)$, where $1<r<3$. Two distinct common tangents PQ and ST of C_{1} and C_{2} are drawn. The tangent $P Q$ touches C_{1} at P and C_{2} at Q. The tangent $S T$ touches C_{1} at S and C_{2} at T. Mid points of the line segments $P Q$ and $S T$ are joined to form a line which meets the x-axis at a point B. If $A B=\sqrt{5}$, then the value of r^{2} is

Ans. (2)

Sol. $\quad C_{1} ; x^{2}+y^{2}=1 \quad C_{2} ;(x-4)^{2}+(y-1)^{2}=r^{2} \quad(1<r<3)$

A $(4,1)$

Clearly $\mathrm{M}_{1} \mathrm{M}_{2}$ is radical axis

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
\therefore Equation of $\mathrm{M}_{1} \mathrm{M}_{2}$ is $\mathrm{S}_{1}-\mathrm{S}_{2}=0$
$\Rightarrow 8 x+2 y-18+r^{2}=0$
$B\left(\frac{18-r^{2}}{8}, 0\right), A(4,1)$
$A B=\sqrt{5}$
$\therefore\left(\frac{18-r^{2}}{8}-4\right)^{2}+(0-1)^{2}=5$
$\Rightarrow \mathrm{r}^{2}=2$

SECTION-4 : 12 Marks

- This section contains TWO (02) question paragraphs.
- Based on each paragraph, there are TWO (02) questions.
- The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks $\quad:+3$ If ONLY the correct numerical value is entered at the designated place;
Zero Marks : \mathbf{O} In all other cases

PARAGRAPH 'I'

Consider an obtuse angled triangle ABC in which the difference between the largest and the smallest angle is $\frac{\pi}{2}$ and whose sides are in arithmetic progression. Suppose that the vertices of this triangle lie on a circle of radius 1 .
There are two questions based on PARAGRAPH 'I', the question given below is one of them
14. Let a be the area of the triangle $A B C$. Then the value of $(64 a)^{2}$ is

Ans. (1008)
15. Then the inradius of the triangle $A B C$ is

Ans. (00.25)
Sol for (14 \& 15)

Let B be the greatest angle and C be the smallest angle with $A B=x, B C=x+y$ and $C A=x+2 y$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

Now $B-C=\frac{\pi}{2}$ (given)
$\Rightarrow B=\frac{\pi}{2}+C$
Since, $A+B+C=\pi$
$\Rightarrow A+\frac{\pi}{2}+C+C=\pi$
$\Rightarrow A=\frac{\pi}{2}-2 C$
Since, $A B, B C, C A$ are in $A P$
$\Rightarrow 2 B C=A C+A B$
$\Rightarrow 4 R \sin A=2 R \sin B+2 R \sin C$
$\Rightarrow 2 \sin A=\sin B+\sin C$
$\Rightarrow 2 \sin \left(\frac{\pi}{2}-2 C\right)=\sin \left(\frac{\pi}{2}+C\right)+\sin C$
$\Rightarrow 2 \cos 2 \mathrm{C}=\cos \mathrm{C}+\sin \mathrm{C}$
$\Rightarrow 2\left(\cos ^{2} C-\sin ^{2} C\right)=\cos C+\sin C$
$\Rightarrow \cos C-\sin C=\frac{1}{2}$
$\Rightarrow 1-\sin 2 C=\frac{1}{4} \Rightarrow \sin 2 C=\frac{3}{4}$
(14) Area of $\triangle A B C=\frac{A B \cdot B C \cdot C A}{4 R}$
$=\frac{8 \sin \mathrm{~A} \sin \mathrm{~B} \sin \mathrm{C}}{4}$
$=2 \sin \left(\frac{\pi}{2}-2 C\right) \sin \left(\frac{\pi}{2}+C\right) \sin C$
$=2 \cos 2 C \cos C \sin C$
$=\cos 2 \mathrm{C} \cdot \sin 2 \mathrm{C}$
Area $\mathrm{a}=\sqrt{1-\frac{9}{16}} \cdot \frac{3}{4}=\frac{3 \sqrt{7}}{16}$
$\Rightarrow 64 \mathrm{a}=12 \sqrt{7} \Rightarrow(64 \mathrm{a})^{2}=1008$
(15) Inradius $r=\frac{\Delta}{s}=\frac{a}{2 R \sin A+2 R \sin B+2 R \sin C}$
$=\frac{a}{(\sin A+\sin B+\sin C)}=\frac{a}{\sin \left(\frac{\pi}{2}-2 C\right)+\sin \left(\frac{\pi}{2}+C\right)+\sin C}$
$=\frac{a}{\cos 2 C+\cos C+\sin C}=\frac{a}{\cos 2 C+\sqrt{1+\sin 2 C}}$
$=\frac{\frac{3 \sqrt{7}}{16}}{\sqrt{1-\frac{9}{16}}+\sqrt{1+\frac{3}{4}}}=\frac{\frac{3 \sqrt{7}}{16}}{\frac{\sqrt{7}}{4}+\frac{\sqrt{7}}{2}}=\frac{3 \sqrt{7}}{16} \times \frac{4}{3 \sqrt{7}}=\frac{1}{4}$
$r=0.25$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

