

JEE (ADVANCED) 2020

DATE: 27-09-2020

Questions & Solutions

PAPER-2 | SUBJECT : CHEMISTRY

PAPER-2: INSTRUCTIONS TO CANDIDATES

- Question Paper-2 has three (03) parts: Physics, Chemistry and Mathematics.
- Each part has a total of eighteen (18) questions divided into three (03) sections (Section-1, Section-2 and Section-3).
- Total number of questions in Question Paper-2 are: Fifty Four (54) and Maximum Marks are One Hundred Ninety Eight (198).

Type of Questions and Marking Schemes

SECTION-1 (Maximum Marks: 18)

- This section contains SIX (06) questions.
- The answer to each question is a SINGLE DIGIT INTEGER ranging from 0 to 9, BOTH INCLUSIVE.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks: +3 If ONLY the correct numerical value is entered.

Zero Marks: 0 If the question is unanswered.

Negative Marks: -1 In all other cases.

SECTION 2 (Maximum Marks: 24)

- This section contains SIX (06) questions.
- Each question has FOUR options ONE OR MORE THAN ONE of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme.

Full Marks: +4 If only (all) the correct option(s) is (are) chosen.

Partial Marks: +3 If all the four options are correct but ONLY three options are chosen.

Partial Marks: +2 If three or more options are correct but ONLY two options are chosen and both of which are correct.

Partial Marks: +1 If two or more options are correct but ONLY one option is chosen and it is a correct option.

Zero Marks: 0 If none of the options is chosen (i.e. the question is unanswered).

Negative Marks: -2 In all other cases.

SECTION 3 (Maximum Marks: 24)

- This section contains SIX (06) questions. The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer. If the numerical value has more than two decimal places, **truncate/round-off** the value to **TWO** decimal places.
- Answer to each question will be evaluated according to the following marking scheme :

Full Marks : +4 If ONLY the correct numerical value is entered.

Zero Marks : **0** In all other cases.

Resonance Eduventures Limited

REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph.No. :** 0744-2777777, 0744-2777700 | **Toll Free :** 1800 258 5555 | **FAX No. :** +91-022-39167222 | **To Know more :** sms **RESO** at **56677**

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555 🦠 73400 10333 📑 facebook.com/ResonanceEdu 💆 twitter.com/ResonanceEdu 🛗 www.youtube.com/resowatch

Many Dreamers... Many Achievers...

ADMISSION OPEN FOR SESSION 2020-21

ONLINE + OFFLINE PROGRAMS

TARGET

JEE (Main+Advanced) 2021 COURSE

VIJAY

TARGET

JEE (Main) 2021 COURSE

AJAY

TARGET

NEET 2021

COURSE

SAFAL

Scholarship upto 90%*

on JEE (Main) Rank,
NEET %ile
Score & Board%

To know your scholarship: sms RESO <space> SCH & send it to 56677

For Class 7th to 12th+

Salient features

Live Interactive Classes & Recorded Lectures

Online Study Material & DPPs (Daily Practice Problems)

Discussion & Doubt Clearing Classes (Every week for each subject)

CBT -Computer Based Test & Performance Analysis

Discussion
Forum for
t & Doubt Clearing
ce & Additional
Learning

Toll Free: 1800 258 5555 | Visit us: www.resonance.ac.in

^{*}Presently classes would be offered Online and Offline classes would resume as per Government Guidelines.

CHEMISTRY

SECTION 1 (Maximum Marks: 18)

- This section contains SIX (06) questions.
- The answer to each question is a **SINGLE DIGIT INTEGER** ranging from **O TO 9**. BOTH INCLUSIVE.
- For each question, enter the correct integer corresponding to the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks: +3 If ONLY the correct integer is entered:

Zero Marks: **0** If the question is unanswered;

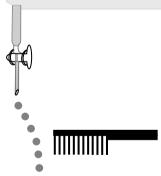
Negative Marks: -1 In all other cases.

1. The 1ST, 2nd, and the 3rd ionization enthalpies, I_1 , I_2 , and I_3 , of four atoms with atomic numbers n, n + 1, n + 2, and n + 3, where n < 10, are tabulated below. What is the value of n?

Atomic	Ionization Enthalpy (kJ/mol)		
number	I_1	<i>I</i> ₂	Iз
n	1681	3374	6050
n + 1	2081	3952	6122
n + 2	496	4562	6910
n + 3	738	1451	7733

Ans.

(9)


Sol. From given data (n+2) atom is alkali metal which is sodium.

As
$$n + 2 =$$

2. Consider the following compounds in the liquid form:

O₂, HF, H₂O, NH₃, H₂O₂, CCl₄, CHCl₃, C₆H₆, C₆H₅Cl.

When a charged comb is brought near their flowing stream, how many of them show deflection as per the following figure?

- Ans. (6)
- **Sol.** Polar compound show deflection by charged comb

So HF, H₂O, NH₃, H₂O₂, CHCl₃, C₆H₅Cl shows deflection by charged comb.

3. In the chemical reaction between stoichiometric quantities of KMnO₄ and KI in weakly basic solution, what is the number of moles of I₂ released for 4 moles of KMnO₄ consumed?

Ans. (6)

Sol.
$$2MnO_4^- + 6I^- \longrightarrow 3I_2 + 2MnO_2$$

- 4. An acidified solution of potassium chromate was layered with an equal volume of amyl alcohol. When it was shaken after the addition of 1 mL of 3% H₂O₂, a blue alcohol layer was obtained. The blue color is due to the formation of a chromium (VI) compound 'X'. What is the number of oxygen atoms bonded to chromium through only single bonds in a molecule of X?
- Ans. (4)

Sol.
$$K_2CrO_4 \xrightarrow{H^+/H_2O_2} CrO_5$$
 (Deep Blue solution)

$$CrO_5 \Rightarrow 0 Cr 0$$

No. of oxygen atom bonded with chromium with single bond is (4)

5. The structure of a peptide is given below.

HO
$$H_2N$$
 H_2N H_3N H_4N H_5N H_5N H_7N H_7N

If the absolute values of the net charge of the peptide at pH = 2, pH = 6, and pH = 11 are $|z_1|$, $|z_2|$, and $|z_3|$, respectively, then what is $|z_1| + |z_2| + |z_3|$?

- Ans. (5)
- **Sol.** The structure of tripeptide will be as followed at PH = 2 (in highly acidic medium)

hence $|z_1| = 2$ at pH = 6 (in approximately neutral solution it will be

Hence $|z_2| = 0$ at pH =11 (in highly basic medium) the structure will be

$$H_2N$$
 H_2N
 H_2N
 H_2N
 H_3N
 H_4N
 H_4N
 H_5N
 H_5N

Hence |z₃| will be 3.

Therefore $|z_1| + |z_2| + |z_3| = 2 + 0 + 3 = 5$

6. An organic compound (C₈H₁₀O₂) rotates plane-polarized light. It produces pink color with neutral FeCl₃ solution. What is the total number of all the possible isomers for this compound?

Ans. (6

Sol. Since compound C₈H₁₀O₂ corresponds positively to neutral FeCl₃ hence it will be a phenolic compound the possible structures which are optically active are as followed

hence total optically active isomers will be 6.

SECTION 2 (Maximum Marks: 24)

- This section contains SIX (06) questions.
- Each question has **FOUR** options **ONE OR MORE THAN ONE** of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme.

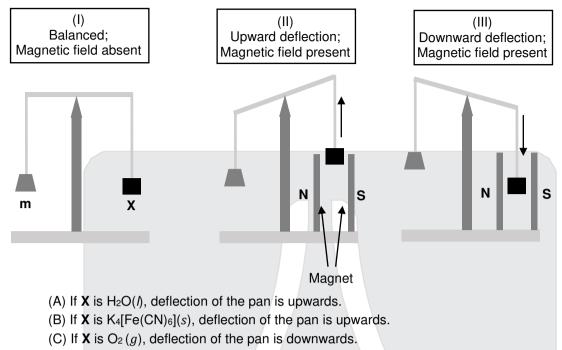
Full Marks : +4 If only (all) the correct option(s) is (are) chosen.

Partial Marks : +3 If all the four options are correct but ONLY three options are chosen.

Partial Marks : +2 If three or more options are correct but ONLY two options are chosen and both of

which are correct.

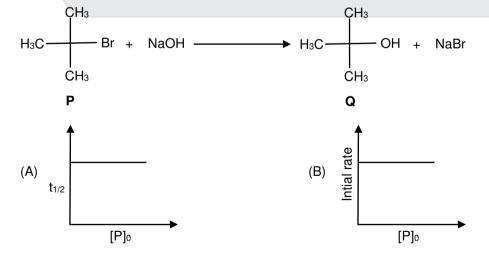
Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct

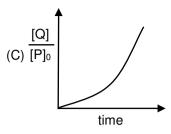

option.

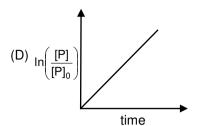
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered).

Negative Marks : -1 In all other cases.

7. In an experiment, m grams of a compound \mathbf{X} (gas/liquid/solid) taken in a container is loaded in a balance as shown in figure \mathbf{I} below. In the presence of a magnetic field, the pan with \mathbf{X} is either deflected upwards (figure \mathbf{II}), or deflected downwards (figure \mathbf{III}), depending on the compound \mathbf{X} . Identify the correct statement(s).


(D) If **X** is $C_6H_6(I)$, deflection of the pan is downwards

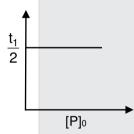

Ans. (ABC)


Sol. Paramagnetic substance attracted by magnetic field so magnetic balance show downward deflection. While diamagnetic substance show repulsion in magnetic field show magnetic balance show upward deflection

	Compound	Magnetic Nature	Deflection
(a)	H ₂ O	Diamagnetic	Upward
(b)	K ₄ [Fe(CN) ₆]	Diamagnetic	Upward
(c)	O ₂ (g)	Paramagnetic	Downward
(d)	C ₆ H ₆	Diamagnetic	Upward

8. Which of the following plots is(are) correct for the given reaction? ([P]₀ is the initial concentration of **P**)

Ans. (A)


Sol.

$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

this is 1st order reaction

For 1st order
$$T_{1/2} = \frac{0.693}{k}$$

So independent of initial concentration

$$C = C_0 e^{-kt} \implies \ell n \left[\frac{C}{C_0} \right] = -kt$$

$$\implies \ell n \left[\frac{[P]}{[P]_0} \right] = -kt$$

So graph D is incorrect.

- 9. Which among the following statement(s) is(are) true for the extraction of aluminium from bauxite?
 - (A) Hydrated Al₂O₃ precipitates, when CO₂ is bubbled through a solution of sodium aluminate.
 - (B) Addition of Na₃AIF₆ lowers the melting point of alumina.
 - (C) CO₂ is evolved at the anode during electrolysis.
 - (D) The cathode is a steel vessel with a lining of carbon.

Ans. (ABCD)

- **Sol.** (A) $2NaA\ell O_2 + 3H_2O + CO_2 \longrightarrow 2A\ell(OH)_3 + Na_2CO_3$
 - (B) In Hall-Heroult process $Na_3Al\ell F_6$ and CaF_2 is mixed with $A\ell_2O_3$ to lower melting point & increase conductivity.
 - (C) Anode C(s) + $2O^{2-}$ (melt) \longrightarrow $CO_2(g) + 4e^-$
 - (D) Steel cathode with carbon lining & graphite anode are used.
- **10.** Choose the correct statement(s) among the following.
 - (A) SnCl₂·2H₂O is a reducing agent.
 - (B) SnO₂ reacts with KOH to form K₂[Sn(OH)₆].
 - (C) A solution of PbCl₂ in HCl contains Pb²⁺and Cl⁻ions.
 - (D) The reaction of Pb₃O₄ with hot dilute nitric acid to give PbO₂ is a redox reaction.

