 Educating for better tomorrow

JIE [ADVANGED] 2023

 QUESTIONS \& TEXT SOLUTION

 QUESTIONS \& TEXT SOLUTION}
PAPER-1

DATE \& DAY: $4^{\text {th }}$ JUNE 2023, SUNDAY

PAPER-1
Duration: 3 Hrs.
Time: 09:00-12:00 IST

PAPER-2
Duration: 3 Hrs .
Time: 14:30-17:30 IST

SUBJECT: MATHEMATICS

ADMISSIONS OPEN FOR CLASS 12 PASSED STUDENTS

100\% SCHOLARSHIP ON THE BASIS OF JEE CADV.] / JEE [MAIN) 2023 SCORE

Ø REGISTERED \& CORPORATE OFFICE (CIN: U80302RJ2007PLC024029): CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Rajasthan) - 324005

[^0]
TARGET: JEE (AdV.) 2024

VIJAY COURSE

For $12^{\text {th }}$ Passed Students
Course Features*
Course Duration: $\mathbf{3 2}$ Weeks
Total No. of Lectures: $\mathbf{5 3 3}$ (P: $\mathbf{1 7 8 | \mathrm { C } : 1 7 7 | \text { M: 178) }}$
Duration of One Lecture: $\mathbf{1 . 5}$ Hrs. (90 Minutes)
Classroom Teaching Hours.: $\mathbf{8 0 0}$ Hrs.
Testing Duration: $\mathbf{6 0}$ Hrs.
Total Academic Hours.: $\mathbf{8 6 0}$ Hrs.

TARGET: JEE (Main) 2024

AJAY COURSE

For $12^{\text {th }}$ Passed Students

Course Features*

- Course Duration: 33 Weeks
- Total No. of Lectures: 571 (P:184 |C: 203 | M: 184)
- Duration of One Lecture: 1.5 Hrs. (90 Minutes)
- Classroom Teaching Hours.: $\mathbf{8 5 7}$ Hrs.
- Testing Duration: $\mathbf{3 3}$ Hrs.
- Total Academic Hours.: $\mathbf{8 9 0}$ Hrs.

schoLarship upto 100%

Based on JEE (Main) 2023 Score, Scholarship Test (ResoNET) \& $12^{\text {th }}$ Board

PART : MATHEMATICS

SECTION 1 : 12 Marks

- This section contains THREE (03) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 ONLY if (all) the correct option(s) is(are) chosen;
Partial Marks : +3 If all the four options are correct but ONLY three options are chosen;
Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of which are correct;

Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;
Zero Marks : $\mathbf{0}$ If none of the options is chosen (i.e. the question is unanswered); Negative Marks : -2 In all other cases.

- For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then
choosing ONLY (A), (B) and (D) will get +4 marks;
choosing ONLY (A) and (B) will get +2 marks;
choosing ONLY (A) and (D) will get +2 marks;
choosing ONLY (B) and (D) will get +2 marks;
choosing ONLY (A) will get +1 mark;
choosing ONLY (B) will get +1 mark;
choosing ONLY (D) will get +1 mark;
choosing no option(s) (i.e. the question is unanswered) will get 0 marks and choosing any other option(s) will get -2 marks.

1 Let $S=(0,1) \cup(1,2) \cup(3,4)$ and $T=\{0,1,2,3\}$. Then which of the following statements is (are) true?
(A) There are infinitely many functions from S to T
(B) There are infinitely many strictly increasing functions from S to T
(C) The number of continuous functions from S to T is at most 120
(D) Every continuous function from S to T is differentiable

Ans. (ACD)
Sol. Here Domain S contains infinite many elements while co-domain T contains only four (finite) elements so there is no strictly increasing function from S to T and there are infinitely many functions from S to T. Now for continuous function, each interval either $(0,1)$ or $(1,2)$ or $(1,3)$ attend exactly one element from $\{0,1,2,3\}$ as image so all continuous functions are also differentiable in its domain and number of continuous functions are equal to $4 \times 4 \times 4=64$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

2 Let T_{1} and T_{2} be two distinct common tangents to the ellipse $E: \frac{x^{2}}{6}+\frac{y^{2}}{3}=1$ and the parabola
$P: y^{2}=12 x$. Suppose that the tangent T_{1} touches P and E at the points A_{1} and A_{2} respectively and the tangent T_{2}, touches P and E at the points A_{4} and A_{3}, respectively. Then which of the following statements is (are) true?
(A) The area of the quadrilateral $A_{1} A_{2} A_{3} A_{4}$ is 35 square units
(B) The area of the quadrilateral $A_{1} A_{2} A_{3} A_{4}$ is 36 square units
(C) The tangents T_{1} and T_{2} meet the x-axis at the point $(-3,0)$
(D) The tangents T_{1} and T_{2} meet the x-axis at the point $(-6,0)$

Ans. (AC)
Sol. $P \equiv y^{2}=12 x$
$E \equiv \frac{x^{2}}{6}+\frac{y^{2}}{3}=1$
$\because y=m x+\frac{3}{m}$
$\ldots . .(3)$ be any tangent of P
For common tangent

$$
\begin{array}{ll}
& \mathrm{c}^{2}=\mathrm{a}^{2} \mathrm{~m}^{2}+\mathrm{b}^{2} \\
\Rightarrow \quad & \frac{9}{\mathrm{~m}^{2}}=6 \times \mathrm{m}^{2}+3 \\
2 m^{4}+\mathrm{m}^{2}-3=0 \\
2 m^{4}+3 m^{2}-2 m^{2}-3=0 \\
2 m^{2}\left(m^{2}-1\right)+3\left(m^{2}-1\right)=0
\end{array} \quad \Rightarrow \quad \frac{3}{\mathrm{~m}^{2}}=2 m^{2}+1
$$