PARAGRAPH 'II'

Consider the 6×6 square in the figure. Let $A_{1}, A_{2} \ldots . . A_{49}$ be the points in intersections (dots in the picture) in some order. We say that A_{i} and A_{j} are friends if they are adjacent along a row or along a column. Assume that each point A_{i} has an equal chance of being chosen.
There are two questions based on PARAGRAPH 'II', the question given below is one of them

16. Let p_{i} be the probability that a randomly chosen point has i many friends, $i=0,1,2,3,4$. Let X be a random variable such that for $i=0,1,2,3,4$, the probability $P(X=i)=p_{i}$. Then the value of $7 E(X)$ is
Ans. (24)
Sol. $\quad P(x=0)=0$

$$
P(x=1)=0
$$

$P(x=2)=\frac{4}{49}$
$P(x=3)=\frac{20}{49}$
$P(x=4)=1-\frac{24}{49}=\frac{25}{49}$
$E(X)=\sum_{i=0}^{4} i . P(x=i)=2 \cdot \frac{4}{49}+3 \cdot \frac{20}{49}+4 \cdot \frac{25}{49}$

$$
=\frac{8+60+100}{49}=\frac{168}{49}=\frac{24}{7}
$$

$7 E(X)=24$
17. Two distinct points are chosen randomly out of the points $A_{1}, A_{2} \ldots . . A_{49}$. Let p be the probability that they are friends. Then the value of $7 p$ is
Ans. (00.50)
Sol. $\mathrm{p}=\frac{6 \times 7+6 \times 7}{{ }^{49} \mathrm{C}_{2}}=\frac{2 \times 6 \times 7 \times 2}{49 \times 48}=\frac{1}{14}$
$7 p=\frac{1}{2}=0.5=00.50$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

Educating for better tomorrow

RESONites ने फिर लहराया सफलता का पर्वम

STUDENTS FROM CLASSROOM PROGRAM (OFFLINE/ ONLINE)

JEE (ADV.) 2022
 NEET (UG) 2022

θ
All India Ranks (AIRs) in TOP-60

> 86.92\%

Selection Ratio in NEET (UG) 2022

ADMISSIONS OPEN

Academic Session 2023-24
Class: V to XII \& XII+
(Advanced)

SCHOLARSHIP UPTO

(100\%

Based on ResoNET (Scholarship Test)
® REGISTERED \& CORPORATE OFFICE (CIN: U80302RJ2007PLCO24029): CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Rajasthan) - 324005
© $0744-2777777 \mid$ | 7340010345 | © contact@resonance.ac.in | © 6 www.resonance.ac.in

[^0]:

