

то кном моке Call: 0744-2777777, 2777700

Reson

TARGET: JEE (Adv.) 2024

For 12th Passed Students

Course Features*

- Course Duration: 32 Weeks
- Total No. of Lectures: 533 (P: 178 | C: 177 | M: 178)
- > Duration of One Lecture: **1.5 Hrs.** (90 Minutes)
- Classroom Teaching Hours.: 800 Hrs.
- Testing Duration: 60 Hrs.
- Total Academic Hours.: 860 Hrs.

AIR

JEE (Main) 2023

KAUSHAL V.

SCHOLARSHIP UPTO 100%

Based on JEE (Advanced) 2023 Score, Scholarship Test (ResoNET) & 12th Board

TARGET: JEE (Main) 2024

SCHOLARSHIP UPTO **100%**

VResonance

Based on JEE (Main) 2023 Score, Scholarship Test (ResoNET) & 12th Board

AJAY COURSE For 12th Passed Students

Course Features*

- Course Duration: 33 Weeks
- Total No. of Lectures: 571 (P:184 | C: 203 | M: 184)
- Duration of One Lecture: 1.5 Hrs. (90 Minutes)
- Classroom Teaching Hours.: 857 Hrs.
- Testing Duration: 33 Hrs.
- Total Academic Hours.: 890 Hrs.

CLASS STARTS 5th & 19th June

	PART : MATHEMATICS					
	SECTION 1 : 12 Marks					
•	This section contains THREE (03) questions.					
Re	Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these fou option(s) is (are) correct answer(s).					
,	For each question, choose the option(s) corresponding to (all) the correct answer(s).					
	Answer to each question will be evaluated according to the following marking scheme:					
	Full Marks : +4 ONLY if (all) the correct option(s) is(are) chosen;					
	Partial Marks : +3 If all the four options are correct but ONLY three options are chosen;					
	Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of which are correct;					
	Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;					
	Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);					
	Negative Marks : -2 In all other cases.					
	For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then					
	choosing ONLY (A), (B) and (D) will get +4 marks;					
	choosing ONLY (A) and (B) will get +2 marks;					
	choosing ONLY (A) and (D) will get +2 marks;					
	choosing ONLY (B) and (D) will get +2 marks;					
	choosing ONLY (A) will get +1 mark;					
	choosing ONLY (B) will get +1 mark;					
	choosing ONLY (D) will get +1 mark;					
	choosing no option(s) (i.e. the question is unanswered) will get 0 marks and					
	choosing any other option(s) will get -2 marks.					
Ba	Let S = $(0,1) \cup (1,2) \cup (3,4)$ and T = {0,1,2,3}. Then which of the following statements is (are) true?					
	(A) There are infinitely many functions from S to T					
	(B) There are infinitely many strictly increasing functions from S to T					
	(C) The number of continuous functions from S to T is at most 120					
	(D) Every continuous function from S to T is differentiable					
Ans.	(ACD)					
Sol.	Here Domain S contains infinite many elements while co-domain T contains only four (finite) elements s					
	there is no strictly increasing function from S to T and there are infinitely many functions from S to T.					
	Now for continuous function, each interval either (0, 1) or (1, 2) or (1, 3) attend exactly one element from					
	{0, 1, 2, 3} as image so all continuous functions are also differentiable in its domain and number of continuous functions are equal to $4 \times 4 \times 4 = 64$					

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu www.youtube.com/resowatch bog.resonance.ac.in

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

Resonance[®] | JEE (ADVANCED) 2023 | DATE : 04-06-2023 | PAPER-1 | MATHEMATICS

 $\frac{\overline{6}}{1} = \frac{\overline{3}}{-1} = \frac{1}{-3}$ $\frac{x_1}{6} = \frac{y_1}{-3} = \frac{1}{-3}$ $\therefore x_1 = -2; y_1 = 1$ $\therefore A_2 (-2, 1)$ $\therefore A_3 (-2, -1)$

y₁

- $\therefore \text{ Area of quadrilateral} = \frac{1}{2}(2+12) \times 5$ $= 7 \times 5 = 35$
- 3. Let f: [0, 1] \rightarrow [0, 1] be the function defined by $f(x) = \frac{x^3}{3} x^2 + \frac{5}{9}x + \frac{17}{36}$. Consider the square region $S = [0,1] \times [0,1]$. Let $G = \{(x,y) \in S : y > f(x)\}$ be called the green region and $R = \{(x, y) \in S : y < f(x)\}$ be
 - called the red region. Let $L_h = \{(x, h) \in S : x \in [0, 1]\}$ be the horizontal line drawn at a height $h \in [0, 1]$. Then which of the following statements is(are) true ?
 - (A) There exists an $h \in \left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the green region above the line L_h equals the area of the green region below the line L_h
 - (B) There exists an $h \in \left\lfloor \frac{1}{4}, \frac{2}{3} \right\rfloor$ such that the area of the red region above the line L_h equals the area of the red region below the line L_h
 - (C) There exists an $h \in \left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the green region above the line L_h equals the area of the red region below the line L_h
 - (D) There exists an $h \in \left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the red region above the line L_h equals the area of the green region below the line L_h

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

<u>الم</u>	esonance [®] JEE (ADVANCED) 2023 DATE : 04-06-2023 PAPER-1 MATHEMATICS
6	At $h = \frac{13}{36}$, $G_h = 0 \implies A\left(\frac{13}{36}\right) = R_h - 0 > 0$
	At $h = \frac{181}{324}$, $R_h = 0 \Rightarrow A\left(\frac{181}{324}\right) = 0 - G_h < 0$
	so by intermediate value property there exists $h = h_1$ where $A(h_1) = 0$ and $h_1 \in \left(\frac{13}{36}, \frac{181}{324}\right)$
	as $\frac{9}{36} = \frac{1}{4} < \frac{13}{36}$ and $\frac{181}{324} < \frac{216}{324} = \frac{2}{3}$
	Option (C) & (D) are correct
	SECTION 2 + 12 Marka
	SECTION-2 : 12 Marks
•	This section contains FOUR (04) questions. Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correspondence of the sector option options is the correspondence of the sector option option of the sector option
•	For each question, choose the option corresponding to the correct answer. Answer to each question will be evaluated according to the following marking scheme:
	Full Marks :+3 If ONLY the correct option is chosen;
	Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
	Negative Marks : -1 In all other cases.
4.	Let f : (0,1) \rightarrow R be the function defined as $f(x) = \sqrt{n}$ if $x \in \left[\frac{1}{n+1}, \frac{1}{n}\right]$ where $n \in N$. Let
	g: (0,1) \rightarrow R be a function such that $\int_{x^2}^x \sqrt{\frac{1-t}{t}} dt < g(x) < 2\sqrt{x}$ for all $x \in (0, 1)$. Then $\lim_{x \to 0} f(x)g(x)$
Ans.	(A) does NOT exist (B) is equal to 1 (C) is equal to 2 (D) is equal to 3 (C)
Sol.	$f(x) = \sqrt{n}, x \in \left[\frac{1}{n+1}, \frac{1}{n}\right]$
	and $\int_{x^2}^{x} \sqrt{\frac{1-t}{t}} < g(x) < 2\sqrt{x}$
\Rightarrow	$\lim_{x\to 0} g(x) = 0$
also	$\lim_{x \to 0} f(x) = \lim_{n \to \infty} f(x) = \infty$
	$\lim_{x \to 0} f(x). g(x) 0 \times \infty$
	since $\frac{1}{n+1} \le x < \frac{1}{n}$ so $n+1 \ge \frac{1}{x} > n$
	$\sqrt{\frac{1-x}{x}} < f(x) < \frac{1}{\sqrt{x}}$
	$\lim_{x \to 0^+} \left(\int_{x^2}^x \sqrt{\frac{1-t}{t}} dt \right) \sqrt{\frac{1-x}{x}} < \lim_{x \to 0^+} f(x)g(x) < \lim_{x \to 0^+} 2\sqrt{x} \frac{1}{\sqrt{x}} = 2$

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu www.youtube.com/resowatch bog.resonance.ac.in

the main diagonals of the cube Q; for instance, the line passing through the vertices (0,0,0) and (1,1,1) is in S. For lines ℓ_1 and ℓ_2 let $d(\ell_1, \ell_2)$ denote the shortest distance between them. Then the maximum value of $d(\ell_1, \ell_2)$, as ℓ_1 varies over F and ℓ_2 varies over S, is