$\Rightarrow \quad m= \pm 1$
\therefore Common tangents are : $\quad y=x+3$ and

$$
y=-x-3
$$

Tangents intersect each other at $(-3,0)$
$\because A_{1}\left(\frac{a}{m^{2}}, \frac{2 a}{m}\right) \equiv A_{1}(3,6)$
$\therefore \mathrm{A}_{4}(3,-6)$
Finding A_{2} :
$\frac{x^{2}}{6}+\frac{y^{2}}{3}=1$
$y=x+3 \quad \Rightarrow \quad x-y+3=0$
$\frac{x x_{1}}{6}+\frac{y y_{1}}{3}=1$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
$\underline{x_{1}} \quad y_{1}$
$\frac{\frac{x_{1}}{6}}{1}=\frac{\frac{y_{1}}{-1}}{-3}=\frac{1}{-3}$
$\frac{x_{1}}{6}=\frac{y_{1}}{-3}=\frac{1}{-3}$
$\therefore \mathrm{x}_{1}=-2 ; \mathrm{y}_{1}=1$
$\therefore \mathrm{A}_{2}(-2,1)$
$\therefore \mathrm{A}_{3}(-2,-1)$
\therefore Area of quadrilateral $=\frac{1}{2}(2+12) \times 5$

$$
=7 \times 5=35
$$

3. Let $f:[0,1] \rightarrow[0,1]$ be the function defined by $f(x)=\frac{x^{3}}{3}-x^{2}+\frac{5}{9} x+\frac{17}{36}$. Consider the square region $S=[0,1] \times[0,1]$.Let $G=\{(x, y) \in S: y>f(x)\}$ be called the green region and $R=\{(x, y) \in S: y<f(x)\}$ be called the red region. Let $L_{h}=\{(x, h) \in S: x \in[0,1]\}$ be the horizontal line drawn at a height $h \in[0,1]$. Then which of the following statements is(are) true ?
(A) There exists an $h \in\left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the green region above the line L_{h} equals the area of the green region below the line Lh
(B) There exists an $h \in\left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the red region above the line L_{h} equals the area of the red region below the line L_{h}
(C) There exists an $h \in\left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the green region above the line L_{h} equals the area of the red region below the line L_{h}
(D) There exists an $h \in\left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the red region above the line L_{h} equals the area of the green region below the line L_{h}

Ans. (BCD)
Sol. $f(x)=\frac{x^{3}}{3}-x^{2}+\frac{5}{9} x+\frac{17}{36}$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

$f^{\prime}(x)=x^{2}-2 x+\frac{5}{9}$
$=(x-1)^{2}-1+\frac{5}{9}$
$(x-1)^{2}-\left(\frac{2}{3}\right)^{2}$
$=\left(x-1-\frac{2}{3}\right)\left(x-1+\frac{2}{3}\right)$
$=\left(x-\frac{5}{3}\right)\left(x-\frac{1}{3}\right)$

$f\left(\frac{1}{3}\right)=\frac{1}{81}-\frac{1}{9}+\frac{5}{27}+\frac{17}{36}$
$=\frac{4-36+60+153}{324}=\frac{181}{324}$
$R=\int_{0}^{1}\left(\frac{x^{3}}{3}-x^{2}+\frac{5}{9} x+\frac{17}{36}\right) d x=\frac{1}{12}-\frac{1}{3}+\frac{5}{18}+\frac{17}{36}$
$\frac{3-12+10+17}{36}=\frac{1}{2}=G=R$
Let line is $y=h$
for option A
$\therefore(1-h) \times 1=\frac{1}{4}$
$1-\frac{1}{4}=h=\frac{3}{4}$
$\mathrm{h}=\frac{3}{4}$ option A is INCORRECT
for option B
$h \times 1=\frac{1}{4}$
$h=\frac{1}{4}$
option (B) is correct
for option (C) \& (D)
let $A(h)=R_{h}-G_{h}$, where R_{h} is area of red region above the line L_{h}, G_{h} is area of the green region below the line L_{h}.

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

At $h=\frac{13}{36}, G_{h}=0 \Rightarrow A\left(\frac{13}{36}\right)=R_{h}-0>0$
At $\mathrm{h}=\frac{181}{324}, \mathrm{R}_{\mathrm{h}}=0 \Rightarrow \mathrm{~A}\left(\frac{181}{324}\right)=0-\mathrm{G}_{\mathrm{h}}<0$
so by intermediate value property there exists $h=h_{1}$ where $A\left(h_{1}\right)=0$ and $h_{1} \in\left(\frac{13}{36}, \frac{181}{324}\right)$
as $\frac{9}{36}=\frac{1}{4}<\frac{13}{36}$ and $\frac{181}{324}<\frac{216}{324}=\frac{2}{3}$
Option (C) \& (D) are correct

SECTION-2 : 12 Marks

- This section contains FOUR (04) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks
$:+3$ If ONLY the correct option is chosen;
Zero Marks : $\mathbf{0}$ If none of the options is chosen (i.e. the question is unanswered);
Negative Marks : - $\mathbf{1}$ In all other cases.
4. Let $f:(0,1) \rightarrow R$ be the function defined as $f(x)=\sqrt{n}$ if $x \in\left[\frac{1}{n+1}, \frac{1}{n}\right)$ where $n \in N$. Let $g:(0,1) \rightarrow R$ be a function such that $\int_{x^{2}}^{x} \sqrt{\frac{1-t}{t}} d t<g(x)<2 \sqrt{x}$ for all $x \in(0,1)$. Then $\lim _{x \rightarrow 0} f(x) g(x)$
(A) does NOT exist
(B) is equal to 1
(C) is equal to 2
(D) is equal to 3

Ans. (C)
Sol. $f(x)=\sqrt{n}, x \in\left[\frac{1}{n+1}, \frac{1}{n}\right)$
and $\int_{x^{2}}^{x} \sqrt{\frac{1-t}{t}}<g(x)<2 \sqrt{x}$
$\Rightarrow \quad \lim _{x \rightarrow 0} g(x)=0$
also $\quad \lim _{x \rightarrow 0} f(x)=\lim _{n \rightarrow \infty} f(x)=\infty$
$\lim _{x \rightarrow 0} f(x) . g(x) \quad 0 \times \infty$
since $\frac{1}{n+1} \leq x<\frac{1}{n}$ so $n+1 \geq \frac{1}{x}>n$
$\sqrt{\frac{1-x}{x}}<f(x)<\frac{1}{\sqrt{x}}$
$\lim _{x \rightarrow 0^{+}}\left(\int_{x^{2}}^{x} \sqrt{\frac{1-t}{t}} d t\right) \sqrt{\frac{1-x}{x}}<\lim _{x \rightarrow 0^{+}} f(x) g(x)<\lim _{x \rightarrow 0^{+}} 2 \sqrt{x} \frac{1}{\sqrt{x}}=2$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
consider $\lim _{x \rightarrow 0^{+}}\left(\int_{x^{2}}^{x} \sqrt{\frac{1-t}{t}} d t\right) \sqrt{\frac{1-x}{x}}=\lim _{x \rightarrow 0^{+}} \frac{\int^{x} \sqrt{\frac{1-t}{t}} d t}{\sqrt{\frac{x}{1-x}}}$
$\lim _{x \rightarrow 0^{+}} \frac{1 \cdot \sqrt{\frac{1-x}{x}}-2 x \cdot \sqrt{\frac{1-x^{2}}{x^{2}}}}{\frac{1}{2} \sqrt{\frac{1-x}{x}} \cdot\left(\frac{1 \cdot(1-x)-x(-1)}{(1-x)^{2}}\right)}$
$\lim _{x \rightarrow 0^{+}} \frac{2-4 x \cdot \sqrt{\frac{1+x}{x}}}{\left(\frac{1}{(1-x)^{2}}\right)}=2$
$\lim _{x \rightarrow 0^{+}} f(x) g(x)=2$
Let Q be the cube with the set of vertices $\left\{\left(x_{1}, x_{2}, x_{3}\right) \in R^{3}: x_{1}, x_{2}, x_{3} \in\{0,1\}\right\}$. Let F be the set of all twelve lines containing the diagonals of the six faces of the cube Q. Let S be the set of all four lines containing the main diagonals of the cube Q; for instance, the line passing through the vertices $(0,0,0)$ and $(1,1,1)$ is in S . For lines ℓ_{1} and ℓ_{2} let $\mathrm{d}\left(\ell_{1}, \ell_{2}\right)$ denote the shortest distance between them. Then the maximum value of $\mathrm{d}\left(\ell_{1}, \ell_{2}\right)$, as ℓ_{1} varies over F and ℓ_{2} varies over S , is
(A) $\frac{1}{\sqrt{6}}$
(B) $\frac{1}{\sqrt{8}}$
(C) $\frac{1}{\sqrt{3}}$
(D) $\frac{1}{\sqrt{12}}$

Ans. (A)
Sol.
DR'S of OG : 1, 1, 1
DR'S of AF : $-1,1,1$
DR'S of CE : 1,1, -1
DR'S of BD : 1, $-1,1$
equation of line $O G: \frac{x}{1}=\frac{y}{1}=\frac{z}{1}$
equation of $A B: \frac{x-1}{1}=\frac{y}{-1}=\frac{z}{0}$

Normal to both the line's $=\left|\begin{array}{ccc}i & j & k \\ 1 & 1 & 1 \\ 1 & -1 & 0\end{array}\right|$

$$
=i+j-2 \hat{k}
$$

$\overrightarrow{\mathrm{OA}}=\hat{\mathrm{i}}$
$S . D=\frac{|i,(\hat{i}+\hat{j}-2 \hat{k})|}{|i+j-2 \hat{k}|}=\frac{1}{\sqrt{6}}$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
6. Let $X=\left\{(x, y) \in Z \times Z: \frac{x^{2}}{8}+\frac{y^{2}}{20}<1\right.$ and $\left.y^{2}<5 x\right\}$. Three distinct points P, Q and R are randomly chosen from X. Then the probability that P, Q and R form a triangle whose area is a positive integer, is
(A) $\frac{71}{220}$
(B) $\frac{73}{220}$
(C) $\frac{79}{220}$
(D) $\frac{83}{220}$

Ans. (B)
Sol. $\frac{x^{2}}{8}+\frac{y^{2}}{20}<1$ and $y^{2}<5 x$
Solving corresponding equation
$\frac{x^{2}}{8}+\frac{x}{4}=1 \Rightarrow x^{2}+2 x=8$
$\Rightarrow x=2,-4$
$x=\{(1,1),(1,0),(1,-1),(1,2),(1,-2),(2,3),(2,2),(2,1),(2,0)$, $(2,-1),(2,-2)(2,-3)\}$