Ans. (AB)

- **Sol.** (A) Sn²⁺ is a good reducing agent which gets oxidise into Sn⁴⁺
 - (B) Amphoteric nature.
 - (C) $PbCl_2 + 2Cl^- \longrightarrow [PbCl_4]^{2-}$
 - (D) $Pb_3O_4 + 4HNO_3 \longrightarrow PbO_2 \downarrow + 2Pb(NO_3)_2 + 6H_2O$ (Conc.)
- 11. Consider the following four compounds I, II, III, and IV.

Choose the correct statement(s).

- (A) The order of basicity is II > I > III > IV.
- (B) The magnitude of pKb difference between I and II is more than that between III and IV.
- (C) Resonance effect is more in III than in IV.
- (D) Steric effect makes compound IV more basic than III

Ans. (CD)

Sol. The correct basic strength order is

(A) $K_b : IV > II > I > III$;

- IV is strongest base due to SIR effect.
- III is weakest base due to -M group of three nitro groups present at Ortho and Para positions.
- II is stronger than I since III is tertiary and I primary aromatic amine.
- (B) IV is found to be 40,000 times more basic than III. While I & II differ very little in basic strength.
- (C,D) Due to SIR effect in IV both $-NO_2$ and $-N(CH_3)_2$ will be out of plane hence resonance effect is more in III than in IV.
- **12.** Consider the following transformations of a compound **P**.

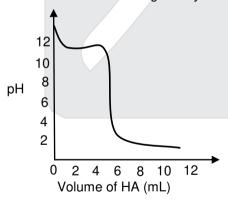
$$\begin{array}{c|c} & & (i) \ NaNH_2 & P & (i) \ X \ (reagent) \\ \hline (Optically \ active) & (ii) \ C_6H_5COCH_3 & (iii) \ KMnO_4/H_2SO_4/\Delta & (C_8H_{12}O_6) \\ \hline (Optically \ active \ acid) & Pt/H_2 & CH_3 \\ \hline \end{array}$$

Choose the correct option(s)

(B) X is Pd-C/quinoline/H₂

Ans. (BC)

Sol.
$$\begin{array}{c} H_2/Pd-C \\ \hline Quinoline \\ (X) \\ \hline \\ Ph-C-CH_3 \\ \end{array}$$


SECTION 3 (Maximum Marks: 24)

- This section contains SIX (06) questions. The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the
 place designated to enter the answer. If the numerical value has more than two decimal places, truncate/round-off the value to TWO
 decimal places.
- Answer to each question will be evaluated according to the following marking scheme :

Full Marks : +4 If ONLY the correct numerical value is entered.

Zero Marks: **0** In all other cases.

A solution of 0.1 M weak base (B) is titrated with 0.1 M of a strong acid (HA). The variation of pH of the solution with the volume of HA added is shown in the figure below. What is the p K_b of the base? The neutralization reaction is given by B + HA \rightarrow BH⁺ + A⁻.

Ans. (03.00)

Sol. At 3 ml pH of solution is 11

 $B + HA \longrightarrow BH^+ + A^-$

at 3 ml best buffer action is shown

So $P_{OH} = P_{K_h} = 3$ (As basic buffer is formed)

So $P_{K_b} = 3$

14. Liquids **A** and **B** form ideal solution for all compositions of **A** and **B** at 25 °C. Two such solutions with 0.25 and 0.50 mole fractions of **A** have the total vapor pressures of 0.3 and 0.4 bar, respectively. What is the vapor pressure of pure liquid **B** in bar?