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

	ating for better tomorrow	JEE (AD	DVANCED) 2023	DATE:04-06-2023	B PAPER-1	MATHEMATICS	
6.	Let $X = \left\{ (x \in X) : x \in X \right\}$	$(x,y) \in \mathbb{Z} \times \mathbb{Z}$	$\frac{x^2}{8} + \frac{y^2}{20} < 1$ and y	$\left\{ 2 < 5x \right\}$. Three distinct	points P, Q a	nd R are randomly chosen	
	from X. Then the probability that P, Q and R form a triangle whose area is a positive integer, is						
	(A) $\frac{71}{220}$		(B) $\frac{73}{220}$	(C) $\frac{79}{220}$	(D)	83 220	
Ans.	(B)						
Sol.	$\frac{x^2}{8} + \frac{y^2}{20} <$	1 and y ² <	5x			-	
	Solving cor	rresponding	g equation			$(1,\sqrt{5})$ $(2,\sqrt{10})$	
	$\frac{x^2}{x^2} + \frac{x}{x} = 1$	\Rightarrow x ² + 2x	= 8				
	U 1					(2√2,0)	
	\Rightarrow x = 2, -4		1) (1 0) (1 0)				
		(1, 0), (1, – –2) (2, –3)]		(2, 3), (2, 2), (2, 1), (2,	0),	(2, - \sqrt{10})	
	(_, _, , , , , , , , , , , , , , , , , ,	<i>L</i>) (<i>L</i> , 0))	J			(=, ()	
	n(s) = ¹² C ₃						
	E <mark>= Eve</mark> nt (of selecting	three points in w	hich two points are eith	ier on x = 1 or 2	x = 2 but distance between	
	them is eve						
	· · ·		28 + 45 = 73				
	P(F) = 73	3 73					
	$(\Box) = \frac{12}{12}$						
	$P(E) = \frac{73}{12}C$	$C_3 = \frac{1}{220}$					
B	1900	- 3					
7.	Let P be a at a point C	point on the Q. The area	of the triangle PF	Q, where F is the focu	s of the parabo		
7.	Let P be a at a point C the normal	point on the Q. The area	of the triangle PF both positive integ	FQ, where F is the focu jers, then the pair (a,m)	s of the parabo) is	la, is 120. If the slope m of	
	Let P be a at a point C the normal (A) (2,3)	point on the Q. The area	of the triangle PF	Q, where F is the focu	s of the parabo) is		
Ans.	Let P be a at a point C the normal (A) (2,3) (A)	point on the Q. The area	of the triangle PF both positive integ	FQ, where F is the focu jers, then the pair (a,m)	s of the parabo) is	la, is 120. If the slope m of	
Ans.	Let P be a at a point C the normal (A) (2,3) (A) 2yy' = 4a	point on the Q. The area and a are I	a of the triangle PF both positive integ (B) (1,3)	FQ, where F is the focu jers, then the pair (a,m) (C) (2,4)	s of the parabo) is	la, is 120. If the slope m of	
Ans.	Let P be a at a point C the normal (A) (2,3) (A) 2yy' = 4a Slope of no	point on the Q. The area and a are I	of the triangle PF both positive integ	FQ, where F is the focu jers, then the pair (a,m) (C) (2,4)	s of the parabo) is	la, is 120. If the slope m of	
Ans.	Let P be a at a point C the normal (A) (2,3) (A) 2yy' = 4a	point on the Q . The area and a are bormal to the $\times 2$	a of the triangle PF both positive integ (B) (1,3)	FQ, where F is the focu jers, then the pair (a,m) (C) (2,4)	s of the parabo) is	la, is 120. If the slope m of	
Ans.	Let P be a at a point C the normal (A) (2,3) (A) 2yy' = 4a Slope of no $m = -\frac{2at}{4a}$	point on the Q . The area and a are bormal to the $\times 2$	a of the triangle PF both positive integ (B) (1,3)	FQ, where F is the focu jers, then the pair (a,m) (C) (2,4)	s of the parabo) is	la, is 120. If the slope m of	
Ans.	Let P be a at a point C the normal (A) (2,3) (A) 2yy' = 4a Slope of no $m = -\frac{2at}{4a}$ m = -t	point on the Ω . The area and a are I formal to the $\frac{\times 2}{a}$	a of the triangle PF both positive integ (B) (1,3)	FQ, where F is the focu jers, then the pair (a,m (C) (2,4) : P (at ² , 2at) is	s of the parabo) is	la, is 120. If the slope m of	
Ans.	Let P be a at a point C the normal (A) (2,3) (A) 2yy' = 4a Slope of no $m = -\frac{2at}{4a}$ m = -t	point on the Q. The area and a are b formal to the $\frac{2}{a}$	of the triangle PF both positive integ (B) (1,3)	FQ, where F is the focu jers, then the pair (a,m (C) (2,4) : P (at ² , 2at) is	s of the parabo) is	la, is 120. If the slope m of	
Ans.	Let P be a at a point C the normal (A) (2,3) (A) 2yy' = 4a Slope of no $m = -\frac{2at}{4a}$ m = -t Now equat	point on the Q. The area and a are I formal to the $\frac{2}{a}$ tion of norm t(x – at ²)	of the triangle PF both positive integ (B) (1,3)	FQ, where F is the focu pers, then the pair (a,m) (C) (2,4) FP (at ² , 2at) is	s of the parabo) is	la, is 120. If the slope m of	
Ans.	Let P be a at a point C the normal (A) (2,3) (A) 2yy' = 4a Slope of no $m = -\frac{2at}{4a}$ m = -t Now equat y - 2at = -t so Q(2a + a)	point on the Q. The area and a are b prmal to the $\frac{\times 2}{a}$ tion of norm $t(x - at^2)$ at^2 , 0)	a of the triangle PF both positive integ (B) (1,3) e parabola at point nal at P(at ² , 2at) is	FQ, where F is the focu jers, then the pair (a,m (C) (2,4) FP (at ² , 2at) is	s of the parabo) is (D)	la, is 120. If the slope m of	
Ans.	Let P be a at a point C the normal (A) (2,3) (A) 2yy' = 4a Slope of no $m = -\frac{2at}{4a}$ m = -t Now equat y - 2at = -t so Q(2a + a)	point on the Q. The area and a are b prmal to the $\frac{\times 2}{a}$ tion of norm $t(x - at^2)$ at^2 , 0)	a of the triangle PF both positive integ (B) (1,3) e parabola at point nal at P(at ² , 2at) is	FQ, where F is the focu jers, then the pair (a,m (C) (2,4) FP (at ² , 2at) is	s of the parabo) is (D)	la, is 120. If the slope m of	
Ans.	Let P be a at a point C the normal (A) (2,3) (A) 2yy' = 4a Slope of no $m = -\frac{2at}{4a}$ m = -t Now equat y - 2at = -t so Q(2a + a)	point on the Q. The area and a are b prmal to the $\frac{\times 2}{a}$ tion of norm $t(x - at^2)$ at^2 , 0)	of the triangle PF both positive integ (B) (1,3)	FQ, where F is the focu jers, then the pair (a,m (C) (2,4) FP (at ² , 2at) is	s of the parabo) is (D)	la, is 120. If the slope m of	
Ans.	Let P be a at a point C the normal (A) (2,3) (A) 2yy' = 4a Slope of no $m = -\frac{2at}{4a}$ m = -t Now equat y - 2at = -t so Q(2a + a)	point on the Q. The area and a are l brmal to the $\frac{\times 2}{a}$ tion of norm $t(x - at^2)$ at^2 , 0) $PFQ = \frac{1}{2}$ 2a	a of the triangle PF both positive integ (B) (1,3) e parabola at point nal at P(at ² , 2at) is	FQ, where F is the focu jers, then the pair (a,m (C) (2,4) FP (at ² , 2at) is	s of the parabo) is (D)	la, is 120. If the slope m of	
Ans.	Let P be a at a point C the normal (A) (2,3) (A) 2yy' = 4a Slope of no $m = -\frac{2at}{4a}$ m = -t Now equat y - 2at = -i so Q(2a + i) Area of Δ F $\frac{ 2at }{2}(a + at)$	point on the Q. The area and a are l brmal to the $\frac{2}{a}$ tion of norm $t(x - at^2)$ at^2 , 0) $PFQ = \frac{1}{2} \left 2a^2 \right $	a of the triangle PF both positive integ (B) (1,3) e parabola at point nal at P(at ² , 2at) is	FQ, where F is the focu jers, then the pair (a,m (C) (2,4) FP (at ² , 2at) is	s of the parabo) is (D)	la, is 120. If the slope m of	
7. Ans. Sol.	Let P be a at a point C the normal (A) (2,3) (A) 2yy' = 4a Slope of no $m = -\frac{2at}{4a}$ m = -t Now equat y - 2at = -1 so Q(2a + a) Area of Δ F	point on the Q. The area and a are f brmal to the $\frac{x 2}{a}$ tion of norm $t(x - at^2)$ at^2 , 0) $PFQ = \frac{1}{2} \left 2a^2 \right ^2$ = 120 = 120	a of the triangle PF both positive integ (B) (1,3) e parabola at point nal at P(at ² , 2at) is	FQ, where F is the focu jers, then the pair (a,m (C) (2,4) FP (at ² , 2at) is	s of the parabo) is (D)	abola at P meets the x-axis bla, is 120. If the slope m of (3,4)	