$\mathrm{n}(\mathrm{s})={ }^{12} \mathrm{C}_{3}$
$E=$ Event of selecting three points in which two points are either on $x=1$ or $x=2$ but distance between them is even.
$n(E)=4 \times 7+9 \times 5=28+45=73$
$P(E)=\frac{73}{{ }^{12} C_{3}}=\frac{73}{220}$
7. Let P be a point on the parabola $y^{2}=4 a x$, where $a>0$. The normal to the parabola at P meets the x-axis at a point Q. The area of the triangle PFQ, where F is the focus of the parabola, is 120 . If the slope m of the normal and a are both positive integers, then the pair (a, m) is
(A) $(2,3)$
(B) $(1,3)$
(C) $(2,4)$
(D) $(3,4)$

Ans. (A)
Sol. $2 y^{\prime}=4 a$
Slope of normal to the parabola at point $P\left(a t^{2}, 2 a t\right)$ is
$m=-\frac{2 a t \times 2}{4 a}$
$m=-t$
Now equation of normal at $P\left(a t^{2}\right.$, 2at $)$ is
$y-2 a t=-t\left(x-a t^{2}\right)$
so $Q\left(2 a+a t^{2}, 0\right)$
Area of $\Delta \mathrm{PFQ}=\frac{1}{2}\left|\begin{array}{ccc}a t^{2} & 2 a t & 1 \\ 2 a+a t^{2} & 0 & 1 \\ a & 0 & 1\end{array}\right|=120$
$\left|\frac{2 a t}{2}\left(a+a t^{2}\right)\right|=120$
$\left|\mathrm{a}^{2} \mathrm{t}\left(1+\mathrm{t}^{2}\right)\right|=120$
$\left|2^{2} \times 3\left(1+3^{2}\right)\right|=120$
So $m=3, a=2$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

SECTION-3 : 24 Marks

- This section contains SIX (06) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 ONLY the correct integer value is entered;
Zero Marks : 0 In all other cases.
8. Let $\tan ^{-1}(x) \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, for $x \in R$. Then the number of real solutions of the equation $\sqrt{1+\cos (2 x)}=\sqrt{2} \tan ^{-1}(\tan x)$ in the set $\left(-\frac{3 \pi}{2},-\frac{\pi}{2}\right) \cup\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$ is equal to

Ans. (3)
Sol.

$$
\begin{aligned}
& \because \sqrt{1+\cos 2 x}=\sqrt{2} \tan ^{-1}(\tan x) \\
& \Rightarrow \sqrt{2}|\cos x|=\sqrt{2} \tan ^{-} 1(\tan x) \\
& \Rightarrow|\cos x|=\tan ^{-1}(\tan x)
\end{aligned}
$$

9. Let $\mathrm{n} \geq 2$ be a natural number and $\mathrm{f}:[0,1] \rightarrow \mathrm{R}$ be function defined by
$f(x)=\left\{\begin{array}{cc}n(1-2 n x) & \text { if } 0 \leq x \leq \frac{1}{2 n} \\ 2 n(2 n x-1) & \text { if } \frac{1}{2 n} \leq x \leq \frac{3}{4 n} \\ 4 n(1-n x) & \text { if } \frac{3}{4 n} \leq x \leq \frac{1}{n} \\ \frac{n}{n-1}(n x-1) & \text { if } \frac{1}{n} \leq x \leq 1\end{array}\right.$
If n is such that the area of the region bounded by the curves $x=0, x=1, y=0$ and $y=f(x)$ is 4 , then the maximum value of the function f is

Ans. (8)

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

Sol.

$4=\frac{1}{2} \cdot n \cdot \frac{1}{2 n}+\frac{1}{2} \cdot \frac{1}{2 n} \cdot n+\frac{1}{2}\left(1-\frac{1}{n}\right) \cdot n$
$\mathrm{n}=8$
Maximum value of $f(x)=n$
$\Rightarrow(\mathrm{f}(\mathrm{x}))_{\max }=8$
10. Let $75 \ldots . .57$ denote the $(r+2)$ digit number where the first and the last digits are 7 and the remaining r digits are 5. Consider the sum $S=77+757+7557+\ldots . .+7 \overbrace{5 \ldots \ldots}^{98} 7$. If $S=\frac{75 \ldots .57}{n} 7+m$, where m and n are natural numbers less than 3000 , then the value of $m+n$ is
Ans. (1219)
Sol. $\mathrm{LHS}=7\left(10+10^{2}+10^{3}+\ldots . .+10^{99}\right)+50(1+11+111+\ldots .+\underbrace{111 \ldots .11}_{98})+99 \times 7$

$$
\begin{aligned}
& =\frac{7 \times 10^{100}}{9}-\frac{70}{9}+\frac{50}{9}\left[(10-1)+\left(10^{2}-1\right)+\ldots \ldots+\left(10^{98}-1\right)\right]+99 \times 7 \\
& =\frac{7 \times 10^{100}}{9}+\frac{50}{9}\left[\frac{10^{99}-10}{9}-98\right]+99 \times 7-\frac{70}{9} \\
& =\frac{7 \times 10^{100}}{9}+\frac{50}{9}\left[\frac{10^{99}-1}{9}-99\right]+693-\frac{70}{9} \\
& =\frac{7 \overbrace{55 \ldots . .57}^{99}}{9}+693-\frac{5020}{9}-\frac{7}{9} \\
& =\frac{7 \overbrace{55 \ldots . .5}^{99} 7+1210}{9}
\end{aligned}
$$

$$
m+n=1210+9=1219
$$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
11. Let $A=\left\{\frac{1967+1686 i \sin \theta}{7-3 i \cos \theta}: \theta \in R\right\}$. If A contains exactly one positive integer n, then the value of n is