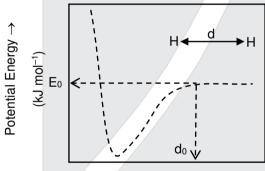
Ans. (0.20)

Sol.
$$P_{Total} = P_A^o X_A + P_B^o X_B$$

(i)
$$0.3 = \left(P_A^o\right) \frac{1}{4} + \left(P_B^o\right) \frac{3}{4}$$

$$P_A^o + P_B^o = 1.2$$

(ii)
$$0.4 = \left(P_A^o\right)\frac{1}{2} + \left(P_B^o\right)\frac{1}{2}$$


$$P_A^0 + P_B^0 = 0.8$$

From equation (1) and equation (2)

$$P_B^o = 0.2$$
 bar and $P_A^o = 0.6$ bar

The figure below is the plot of potential energy versus internuclear distance (d) of H₂ molecule in the electronic ground state. What is the value of the net potential energy E_0 (as indicated in the figure) in kJ mol⁻¹, for $d = d_0$ at which the electron-electron repulsion and the nucleus-nucleus repulsion energies are absent? As reference, the potential energy of H atom is taken as zero when its electron and the nucleus are infinitely far apart.

Use Avogadro constant as $6.023 \times 10^{23} \text{ mol}^{-1}$.

internuclear distance (d) →

Ans. (-5246.5)

Sol. For one H atom

P.E. =
$$\frac{kq_1q_2}{r} = -\frac{9 \times 10^9 \times \left[1.6 \times 10^{-19}\right]^2}{0.529 \times 10^{-10}}$$

= $-\frac{9 \times 1.6 \times 1.6}{0.529} \times 10^{-19}$

Total potential energy for 2 H-atom (per mole)

$$= -\frac{2 \times 9 \times 1.6 \times 1.6}{0.529} \times 10^{-19} \times 6 \times 10^{23} = -5246.5 \text{ KJ/mole}$$

Ans. -5246.5

16. Consider the reaction sequence from $\bf P$ to $\bf Q$ shown below. The overall yield of the major product $\bf Q$ from $\bf P$ is 75%. What is the amount in grams of $\bf Q$ obtained from 9.3 mL of $\bf P$? (Use density of $\bf P$ = 1.00 g mL⁻¹; Molar mass of $\bf C$ = 12.0, H =1.0, O =16.0 and N = 14.0 g mol⁻¹)

Ans. 18.60

Sol.
$$NH_2 \xrightarrow{NaNO_2} HCI \xrightarrow{N_2+CI^-} (1) \xrightarrow{OH} OH \xrightarrow{N=N-Ph} O^- \xrightarrow{CH_3-COOH} H^+$$

- \Rightarrow Molar mass of 'P' (C₆H₇N) = 93 g
- $\Rightarrow \qquad \text{Mole of 'P'} = \left(\frac{9.3g}{\text{ml}} \times 1\text{ml}\right) \times \frac{1}{93g} = 0.1 \text{ mole}$
- ⇒ Molar mass of 'Q' = 248 g
- \Rightarrow Mole of 'Q' produced = 0.1 mole Mass of 'Q' produced = $(0.1 \times 248 \times 0.75)g = 18.60 g$
- 17. Tin is obtained from cassiterite by reduction with coke. Use the data given below to determine the minimum temperature (in K) at which the reduction of cassiterite by coke would take place.

At 298 K:
$$\Delta_f H^0(SnO_2(s)) = -581.0 \text{ kJ mol}^{-1}$$
, $\Delta_f H^0(CO_2(g)) = -394.0 \text{ kJ mol}^{-1}$,

$$S^{0}(SnO_{2}(s)) = 56.0 \text{ J K}^{-1}\text{mol}^{-1}, S^{0}(Sn(s)) = 52.0 \text{ J K}^{-1}\text{mol}^{-1},$$

$$S^{0}(C(s)) = 6.0 \text{ J K}^{-1}\text{mol}^{-1}, S^{0}(CO_{2}(g)) = 210.0 \text{ J K}^{-1}\text{mol}^{-1}.$$

Assume that the enthalpies and the entropies are temperature independent.