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu vww.youtube.com/resowatch bug.resonance.ac.in

Resonance[®] | JEE (ADVANCED) 2023 | DATE : 04-06-2023 | PAPER-1 | MATHEMATICS

SECTION-3 : 24 Marks

- This section contains SIX (06) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:
- *Full Marks* : +4 ONLY the correct integer value is entered;
 - Zero Marks : 0 In all other cases.

8. Let
$$\tan^{-1}(x) \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
, for $x \in \mathbb{R}$. Then the number of real solutions of the equation

$$\sqrt{1+\cos(2x)} = \sqrt{2}$$
 tan⁻¹ (tan x) in the set $\left(-\frac{3\pi}{2},-\frac{\pi}{2}\right) \cup \left(-\frac{\pi}{2},\frac{\pi}{2}\right) \cup \left(\frac{\pi}{2},\frac{3\pi}{2}\right)$ is equal to

- Ans. (3)
- **Sol.** $\therefore \sqrt{1 + \cos 2x} = \sqrt{2} \tan^{-1}(\tan x)$

$$\Rightarrow \sqrt{2} |\cos x| = \sqrt{2} \tan^{-1}(\tan x)$$

$$\Rightarrow |\cos x| = \tan^{-1} (\tan x)$$

$$\frac{-3\pi}{2}$$

$$-\frac{\pi}{2}$$

$$\frac{\pi}{2}$$

$$\frac{\pi}{2}$$

$$\frac{3\pi}{2}$$

9. Let $n \ge 2$ be a natural number and f: $[0, 1] \rightarrow R$ be function defined by

 $f(x) = \begin{cases} n(1-2nx) & \text{if } 0 \le x \le \frac{1}{2n} \\ 2n(2nx-1) & \text{if } \frac{1}{2n} \le x \le \frac{3}{4n} \\ 4n(1-nx) & \text{if } \frac{3}{4n} \le x \le \frac{1}{n} \\ \frac{n}{n-1}(nx-1) & \text{if } \frac{1}{n} \le x \le 1 \end{cases}$

If *n* is such that the area of the region bounded by the curves x = 0, x = 1, y = 0 and y = f(x) is 4, then the maximum value of the function *f* is

Ans. (8)

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 f facebook.com/ResonanceEdu vww.youtube.com/resonance.ac.in | CIN : U80302RJ2007PLC024029

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 bwitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