Ans. (281)
Sol. $\frac{1967+1686 \sin \theta i}{7-3 \cos \theta i}=\frac{(1967+1686 \sin \theta i)(7+3 \cos \theta i)}{49+9 \cos ^{2} \theta}=$ integer \qquad
$1967 \times 3 \cos \theta+1686 \sin \theta \times 7=0$
$\Rightarrow 2 \sin \theta+\cos \theta=0 \Rightarrow \tan \theta=-\frac{1}{2}$
$I=\frac{1967 \times 7-1686 \sin \theta \times 3 \cos \theta}{49+9 \cos ^{2} \theta}$
$I=\frac{1967 \times 7+1686 \times 6 \sin ^{2} \theta}{49+36 \sin ^{2} \theta}$
Put $\sin ^{2} \theta=\frac{1}{5}$
$\Rightarrow I=\frac{1967 \times 7+1686 \times 6 \times \frac{1}{5}}{49+36 \times \frac{1}{5}}=281$
12. Let P be the plane $\sqrt{3} x+2 y+3 z=16$ and let $S=\left\{\alpha \hat{i}+\beta \hat{j}+\gamma \hat{k}: \alpha^{2}+\beta^{2}+\gamma^{2}=1\right.$ and the distance of (α, β, γ) from the plane P is $\left.\frac{7}{2}\right\}$. Let \vec{u}, \vec{v} and \vec{w} be three distinct vectors in S such that $|\vec{u}-\vec{v}|=|\vec{v}-\vec{w}|=|\vec{w}-\vec{u}|$. Let V be the volume of the parallelepiped determined by vectors \vec{u}, \vec{v} and $\overrightarrow{\mathrm{w}}$. Then the value of $\frac{80}{\sqrt{3}} \mathrm{~V}$ is
Ans. (45)
Sol. $\sqrt{3} x+2 y+3 z=16$
Distance of point from plane $=\frac{7}{2}$
$|\vec{u}-\vec{v}|=|\vec{v}-\vec{w}|=|\vec{w}-\vec{u}|$
$\Rightarrow|\vec{u}-\vec{v}|^{2}=|\vec{v}-\vec{w}|^{2}=|\vec{w}-\vec{u}|^{2}$
$\because|\vec{v}|=|\vec{u}|=|\vec{w}|=1$ (given)
$\Rightarrow \vec{u} \cdot \vec{v}=\vec{v} \cdot \vec{w}=\vec{w} \cdot \vec{u}=\lambda$ (say)

$$
\begin{aligned}
& \mathrm{OP}=4 \\
& \mathrm{OQ}=4-\frac{7}{2}=\frac{1}{2} \\
& \Rightarrow \mathrm{AQ}=\frac{\sqrt{3}}{2}
\end{aligned}
$$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
\because Point $A(\vec{u}), B(\vec{v}), C(\vec{c})$ are vertices of an equilateral triangle $\triangle A B C$
$\because|\vec{u}-\vec{v}|=|\vec{v}-\vec{w}|=|\vec{w}-\vec{u}|$ and
$O A=O B=O C=1$ (given)
In $\triangle A B C, G=O=I=H$
$\Rightarrow \ln \triangle A B C, Q$ is circumcentre
So $\cos 120^{\circ}=\frac{(\mathrm{QA})^{2}+(\mathrm{QB})^{2}-A B^{2}}{2(\mathrm{QA})(\mathrm{QB})}$
$\Rightarrow A B=\frac{3}{2}=|\vec{u}-\vec{v}|$
$\Rightarrow 1+1-2 \vec{u} \cdot \vec{v}=\frac{9}{4} \Rightarrow \lambda=-\frac{1}{8}$
Volume $=\left|\left[\begin{array}{ll}\vec{u} & \vec{v} \\ \vec{w}\end{array}\right]\right|$
$\because\left[\begin{array}{ll}\vec{u} & \vec{v} \\ \vec{w}\end{array}\right]^{2}=\left|\begin{array}{ccc}1 & \bar{u} \cdot \vec{v} & \vec{u} \cdot \vec{w} \\ \vec{u} \cdot \vec{v} & 1 & \vec{v} \cdot \vec{w} \\ \vec{w} \cdot \vec{u} & \vec{w} \cdot \vec{v} & 1\end{array}\right|=\left(1-\lambda^{2}\right)-\lambda\left(\lambda-\lambda^{2}\right)+\lambda\left(\lambda^{2}-\lambda\right)$
$\Rightarrow[\vec{u} \vec{v} \vec{w}]^{2}=(1-\lambda)^{2}(2 \lambda+1)$

