

This solution was download from Resonance JEE (ADVANCED) 2021 Solution portal

SECTION 1

- This section contains **FOUR (04)** questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONLY ONE** of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

```
Full Marks : +3 If ONLY the correct option is chosen;
```

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

```
Negative Marks : -1 In all other cases.
```

Q.1 Consider a triangle Δ whose two sides lie on the x-axis and the line x + y + 1 = 0. If the orthocenter of Δ is (1, 1), then the equation of the circle passing through the vertices of the triangle Δ is

(A)
$$x^{2} + y^{2} - 3x + y = 0$$

(B) $x^{2} + y^{2} + x + 3y = 0$
(C) $x^{2} + y^{2} + 2y - 1 = 0$
(D) $x^{2} + y^{2} + x + y = 0$

Q.2 The area of the region

$$\{(x,y) : 0 \le x \le \frac{9}{4}, \quad 0 \le y \le 1, \quad x \ge 3y, \quad x+y \ge 2\}$$

is

(A)
$$\frac{11}{32}$$
 (B) $\frac{35}{96}$ (C) $\frac{37}{96}$ (D) $\frac{13}{32}$

Q.3 Consider three sets $E_1 = \{1, 2, 3\}$, $F_1 = \{1, 3, 4\}$ and $G_1 = \{2, 3, 4, 5\}$. Two elements are chosen at random, without replacement, from the set E_1 , and let S_1 denote the set of these chosen elements. Let $E_2 = E_1 - S_1$ and $F_2 = F_1 \cup S_1$. Now two elements are chosen at random, without replacement, from the set F_2 and let S_2 denote the set of these chosen elements.

Let $G_2 = G_1 \cup S_2$. Finally, two elements are chosen at random, without replacement, from the set G_2 and let S_3 denote the set of these chosen elements. Let $E_3 = E_2 \cup S_3$. Given that $E_1 = E_3$, let *p* be the conditional probability of the event $S_1 = \{1, 2\}$. Then the value of *p* is

(A)
$$\frac{1}{5}$$
 (B) $\frac{3}{5}$ (C) $\frac{1}{2}$ (D) $\frac{2}{5}$

$$P: |z_2 - z_1| + |z_3 - z_2| + \dots + |z_{10} - z_9| + |z_1 - z_{10}| \le 2\pi$$

$$Q: |z_2^2 - z_1^2| + |z_3^2 - z_2^2| + \dots + |z_{10}^2 - z_9^2| + |z_1^2 - z_{10}^2| \le 4\pi$$

Then,

- (A) *P* is **TRUE** and *Q* is **FALSE**
- (B) Q is **TRUE** and P is **FALSE**
- (C) both *P* and *Q* are **TRUE**
- (D) both P and Q are FALSE

SECTION 2

- This section contains **THREE (03)** question stems.
- There are **TWO (02)** questions corresponding to each question stem.
- The answer to each question is a **NUMERICAL VALUE**.
- For each question, enter the correct numerical value corresponding to the answer in the designated place using the mouse and the on-screen virtual numeric keypad.
- If the numerical value has more than two decimal places, **truncate/round-off** the value to **TWO** decimal places.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

```
Full Marks :+2 If ONLY the correct numerical value is entered at the designated place;
```

Zero Marks : 0 In all other cases.

Question Stem for Question Nos. 5 and 6

Question Stem

Three numbers are chosen at random, one after another with replacement, from the set $S = \{1,2,3,...,100\}$. Let p_1 be the probability that the maximum of chosen numbers is at least 81 and p_2 be the probability that the minimum of chosen numbers is at most 40.

- Q.5 The value of $\frac{625}{4} p_1$ is ____.
- Q.6 The value of $\frac{125}{4} p_2$ is ____.