	$\therefore \text{ coefficient } x^{-5} \text{ in } \left(ax - \frac{1}{bx^2}\right)^7 \text{ is } = {}^7 \text{ C}_4 \frac{a^3(-1)^4}{b^4}$					
	and to take the second se					
	Now : ${}^{4}C_{1}\frac{a^{3}(70)}{27(b)} = {}^{7}C_{4}\frac{a^{3}}{b^{4}}$					
	$\frac{4 \times 70}{27(b)} = \frac{35}{b^4} \Rightarrow b^3 = \frac{27}{8} \Rightarrow b = \frac{3}{2}$ $\therefore 2b = 3$					
	SECTION 4 : 12 M	arks				
This section contains FOUR (04) Matching List Sets.						
	Each set has ONE Multiple Choice Question. Each set has TWO lists: List-I and List-II.					
	List-I has Four entries (P), (Q), (R) and (S) and List-II h	as Five entries (1), (2), (3), (4) and (5).				
	FOUR options are given in each Multiple Choice Questi					
	these four options satisfies the condition asked in the M					
Answer to each question will be evaluated according to the following marking scheme: Full Marks :+3 ONLY if the option corresponding to the correct combination is chosen;						
	Zero Marks : 0 If none of the options is chosen (i.e					
2						
8	Zero Marks : 0 If none of the options is chosen (i.e	e. the question is unanswered);				
121	Zero Marks : 0 If none of the options is chosen (i.e. Negative Marks : -1 In all other cases. Let α , β and γ be real numbers. Consider the followith $x+2y+z=7$	e. the question is unanswered);				
121	Zero Marks : 0 If none of the options is chosen (i.e. Negative Marks : -1 In all other cases. Let α , β and γ be real numbers. Consider the followi	e. the question is unanswered);				
121	Zero Marks : 0 If none of the options is chosen (i.e. Negative Marks : -1 In all other cases. Let α , β and γ be real numbers. Consider the followith $x+2y+z=7$ $x+\alpha z=11$	e. the question is unanswered); ng system of linear equations				
021 021	Zero Marks : 0 If none of the options is chosen (i.e. Negative Marks : -1 In all other cases. Let α , β and γ be real numbers. Consider the followith $x+2y+z=7$ $x+\alpha z=11$ $2x-3y+\beta z=\gamma$ Match each entry in List-I to the correct entries in List	e. the question is unanswered); ng system of linear equations				
01 01	Zero Marks : 0 If none of the options is chosen (i.e. Negative Marks : -1 In all other cases. Let α , β and γ be real numbers. Consider the followith $x + 2y + z = 7$ $x + \alpha z = 11$ $2x - 3y + \beta z = \gamma$ Match each entry in List-I to the correct entries in List List-I	e. the question is unanswered); ng system of linear equations :t-II List-II				
12 12 12	Zero Marks : 0 If none of the options is chosen (i.e. Negative Marks : -1 In all other cases. Let α, β and γ be real numbers. Consider the following $x+2y+z=7$ $x+\alpha z=11$ $2x-3y+\beta z=\gamma$ Match each entry in List-I to the correct entries in List List-I (P) If $\beta = \frac{1}{2}(7\alpha - 3)$ and $\gamma = 28$, then the system has	e. the question is unanswered); ng system of linear equations				
01 01 01	Zero Marks : 0 If none of the options is chosen (i.e. Negative Marks : -1 In all other cases. Let α , β and γ be real numbers. Consider the followith $x + 2y + z = 7$ $x + \alpha z = 11$ $2x - 3y + \beta z = \gamma$ Match each entry in List-I to the correct entries in List List-I	e. the question is unanswered); ng system of linear equations :t-II List-II				
21 01 01 01 01 01 01 01 01 01 01 01 01 01	Zero Marks : 0 If none of the options is chosen (i.e. Negative Marks : -1 In all other cases. Let α, β and γ be real numbers. Consider the following $x+2y+z=7$ $x+\alpha z=11$ $2x-3y+\beta z=\gamma$ Match each entry in List-I to the correct entries in List List-I (P) If $\beta = \frac{1}{2}(7\alpha - 3)$ and $\gamma = 28$, then the system has (Q) If $\beta = \frac{1}{2}(7\alpha - 3)$ and $\gamma \neq 28$, then the system has	e. the question is unanswered); ng system of linear equations t-II List-II (1) a unique solution				
	Zero Marks : 0 If none of the options is chosen (i.e. Negative Marks : -1 In all other cases. Let α, β and γ be real numbers. Consider the following $x+2y+z=7$ $x+\alpha z=11$ $2x-3y+\beta z=\gamma$ Match each entry in List-I to the correct entries in List List-I (P) If $\beta = \frac{1}{2}(7\alpha - 3)$ and $\gamma = 28$, then the system has (Q) If $\beta = \frac{1}{2}(7\alpha - 3)$ and $\gamma \neq 28$, then the system has (R) If $\beta \neq \frac{1}{2}(7\alpha - 3)$ where $\alpha = 1$ and $\gamma \neq 28$, then the	e. the question is unanswered); ng system of linear equations t-II List-II (1) a unique solution (2) no solution				