$$
=\frac{81}{64} \times \frac{3}{4}
$$

\Rightarrow Volume $=|[\vec{u} \vec{v} \vec{w}]|=\frac{9 \sqrt{3}}{16}$
So, $\frac{80 \mathrm{~V}}{\sqrt{3}}=\frac{80}{\sqrt{3}} \cdot \frac{9}{8} \frac{\sqrt{3}}{2}=45$
13. Let a and b be two nonzero real numbers. If the coefficient of x^{5} in the expansion of $\left(a x^{2}+\frac{70}{27 b x}\right)^{4}$ is equal to the coefficient of x^{-5} in the expansion of $\left(a x-\frac{1}{b x^{2}}\right)^{7}$, then the value of $2 b$ is
Ans. (3)
Sol. $\because\left(a x^{2}+\frac{70}{27 b x}\right)^{4}$
$\because T_{r+1}={ }^{4} C_{r}\left(a x^{2}\right)^{4-r}\left(\frac{70}{27 b x}\right)^{r}$.
for coefficient of x^{5} put $8-2 r-r=5 \Rightarrow r=1$
\because coefficient x^{5} in $\left(a x^{2}+\frac{70}{27 b x}\right)^{4}$ is $={ }^{4} C_{1} \cdot \frac{a^{3} \cdot(70)^{1}}{27 \cdot b}$
\because General term of $\left(a x-\frac{1}{b x^{2}}\right)^{7}$ is
$\mathrm{T}_{\mathrm{r}+1}={ }^{7} \mathrm{C}_{\mathrm{r}}(\mathrm{ax})^{7-r}\left(-\frac{1}{\mathrm{bx}{ }^{2}}\right)^{r}$
for coefficient of x^{-5} put $7-r-2 r=-5 \Rightarrow r=4$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
\therefore coefficient x^{-5} in $\left(\mathrm{ax}-\frac{1}{\mathrm{bx}^{2}}\right)^{7}$ is $=^{7} \mathrm{C}_{4} \frac{\mathrm{a}^{3}(-1)^{4}}{\mathrm{~b}^{4}}$
Now $\because{ }^{4} C_{1} \frac{a^{3}(70)}{27(b)}={ }^{7} C_{4} \frac{a^{3}}{b^{4}}$

$$
\begin{aligned}
& \frac{4 \times 70}{27(b)}=\frac{35}{b^{4}} \Rightarrow b^{3}=\frac{27}{8} \Rightarrow b=\frac{3}{2} \\
& \therefore 2 b=3
\end{aligned}
$$

SECTION 4 : 12 Marks

- This section contains FOUR (04) Matching List Sets.
- Each set has ONE Multiple Choice Question.
- Each set has TWO lists: List-I and List-II.
- List-I has Four entries (P), (Q), (R) and (S) and List-II has Five entries (1), (2), (3), (4) and (5).
- FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : + $\mathbf{3}$ ONLY if the option corresponding to the correct combination is chosen;
Zero Marks : $\mathbf{0}$ If none of the options is chosen (i.e. the question is unanswered);
Negative Marks : -1 In all other cases.
14. Let α, β and γ be real numbers. Consider the following system of linear equations
$x+2 y+z=7$
$x+\alpha z=11$
$2 x-3 y+\beta z=\gamma$
Match each entry in List-I to the correct entries in List-II

List-I

(P) If $\beta=\frac{1}{2}(7 \alpha-3)$ and $\gamma=28$, then the system has
(Q) If $\beta=\frac{1}{2}(7 \alpha-3)$ and $\gamma \neq 28$, then the system has
(R) If $\beta \neq \frac{1}{2}(7 \alpha-3)$ where $\alpha=1$ and $\gamma \neq 28$, then the system has
(S) If $\beta \neq \frac{1}{2}(7 \alpha-3)$ where $\alpha=1$ and $\gamma=28$, then the system has

The correct option is :
(A) $(\mathrm{P}) \rightarrow(3)$
(Q) \rightarrow (2)
(R) \rightarrow (1)
(S) \rightarrow (4)
(B) $(\mathrm{P}) \rightarrow(3)$
(Q) \rightarrow (2)
(R) \rightarrow (5)
(S) \rightarrow (4)
(C) $(\mathrm{P}) \rightarrow(2)$
(Q) \rightarrow (1)
(R) \rightarrow (4)
(S) \rightarrow (5)
(D) $(\mathrm{P}) \rightarrow(2)$
(Q) \rightarrow (1)
(R) \rightarrow (1)
(S) \rightarrow (3)

List-II

(1) a unique solution
(2) no solution
(3) infinitely many solutions
(4) $x=11, y=-2$ and $z=0$ as a solution
(5) $x=-15, y=4$ and $z=0$ as a solution

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

Ans. (A)
Sol. $\quad x+2 y+z=7$
$x+\alpha z=11$
$2 x-3 y+\beta z=\gamma$
$\Delta=\left|\begin{array}{ccc}1 & 2 & 1 \\ 1 & 0 & \alpha \\ 2 & -3 & \beta\end{array}\right|=1(0+3 \alpha)+2(2 \alpha-\beta)+1(-3-0)$
$=3 \alpha+4 \alpha-2 \beta-3$
$=7 \alpha-2 \beta-3$

$$
\begin{aligned}
& \Delta_{x}=\left|\begin{array}{ccc}
7 & 2 & 1 \\
11 & 0 & \alpha \\
\gamma & -3 & \beta
\end{array}\right|=7(0+3 \alpha)+2(\alpha \gamma-11 \beta)+1(-33-0) \\
& =21 \alpha+2 \alpha \gamma-22 \beta-33 \\
& \Delta_{y}=\left|\begin{array}{ccc}
1 & 7 & 1 \\
1 & 11 & \alpha \\
2 & \gamma & \beta
\end{array}\right|=1(11 \beta-\alpha \gamma)+7(2 \alpha-\beta)+1(\gamma-22) \\
& =11 \beta-\alpha \gamma+14 \alpha-7 \beta+\gamma-22 \\
& =4 \beta-\alpha \gamma+14 \alpha+\gamma-22 \\
& \Delta_{z}=\left|\begin{array}{ccc}
1 & 2 & 7 \\
1 & 0 & 11 \\
2 & -3 & \gamma
\end{array}\right|=1(0+33)+2(22-\gamma)+7(-3-0) \\
& =33+44-2 \gamma-21 \\
& =56-2 \gamma
\end{aligned}
$$