Question Stem for Question Nos. 7 and 8

Question Stem

Let α , β and γ be real numbers such that the system of linear equations

$$x + 2y + 3z = \alpha$$

$$4x + 5y + 6z = \beta$$

$$7x + 8y + 9z = \gamma - 1$$

is consistent. Let |M| represent the determinant of the matrix

	α	2	γ]
M =	β	1	0
6	-1	0	1

Let *P* be the plane containing all those (α, β, γ) for which the above system of linear equations is consistent, and *D* be the **square** of the distance of the point (0, 1, 0) from the plane *P*.

- Q.7 The value of $|\mathbf{M}|$ is _____
- Q.8 The value of *D* is _____

Question Stem for Question Nos. 9 and 10

Question Stem

Consider the lines L_1 and L_2 defined by

$$L_1: x\sqrt{2} + y - 1 = 0$$
 and $L_2: x\sqrt{2} - y + 1 = 0$

For a fixed constant λ , let *C* be the locus of a point *P* such that the product of the distance of *P* from L_1 and the distance of *P* from L_2 is λ^2 . The line y = 2x + 1 meets *C* at two points *R* and *S*, where the distance between *R* and *S* is $\sqrt{270}$.

Let the perpendicular bisector of RS meet C at two distinct points R' and S'. Let D be the **square** of the distance between R' and S'.

- Q.9 The value of λ^2 is ____.
- Q.10 The value of D is ____.

	SECTION 3							
•	This section contains SIX (06) questions.							
•	Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four							
	option(s) is (are) correct answer(s).							
•	For each question, choose the option(s) corresponding to (all) the correct answer(s).							
•	Answer to each question will be evaluated according to the following marking scheme:							
	Full Marks : +4 If only (all) the correct option(s) is(are) chosen;							
	<i>Partial Marks</i> : +3 If all the four options are correct but ONLY three options are chosen;							
	Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of							
	which are correct;							
	<i>Partial Marks</i> : +1 If two or more options are correct but ONLY one option is chosen and it is a							
	correct option;							
	Zero Marks : 0 If unanswered;							
	Negative Marks : -2 In all other cases.							
•	For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct							
	answers, then							
	choosing ONLY (A), (B) and (D) will get +4 marks;							
	choosing ONLY (A) and (B) will get +2 marks;							
	choosing ONLY (A) and (D) will get +2 marks;							
	choosing ONLY (B) and (D) will get +2 marks;							
	choosing ONLY (A) will get +1 mark;							
	choosing ONLY (B) will get +1 mark;							
	choosing ONLY (D) will get +1 mark;							
	choosing no option(s) (i.e. the question is unanswered) will get 0 marks and							
	choosing any other option(s) will get -2 marks.							

Q.11 For any 3×3 matrix *M*, let |M| denote the determinant of *M*. Let

	[1	2	3]	[1	0	0]		[1	3	ן 2
E =	2	3	$\begin{bmatrix} 3 \\ 4 \\ 18 \end{bmatrix}, P =$	0	0	1 ar	nd $F =$	8	18	13
	L8	13	18	Lo	1	0]		L2	4	3]

If Q is a nonsingular matrix of order 3×3 , then which of the following statements is (are) **TRUE** ?

(A)
$$F = PEP$$
 and $P^2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
(B) $|EQ + PFQ^{-1}| = |EQ| + |PFQ^{-1}|$

- (C) $|(EF)^3| > |EF|^2$
- (D) Sum of the diagonal entries of $P^{-1}EP + F$ is equal to the sum of diagonal entries of $E + P^{-1}FP$
- Q.12 Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \frac{x^2 - 3x - 6}{x^2 + 2x + 4}$$

Then which of the following statements is (are) TRUE ?

- (A) f is decreasing in the interval (-2, -1)
- (B) f is increasing in the interval (1, 2)
- (C) f is onto
- (D) Range of f is $\left[-\frac{3}{2}, 2\right]$
- Q.13 Let *E*, *F* and *G* be three events having probabilities $P(E) = \frac{1}{8}$, $P(F) = \frac{1}{6}$ and $P(G) = \frac{1}{4}$, and let $P(E \cap F \cap G) = \frac{1}{10}$.

For any event H, if H^c denotes its complement, then which of the following statements is (are) **TRUE** ?

(A) $P(E \cap F \cap G^{c}) \leq \frac{1}{40}$ (B) $P(E^{c} \cap F \cap G) \leq \frac{1}{15}$ (C) $P(E \cup F \cup G) \leq \frac{13}{24}$ (D) $P(E^{c} \cap F^{c} \cap G^{c}) \leq \frac{5}{12}$

Q.14 For any 3×3 matrix *M*, let |M| denote the determinant of *M*. Let *I* be the 3×3 identity matrix. Let *E* and *F* be two 3×3 matrices such that (I - EF) is invertible. If $G = (I - EF)^{-1}$, then which of the following statements is (are) **TRUE** ?

(A)
$$|FE| = |I - FE||FGE|$$
 (B) $(I - FE)(I + FGE) = I$

(C) EFG = GEF

$$(D) (I - FE)(I - FGE) = I$$

Q.15 For any positive integer n, let $S_n: (0, \infty) \to \mathbb{R}$ be defined by

$$S_n(x) = \sum_{k=1}^n \cot^{-1}\left(\frac{1+k(k+1)x^2}{x}\right)$$

where for any $x \in \mathbb{R}$, $\cot^{-1}(x) \in (0, \pi)$ and $\tan^{-1}(x) \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Then which of the following statements is (are) **TRUE** ?

- (A) $S_{10}(x) = \frac{\pi}{2} \tan^{-1}\left(\frac{1+11x^2}{10x}\right)$, for all x > 0(B) $\lim_{n \to \infty} \cot(S_n(x)) = x$, for all x > 0(C) The equation $S_3(x) = \frac{\pi}{4}$ has a root in $(0, \infty)$ (D) $\tan(S_n(x)) \le \frac{1}{2}$, for all $n \ge 1$ and x > 0
- Q.16 For any complex number w = c + id, let $\arg(w) \in (-\pi, \pi]$, where $i = \sqrt{-1}$. Let α and β be real numbers such that for all complex numbers z = x + iy satisfying $\arg\left(\frac{z+\alpha}{z+\beta}\right) = \frac{\pi}{4}$, the ordered pair (x, y) lies on the circle

$$x^2 + y^2 + 5x - 3y + 4 = 0$$

Then which of the following statements is (are) TRUE ?

(A)
$$\alpha = -1$$
 (B) $\alpha\beta = 4$ (C) $\alpha\beta = -4$ (D) $\beta = 4$

SECTION 4

- This section contains **THREE (03)** questions.
- The answer to each question is a **NON-NEGATIVE INTEGER.**
- For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:
- *Full Marks* : +4 If ONLY the correct integer is entered;
 - Zero Marks : 0 In all other cases.
- Q.17 For $x \in \mathbb{R}$, the number of real roots of the equation

$$3x^2 - 4|x^2 - 1| + x - 1 = 0$$

Q.18 In a triangle ABC, let $AB = \sqrt{23}$, BC = 3 and CA = 4. Then the value of

$$\frac{\cot A + \cot C}{\cot B}$$

is ___ .

is ___.

Q.19 Let \vec{u} , \vec{v} and \vec{w} be vectors in three-dimensional space, where \vec{u} and \vec{v} are unit vectors which are not perpendicular to each other and

$$\vec{u} \cdot \vec{w} = 1, \quad \vec{v} \cdot \vec{w} = 1, \quad \vec{w} \cdot \vec{w} = 4$$

If the volume of the parallelopiped, whose adjacent sides are represented by the vectors \vec{u}, \vec{v} and \vec{w} , is $\sqrt{2}$, then the value of $|3\vec{u}+5\vec{v}|$ is ____.

END OF THE QUESTION PAPER

Resonance

Resonance

Resonance

अपनी स्कॉलरशिप जानने के लिए

अपनी रैंक एवं स्कोर वाट्सअप करें: 7340010345