	Zero Marks : 0 If none of the options is chosen (i.e. Negative Marks : -1 In all other cases. Let α , β and γ be real numbers. Consider the followith $x + 2y + z = 7$ $x + \alpha z = 11$ $2x - 3y + \beta z = \gamma$ Match each entry in List-I to the correct entries in List . List-I (P) If $\beta = \frac{1}{2}(7\alpha - 3)$ and $\gamma = 28$, then the system has (Q) If $\beta = \frac{1}{2}(7\alpha - 3)$ and $\gamma \neq 28$, then the system has (R) If $\beta \neq \frac{1}{2}(7\alpha - 3)$ where $\alpha = 1$ and $\gamma \neq 28$, then the system has	e. the question is unanswered); Ing system of linear equations It-II List-II (1) a unique solution (2) no solution (3) infinitely many solutions				
	Zero Marks : 0 If none of the options is chosen (i.e. Negative Marks : -1 In all other cases. Let α , β and γ be real numbers. Consider the followith $x + 2y + z = 7$ $x + \alpha z = 11$ $2x - 3y + \beta z = \gamma$ Match each entry in List-I to the correct entries in List . List-I (P) If $\beta = \frac{1}{2}(7\alpha - 3)$ and $\gamma = 28$, then the system has (Q) If $\beta = \frac{1}{2}(7\alpha - 3)$ and $\gamma \neq 28$, then the system has (R) If $\beta \neq \frac{1}{2}(7\alpha - 3)$ where $\alpha = 1$ and $\gamma \neq 28$, then the system has (S) If $\beta \neq \frac{1}{2}(7\alpha - 3)$ where $\alpha = 1$ and $\gamma = 28$, then the	e. the question is unanswered); ng system of linear equations t-II List-II (1) a unique solution (2) no solution				
121 121 121 121	Zero Marks : 0 If none of the options is chosen (i.e. Negative Marks : -1 In all other cases. Let α, β and γ be real numbers. Consider the followith $x + 2y + z = 7$ $x + \alpha z = 11$ $2x - 3y + \beta z = \gamma$ Match each entry in List-I to the correct entries in List . List-I (P) If $\beta = \frac{1}{2}(7\alpha - 3)$ and $\gamma = 28$, then the system has (Q) If $\beta = \frac{1}{2}(7\alpha - 3)$ and $\gamma \neq 28$, then the system has (R) If $\beta \neq \frac{1}{2}(7\alpha - 3)$ where $\alpha = 1$ and $\gamma \neq 28$, then the system has (S) If $\beta \neq \frac{1}{2}(7\alpha - 3)$ where $\alpha = 1$ and $\gamma = 28$, then the system has	e. the question is unanswered); Ing system of linear equations It-II List-II (1) a unique solution (2) no solution (3) infinitely many solutions				
121 121 121 121	Zero Marks : 0 If none of the options is chosen (i.e. Negative Marks : -1 In all other cases. Let α, β and γ be real numbers. Consider the followith $x + 2y + z = 7$ $x + \alpha z = 11$ $2x - 3y + \beta z = \gamma$ Match each entry in List-I to the correct entries in List . List-I (P) If $\beta = \frac{1}{2}(7\alpha - 3)$ and $\gamma = 28$, then the system has (Q) If $\beta = \frac{1}{2}(7\alpha - 3)$ and $\gamma \neq 28$, then the system has (R) If $\beta \neq \frac{1}{2}(7\alpha - 3)$ where $\alpha = 1$ and $\gamma \neq 28$, then the system has (S) If $\beta \neq \frac{1}{2}(7\alpha - 3)$ where $\alpha = 1$ and $\gamma = 28$, then the system has The correct option is :	 e. the question is unanswered); ng system of linear equations t-II List-II (1) a unique solution (2) no solution (3) infinitely many solutions (4) x = 11, y = -2 and z = 0 as a solution 				
	Zero Marks : 0 If none of the options is chosen (i.e. Negative Marks : -1 In all other cases. Let α, β and γ be real numbers. Consider the followith $x + 2y + z = 7$ $x + \alpha z = 11$ $2x - 3y + \beta z = \gamma$ Match each entry in List-I to the correct entries in List . List-I (P) If $\beta = \frac{1}{2}(7\alpha - 3)$ and $\gamma = 28$, then the system has (Q) If $\beta = \frac{1}{2}(7\alpha - 3)$ and $\gamma \neq 28$, then the system has (R) If $\beta \neq \frac{1}{2}(7\alpha - 3)$ where $\alpha = 1$ and $\gamma \neq 28$, then the system has (S) If $\beta \neq \frac{1}{2}(7\alpha - 3)$ where $\alpha = 1$ and $\gamma = 28$, then the system has	 e. the question is unanswered); ng system of linear equations t-II List-II (1) a unique solution (2) no solution (3) infinitely many solutions (4) x = 11, y = -2 and z = 0 as a solution 				

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 f acebook.com/ResonanceEdu vww.youtube.com/resowatch com/resowatch building building.com/ResonanceEdu

าร.	(A)	
ol.	x + 2y + z = 7	
	$x + \alpha z = 11$	
	$2x - 3y + \beta z = \gamma$	
	$\Delta = \begin{vmatrix} 1 & 0 & \alpha \\ 2 & -3 & \beta \end{vmatrix} = 1 (0 + 3\alpha) + 2 (2\alpha - \beta) + 1(-3 - 0)$	
	$= 3\alpha + 4\alpha - 2\beta - 3$	
	$= 7\alpha - 2\beta - 3$	
	$\Delta_{x} = \begin{vmatrix} 7 & 2 & 1 \\ 11 & 0 & \alpha \\ \gamma & -3 & \beta \end{vmatrix} = 7(0 + 3\alpha) + 2(\alpha\gamma - 11\beta) + 1(-33 - 0)$	
	$= 21\alpha + 2\alpha\gamma - 22\beta - 33$	
	$\Delta_{y} = \begin{bmatrix} 1 & 11 & \alpha \\ 0 & -\alpha \end{bmatrix} = 1(11\beta - \alpha\gamma) + 7(2\alpha - \beta) + 1(\gamma - 22)$	
	2 γ β	
	$= 11\beta - \alpha\gamma + 14\alpha - 7\beta + \gamma - 22$	
	$= 4\beta - \alpha\gamma + 14\alpha + \gamma - 22$	
	$\Delta_z = \begin{vmatrix} 1 & 2 & 7 \\ 1 & 0 & 11 \end{vmatrix} = 1 \ (0+33) + 2(22-\gamma) + 7(-3-0)$	
	$\Delta_z = \begin{vmatrix} 1 & 0 & 11 \end{vmatrix} = 1 \ (0+33) + 2(22-\gamma) + 7(-3-0)$	
	$ 2 - 3 \gamma $	
	$= 33 + 44 - 2\gamma - 21$	
	$= 56 - 2\gamma$	
	For unique solution	
	$\Delta \neq 0 \Rightarrow 7\alpha - 2\beta - 3 \neq 0 \Rightarrow \beta \neq \frac{1}{2} (7\alpha - 3)$	
	For Infinitely many solutions $\Delta = \Delta_x = \Delta_y = \Delta_z = 0$	
	역년(19) · · · · · · · · · · · · · · · · · · ·	
	$\Delta = 0 \Rightarrow \beta = \frac{1}{2} (7\alpha - 3)$	
	and $\Delta_z = 0 \Rightarrow \gamma = 28$	
	$\Delta_x = 21\alpha + 56\alpha - 22\beta - 33$	
	$= 11(7\alpha - 2\beta - 3) = 0$	
	$\Delta_{y} = 4\beta - 28\alpha + 14\alpha + 28 - 22$	
	$= 4\beta - 14\alpha + 6 = 2(2\beta - 7\alpha + 3) = 0$	
	For no solutions	
	$\Delta = 0 \Rightarrow \beta = \frac{1}{2} (7\alpha - 3)$ and at least one of $\Delta_x, \Delta_y, \Delta_z$ is non zero $\Rightarrow \Delta_z \neq 0 \Rightarrow \gamma \neq 0$	28.
	If $\beta \neq \frac{1}{2}$ $(7\alpha - 3) \Rightarrow \Delta \neq 0$ and $\gamma = 28$	
	$x = \frac{\Delta_x}{\Delta} = 11, y = \frac{\Delta_y}{\Delta} = -2 z = 0$	
	If $\beta \neq \frac{1}{2}(7\alpha - 3) \Rightarrow \Delta \neq 0, \gamma \neq 28 \Rightarrow \Delta_z \neq 0, z \neq 0. \Rightarrow$ system has a unique solution	

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 f acebook.com/ResonanceEdu vww.youtube.com/resowatch com/resowatch building building.com/ResonanceEdu

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

16.	Let ℓ_1 and ℓ_2 be the lines $\vec{r}_1 = \lambda (\hat{i} + \hat{j} + \hat{k})$ and $\vec{r}_2 = \lambda (\hat{j} - \hat{k}) + \mu (\hat{i} + \hat{k})$, respectively. Let X be the se						
	of all the planes H that contain the line ℓ_1 . For a plane H, let $d(H)$ denote the smallest possible distance between the points of ℓ_1 and H_1 at H_2 be a plane in X for which $d(H_2)$ is the maximum value.						
	distance between the points of ℓ_2 and H. Let H ₀ be a plane in X for which d(H ₀) is the maximum value						
	of d(H) as H varies over all planes in X. Match each entr <mark>y in List-I</mark> to the correct entries in List-II.						
	List-I			List-II			
	(P <mark>) Th</mark> e value of d(H₀) is		<mark>(</mark> 1) √	(1) √3			
	(Q) The distar	nce of the point (0, 1, 2) from H_0 is	(2) -	1 Resso -			
				/3			
		nce of origin from H₀ is	(3) 0				
		the point of origin from the point of f planes $y = z, x = 1$ and H_0 is	(4) √	2			
			(5) -	<u>1</u>			
			v	/2			
	The correct	· · / / /					
	(A) (P) \rightarrow (2) (B) (P) \rightarrow (5)	$\begin{array}{ccc} (Q) \rightarrow (4) & (R) \rightarrow (5) & (S) \rightarrow (1) \\ (Q) \rightarrow (4) & (R) \rightarrow (3) & (S) \rightarrow (1) \end{array}$					
		$(Q) \rightarrow (1) \qquad (R) \rightarrow (3) \qquad (S) \rightarrow (2)$					
	$(0) (P) \rightarrow (5)$						
Ans.	(B)						
		x - 0 y -					
Sol.	Plane contain	ing ℓ_1 and parallel to ℓ_2 is $\begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix}$	1 = 0	\Rightarrow x – z = 0			
		1	1				
	$(P) \ d(H_0) = dis$	(P) d(H ₀) = distance of point (0, 1, -1) from x - z = 0 is = $\frac{1}{\sqrt{2}}$					
	(Q) Distance of point (0,1,2) from H ₀ is = $\left \frac{0-2}{\sqrt{2}}\right = \sqrt{2}$						
	(R) The distance of origin from H ₀ is = $\left \frac{0-0}{\sqrt{2}}\right = 0$						
	(S) Point of intersection of y = z, x = 1 and x $-z = 0$ is (1,1,1). Its distance from (0, 0,0) = $\sqrt{3}$						
17.	Let z be a complex number satisfying $ z ^3 + 2z^2 + 4\overline{z} - 8 = 0$, where \overline{z} denotes the complex conjugate						
	of z. Let the imaginary part of z be non - zero. Match each entry in List -I to the correct entries in List -II						
	Match each e	List – I	LISt -II	List –II			
	(P)	z ² is equal to	(i)	12			
	(Q)	$ z-\overline{z} ^2$ is equal to	(ii)	4			
	(R)	$ z ^2 + z + \overline{z} ^2$ is equal to	(iii)	8			
		the second se					
	(S)	$ z+1 ^2$ is equal to	(iv)	10			

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 **| FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 555
Tol

RESONites ने फिर लहराया सफलता का परचम

STUDENTS FROM CLASSROOM PROGRAM (OFFLINE/ ONLINE)

All India Ranks (AIRs) in TOP-60

86.92%

Selection Ratio in NEET (UG) 2022

REGISTERED & CORPORATE OFFICE (CIN: U80302RJ2007PLC024029):
 CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Rajasthan) - 324005
 0744-2777777 | S 73400 10345 | Resonance.ac.in | Resonance.ac.in
 Follow Us: S 7 in 2 @ ResonanceEdu | @ @Resonance_Edu