For unique solution

$\Delta \neq 0 \Rightarrow 7 \alpha-2 \beta-3 \neq 0 \Rightarrow \beta \neq \frac{1}{2}(7 \alpha-3)$
For Infinitely many solutions $\Delta=\Delta_{x}=\Delta_{y}=\Delta_{z}=0$
$\Delta=0 \Rightarrow \beta=\frac{1}{2}(7 \alpha-3)$
and $\Delta_{z}=0 \Rightarrow \gamma=28$
$\Delta x=21 \alpha+56 \alpha-22 \beta-33$
$=11(7 \alpha-2 \beta-3)=0$
$\Delta_{y}=4 \beta-28 \alpha+14 \alpha+28-22$
$=4 \beta-14 \alpha+6=2(2 \beta-7 \alpha+3)=0$

For no solutions

$\Delta=0 \Rightarrow \beta=\frac{1}{2}(7 \alpha-3)$ and at least one of $\Delta_{x}, \Delta_{y}, \Delta_{z}$ is non zero $\Rightarrow \Delta_{z} \neq 0 \Rightarrow \gamma \neq 28$.
If $\beta \neq \frac{1}{2}(7 \alpha-3) \Rightarrow \Delta \neq 0$ and $\gamma=28$
$x=\frac{\Delta_{x}}{\Delta}=11, \quad y=\frac{\Delta_{y}}{\Delta}=-2 \quad z=0$
If $\beta \neq \frac{1}{2}(7 \alpha-3) \Rightarrow \Delta \neq 0, \gamma \neq 28 \Rightarrow \Delta z \neq 0, z \neq 0 . \Rightarrow$ system has a unique solution

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
15. Consider the given data with frequency distribution

x_{i}	3	8	11	10	5	4
f_{i}	5	2	3	2	4	4

Match each entry in List-I to the correct entries in List-II.

List-I

(P) The mean of the above data is
(Q) The median of the above data is

List-II
(1) 2.5
(R) The mean deviation about the mean of the above data is
(2) 5
(S) The mean deviation about the median of the above data is
(3) 6
(4) 2.7
(5) 2.4

The correct option is:
(A) $(\mathrm{P}) \rightarrow(3)$
$(\mathrm{Q}) \rightarrow(2)$
(R) \rightarrow (4)
(S) \rightarrow (5)
(B) $(\mathrm{P}) \rightarrow(3)$
$(\mathrm{Q}) \rightarrow(2)$
(R) \rightarrow (1)
(S) \rightarrow (5)
(C) $(\mathrm{P}) \rightarrow(2)$
(Q) $\rightarrow(3)$
(R) \rightarrow (4)
(S) \rightarrow (1)
(D) $(\mathrm{P}) \rightarrow(3)$
(Q) $\rightarrow(3)$
(R) \rightarrow (5)
(S) $\rightarrow(5)$

Ans. (A)
Sol.

x_{i}	f_{i}	$\mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$	C.f	$\left\|\mathrm{x}_{\mathrm{i}}-\mathrm{m}\right\|$	$\mathrm{f}_{\mathrm{i}}\left\|\mathrm{x}_{\mathrm{i}}-\mathrm{m}\right\|$	$\mathrm{f}_{\mathrm{i}}\left\|\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right\|$
3	5	15	5	2	10	15
4	4	16	9	1	4	8
5	4	20	13	0	0	4
8	2	16	15	3	6	4
10	2	20	17	5	10	8
11	3	33	20	6	18	15
	$\sum \mathrm{f}_{\mathrm{i}}=20$	$\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=120$			$\sum \mathrm{f}_{\mathrm{i}}\left\|\mathrm{x}_{\mathrm{i}}-\mathrm{m}\right\|=48$	$\sum \mathrm{f}_{\mathrm{i}}\left\|\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right\|=54$

$\because \bar{x}($ mean $)=\frac{\sum \mathrm{x}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}=\frac{120}{20}=6$
\because median $=\left(\frac{20}{2}\right)^{\text {th }}=10^{\text {th }}$ observation
Median $=5$
Mean deviation about median $=\frac{\sum \mathrm{f}_{\mathrm{i}}\left|\mathrm{x}_{\mathrm{i}}-\mathrm{m}\right|}{\sum \mathrm{f}_{\mathrm{i}}}$

$$
=\frac{48}{20}=2.4
$$

Mean deviation about mean $=\frac{\Sigma \mathrm{f}_{\mathrm{i}}\left|\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right|}{\Sigma \mathrm{f}_{\mathrm{i}}}=\frac{54}{20}=2.7$
Mean $=6$
Median = 5
mean deviation about mean $=2.7$
mean deviation about median $=2.4$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
16. Let ℓ_{1} and ℓ_{2} be the lines $\vec{r}_{1}=\lambda(\hat{i}+\hat{j}+\hat{k})$ and $\vec{r}_{2}=\lambda(\hat{j}-\hat{k})+\mu(\hat{i}+\hat{k})$, respectively. Let X be the set of all the planes H that contain the line ℓ_{1}. For a plane H, let $d(H)$ denote the smallest possible distance between the points of ℓ_{2} and H. Let H_{0} be a plane in X for which $d\left(H_{0}\right)$ is the maximum value of $d(H)$ as H varies over all planes in X.
Match each entry in List-I to the correct entries in List-II.