Ans. (935)

Sol.
$$SnO_2(s) + C(s) \longrightarrow Sn(s) + CO_2(g)$$

$$\Delta H_{rxn}^0 = \Delta H_f^0(CO_2(g)) - \Delta H_f^0(SnO_2, s)$$

$$= -394.0 - [-581.0]$$

$$= 187 \text{ KJ}$$

$$\Delta S_{rm}^{0} = S^{0}(sn(s)) + S^{0}(CO_{2}(g)) - S^{0}(SnO_{2},(s) - S^{0}(C(s)))$$

$$= 52 + 210 - 56 - 6$$

$$= 200 J$$

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$

For reaction to be spontaneous

$$\Delta G^{o} < 0$$

$$\Delta H^{\circ} - T\Delta S^{\circ} < 0$$

$$187 \times 1000 - T \times 200 < 0$$

An acidified solution of 0.05 M Zn²⁺ is saturated with 0.1 M H₂S. What is the minimum molar concentration (M) of H⁺ required to prevent the precipitation of ZnS? Use K_{sp} (ZnS) = 1.25 × 10⁻²² and overall dissociation constant of H₂S, $K_{NET} = K_1K_2 = 1 \times 10^{-21}$.

Sol. For ZnS
$$K_{sp}(ZnS) = [Zn^{2+}] \times [S^{2-}] = 1.25 \times 10^{-22}$$

= $0.05 \times [S^{2-}] = 1.25 \times 10^{-22}$

$$[S^{2-}] = 25 \times 10^{-22}$$

For H₂S

H₂S
$$= 2H^{+} + S^{2-}$$

0.1M $= 25 \times 10^{-22}$
 $K_a = \frac{[H^{+}]^2[S^{2-}]}{[H_2S]} = 1 \times 10^{-21}$
 $= \frac{[H^{+}]^2 \times 25 \times 10^{-22}}{0.1} = 1 \times 10^{-21}$

$$[H^{+}]^{2} = \frac{1}{25}$$

$$[H^{+}] = \frac{1}{5}$$

$$[H^{+}] = 0.2 \text{ M}$$

JEE (MAIN) 2020 RESULT

Few things remain unchanged forever... So, is our tradition of delivering

Self-Earned & Owned Result

Success % of Eligibility to appearance

STUDENTS ELIGIBLE FOR JEE (ADVANCED) 2020

ALL INDIA RANKS (AIRs) IN TOP-200 FROM CLASSROOM

Classroom: 11047 | Distance: 3670

AVI KUMAR With us since Class 11th

SANKALP PARASHAR With us since Class 11th

STATE TOPPER **WEST BENGAL**

ACHINTYA NATH With us since Class 11th

UTKARSH P. SINGH With us since Class 10th

AARYAN K. GUPTA With us since Class 9th

SREEMANTI DEY With us since Class 11th

With us since Class 13th हिन्दी माध्यम विद्यार्थी

RAHUL KANOONGO DHANANJAY KEJRIWAL With us since Class 9th

PRAKHAR BANSAL With us since Class 11th

HARSH TRIVEDI With us since Class 8th

DARSHAN RAKHEWAR With us since Class 11th With us since Class 11th

JATIN K. GUPTA

MIR MOHAMMAD ASIF

KUSHAGRA GUPTA With us since Class 11th With us since Class 11th

RESULT HIGHLIGHTS

7 AIRs (AIR-53, 81, 91, 106, 113, 132, 142) in TOP-200 Distance (DLP)

41 Students (Classroom: 25 | Distance: 16) with 100 %tile in P/C/M

50 AIRs in TOP-500 (Classroom: 36 | Distance: 14)

109 AIRS in TOP-1000 (Classroom: 77 | Distance: 32)

(SC: AIR-4, 8 & 10 | ST: AIR-9) in TOP-10 Classroom