List-I

(P) The value of $d\left(\mathrm{H}_{0}\right)$ is
(Q) The distance of the point $(0,1,2)$ from H_{0} is
(R) The distance of origin from H_{0} is
(S) The distance of origin from the point of intersection of planes $y=z, x=1$ and H_{0} is

List-II

(1) $\sqrt{3}$
(2) $\frac{1}{\sqrt{3}}$
(3) 0
(4) $\sqrt{2}$
(5) $\frac{1}{\sqrt{2}}$

The correct option is:
(A) $(P) \rightarrow(2)$
(Q) \rightarrow (4)
$(R) \rightarrow(5)$
(S) \rightarrow (1)
(B) $(P) \rightarrow(5)$
(Q) \rightarrow (4)
$(R) \rightarrow(3)$
(S) \rightarrow (1)
(C) $(P) \rightarrow(2)$
(Q) \rightarrow (1)
$(\mathrm{R}) \rightarrow(3)$
(S) \rightarrow (2)
(D) $(P) \rightarrow(5)$
(Q) $\rightarrow(1)$
$(R) \rightarrow(4)$
(S) \rightarrow (2)

Ans. (B)
Sol. Plane containing ℓ_{1} and parallel to ℓ_{2} is $\left|\begin{array}{ccc}x-0 & y-0 & z-0 \\ 1 & 1 & 1 \\ 1 & 0 & 1\end{array}\right|=0 \Rightarrow x-z=0$
(P) $d\left(H_{0}\right)=$ distance of point $(0,1,-1)$ from $x-z=0$ is $=\frac{1}{\sqrt{2}}$
(Q) Distance of point $(0,1,2)$ from H_{0} is $=\left|\frac{0-2}{\sqrt{2}}\right|=\sqrt{2}$
(R) The distance of origin from H_{0} is $=\left|\frac{0-0}{\sqrt{2}}\right|=0$
(S) Point of intersection of $y=z, x=1$ and $x-z=0$ is $(1,1,1)$. Its distance from $(0,0,0)=\sqrt{3}$
17. Let z be a complex number satisfying $|z|^{3}+2 z^{2}+4 \bar{z}-8=0$, where \bar{z} denotes the complex conjugate of z. Let the imaginary part of z be non - zero.
Match each entry in List -I to the correct entries in List -II

List - I

List -II

(P)
(Q)
(R)
(S)
$|z|^{2}$ is equal to
$|z-\bar{z}|^{2}$ is equal to
$|z|^{2}+|z+\bar{z}|^{2}$ is equal to
$|z+1|^{2}$ is equal to
(i) 12
(ii) 4
(iii) 8
(iv) 10
(v) 7

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

The correct option is:
(A) $(\mathrm{P}) \rightarrow(1)$
$(\mathrm{Q}) \rightarrow(3)$
$(R) \rightarrow(5)$
(S) \rightarrow (4)
(B) $(P) \rightarrow(2)$
(Q) $\rightarrow(1)$
$(R) \rightarrow(3)$
(S) $\rightarrow(5)$
(C) $(\mathrm{P}) \rightarrow(2)$
(Q) $\rightarrow(4)$
$(\mathrm{R}) \rightarrow(5)$
(S) \rightarrow (1)
(D) $(P) \rightarrow(2)$
(Q) $\rightarrow(3)$
$(R) \rightarrow(5)$
(S) \rightarrow (4)

Ans. (B)
Sol. Let $Z=r(\cos \theta+i \sin \theta)$
$r^{3}+2 r^{2} e^{2 i \theta}+4 r e^{-i \theta}-8=0$
Comparing real and imaginary part
$r^{3}+2 r^{2} \cos 2 \theta+4 r \cos \theta=8$
$4 r^{2} \sin \theta \cos \theta=4 r \sin \theta$
$\Rightarrow r \cos \theta=1$ put in (i)
$\Rightarrow \cos 2 \theta=2 \cos ^{2} \theta-1=\frac{2-r^{2}}{r^{2}}$
$\Rightarrow r^{3}+2\left(2-r^{2}\right)+4=8 \Rightarrow r=2$
(P) $|Z|^{2}=4$
(Q) $|Z-\bar{Z}|^{2}=|2 \operatorname{ir} \sin \theta|^{2}=4 r^{2}\left(1-\cos ^{2} \theta\right)=16-4=12$
(R) $|Z|^{2}+|Z+\bar{Z}|^{2}=4+4=8$
(S) $|Z+1|^{2}=(Z+1)(\bar{Z}+1)=Z \bar{Z}+Z+\bar{Z}+1=4+2+1=7$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

Educating for better tomorrow

RESONites ने फिर लहराया सफलता का पर्वम

STUDENTS FROM CLASSROOM PROGRAM (OFFLINE/ ONLINE)

JEE (ADV.) 2022
 NEET (UG) 2022

θ
All India Ranks (AIRs) in TOP-60

> 86.92\%

Selection Ratio in NEET (UG) 2022

ADMISSIONS OPEN

Academic Session 2023-24
Class: V to XII \& XII+
(Advanced)

SCHOLARSHIP UPTO

(100\%

Based on ResoNET (Scholarship Test)
® REGISTERED \& CORPORATE OFFICE (CIN: U80302RJ2007PLCO24029): CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Rajasthan) - 324005
@ 0744-2777777|⑦3400 10345 \| 迫 contact@resonance.ac.in \mid © www.resonance.ac.in

[^0]: ©0744-2777777|@73400 10345|@contact@resonance.ac.in \| © www.resonance.ac.in | Follow Us:

