

JEE (ADVANCED) 2020

DATE: 27-09-2020

Questions & Solutions

PAPER-1 | SUBJECT: MATHEMATICS

PAPER-1: INSTRUCTIONS TO CANDIDATES

- Question Paper-1 has three (03) parts: Physics, Chemistry and Mathematics.
- Each part has a total eighteen (18) questions divided into three (03) sections (Section-1, Section-2 and Section-3)
- Total number of questions in Question Paper-1 are Fifty Four (54) and Maximum Marks are One Hundred Ninety Eight (198).

Type of Questions and Marking Schemes

SECTION-1 (Maximum Marks: 18)

- This section contains SIX (06) questions.
- Each question has FOUR options. ONLY ONE of these four options is the correct answer.
- · For each question, choose the correct option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme :

Full Marks : +3 If ONLY the correct option is chosen;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered).

Negative Marks : -1 In all other cases.

SECTION-2 (Maximum Marks: 24)

- This section contains SIX (06) questions.
- Each question has FOUR options. ONE OR MORE THAN ONE of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme.

Full Marks : +4 If only (all) the correct option(s) is (are) chosen.

Partial Marks: +3 If all the four options are correct but ONLY three options are chosen.

Partial Marks: +2 If three or more options are correct but ONLY two options are chosen and both of which are correct.

Partial Marks: +1 If two or more options are correct but ONLY one option is chosen and it is a correct option.

Zero Marks: **0** If none of the options is chosen (i.e. the question is unanswered).

Negative Marks: -2 In all other cases.

SECTION-3 (Maximum Marks: 24)

- This section contains SIX (06) questions. The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer. If the numerical value has more than two decimal places **truncate/round-off** the value to **TWO** decimal placed.
- Answer to each question will be evaluated according to the following marking scheme :

Full Marks : +4 If ONLY the correct numerical value is entered.

Zero Marks: **0** In all other cases.

Resonance Eduventures Limited

REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph.No. :** 0744-2777777, 0744-2777700 | **Toll Free :** 1800 258 5555 | **FAX No. :** +91-022-39167222 | **To Know more :** sms **RESO** at **56677**

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555 🔊 73400 10333 🧗 facebook.com/ResonanceEdu 💆 twitter.com/ResonanceEdu 🛣 www.youtube.com/resowatch

Many Dreamers... Many Achievers...

ADMISSION OPEN FOR SESSION 2020-21

ONLINE + OFFLINE PROGRAMS

TARGET

JEE (Main+Advanced) 2021 COURSE

VIJAY

TARGET

JEE (Main) 2021 COURSE

AJAY

TARGET

NEET 2021

COURSE

SAFAL

Scholarship upto 90%*

on JEE (Main) Rank,
NEET %ile
Score & Board%

To know your scholarship: sms RESO <space> SCH & send it to 56677

For Class 7th to 12th+

Salient features

Live Interactive Classes & Recorded Lectures

Online Study Material & DPPs (Daily Practice Problems)

Discussion & Doubt Clearing Classes (Every week for each subject)

CBT -Computer Based Test & Performance Analysis

Discussion
Forum for
Doubt Clearing
& Additional
Learning

Toll Free: 1800 258 5555 | Visit us: www.resonance.ac.in

^{*}Presently classes would be offered Online and Offline classes would resume as per Government Guidelines.

MATHEMATICS

SECTION-1 (Maximum Marks: 18)

- This section contains SIX (06) questions.
- Each question has FOUR options. ONLY ONE of these four options is the correct answer.
- For each question, choose the correct option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme :

Full Marks

+3 If ONLY the correct option is chosen:

Zero Marks

0 If none of the options is chosen (i.e. the question is unanswered).

Negative Marks

-1 In all other cases.

Suppose a, b denote the distinct real roots of the quadratic polynomial $x^2 + 20x - 2020$ and suppose c, d 1. denote the distinct complex roots of the quadratic polynomial x² – 20x + 2020, then the value of

$$ac(a-c)+ad(a-d)+bc(b-c)+bd(b-d)$$
 is

- (A) 0
- (B) 8000
- (C) 8080
- (D) 16000

Ans. (D)

Sol. Now ac(a - c) + ad(a - d) + bc (b - c) + bd (b - d)

$$= a^2 (c + d) - a (c^2 + d^2) + b^2 (c + d) - b (c^2 + d^2)$$

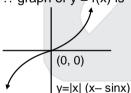
$$= (a^2 + b^2) (c + d) - (a + b) (c^2 + d^2)$$

=
$$\{(a + b)^2 - 2ab\} (c + d) - (a + b) \{(c + d)^2 - 2cd\}$$

- 2. If the function $f: R \to R$ is defined by $f(x) = |x| (x - \sin x)$, then which of the following statements is TRUE?
 - (A) f is one-one, but NOT onto
- (B) f is onto, but NOT one-one

(D) f is NEITHER one-one NOR onto

- (C) f is BOTH one-one and onto
- Ans. (C)
- $f(x)=|x|(x-\sin x)$ is odd function Sol.


$$\therefore f(-x) = -f(x)$$

Now
$$f(x) = x^2 - x \sin x \ x \ge 0$$

$$f'(x) = 2x - x \cos x - \sin x$$

$$f'(x) = (x - \sin x) + x (1 - \cos x) > 0$$

 \therefore graph of y = f(x) is

one-one and onto

3. Let the functions : $R \rightarrow R$ and $g : R \rightarrow R$ be defined by

$$f(x)=e^{x-1}-e^{-|x-1|}$$
 and $g(x)=\frac{1}{2}(e^{x-1}+e^{1-x})$

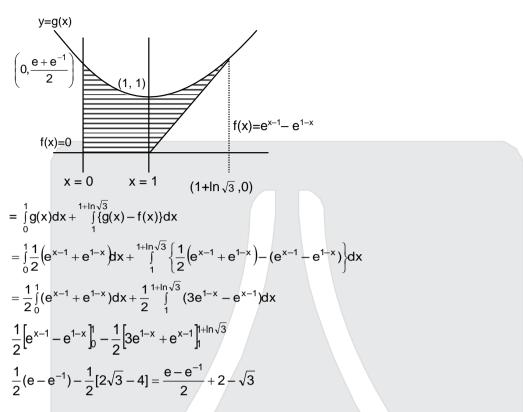
Then the area of the region in the first quadrant bounded by the curves y = f(x), y = g(x)and x = 0 is

(A)
$$\left(2-\sqrt{3}\right)+\frac{1}{2}\left(e-e^{-1}\right)$$

(B)
$$\left(2+\sqrt{3}\right)+\frac{1}{2}\left(e-e^{-1}\right)$$

(C)
$$\left(2-\sqrt{3}\right)+\frac{1}{2}\left(e+e^{-1}\right)$$

(D)
$$(2+\sqrt{3})+\frac{1}{2}(e+e^{-1})$$


Ans. (A)

Resonance Eduventures Ltd.

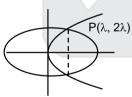
Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029 Toll Free: 1800 258 5555 🔊 7340010333 f facebook.com/ResonanceEdu 💆 twitter.com/ResonanceEdu 🔠 www.youtube.com/resowatch

Sol.

Let a, b and λ be positive real numbers. Suppose P is an end point of the latus rectum of the parabola $y^2 = 4\lambda x$, and suppose the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ passes through the point P. If the tangents to the parabola and the ellipse at the point P are perpendicular to each other, then the eccentricity of the ellipse is

(A) $\frac{1}{\sqrt{2}}$


(A)

(B) $\frac{1}{2}$

(C) $\frac{1}{3}$

(D) $\frac{2}{5}$

Ans. Sol.

$$y^2 = 4\lambda x \Rightarrow \left(\frac{dy}{dx}\right)_A = 1 = m_1$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \Rightarrow \left(\frac{dy}{dx}\right)_{\Delta} = \frac{-b^2}{2a^2} = m_2$$

$$\Rightarrow$$
 $m_1.m_2 = -1 \Rightarrow b^2 = 2a^2$

and
$$a^2 = b^2 (1 - e^2)$$

$$\Rightarrow 1 = 2(1 - e^2)$$

$$e = \frac{1}{\sqrt{2}}$$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

Let C_1 and C_2 be two biased coins such that the probabilities of getting head in a single toss are 5.

 $\frac{1}{3}$, respectively. Suppose α is the number of heads that appear when C_1 is tossed twice, independently,

and suppose β is the number of heads that appear when C_2 is tossed twice, independently. Then the probability that the roots of the quadratic polynomial $x^2 - \alpha x + \beta$ are real and equal, is

- (A) $\frac{40}{81}$
- (B) $\frac{20}{81}$
- (C) $\frac{1}{2}$

Ans. (B)

Sol. Roots of equation $x^2 - \alpha x + \beta = 0$ are real and equal

when
$$D = 0$$

$$\alpha^2 - 4\beta = 0$$

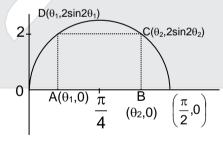
$$\alpha^2 = 4\beta$$

$$(\alpha = 0, \beta = 0)$$
 or $(\alpha = 2, \beta = 1)$

prob.
$${}^{2}C_{0}\left(\frac{1}{3}\right)^{2}.{}^{2}C_{0}\left(\frac{2}{3}\right)^{2} + {}^{2}C_{2}\left(\frac{2}{3}\right)^{2}{}^{2}C_{1}\left(\frac{1}{3}\right)^{1}\left(\frac{2}{3}\right)$$

$$=\frac{1}{9}\times\frac{4}{9}+\frac{4}{9}\times\frac{4}{9}=\frac{20}{81}$$

6. Consider all rectangles lying in the region


$$\left\{ (x,y) \in R \times R : 0 \le x \le \frac{\pi}{2} \text{ and } 0 \le y \le 2 \sin(2x) \right\}$$

and having one side on the x-axis. The area of the rectangle which has the maximum perimeter among all such rectangles, is

- (A) $\frac{3\pi}{}$

- (D) $\frac{\pi\sqrt{3}}{2}$

Ans. (C) Sol.

$$2\sin 2\theta_1 = 2\sin 2\theta_2$$

$$2\theta_1 = \pi - 2\theta_2$$

$$\theta_2 = \frac{\pi}{2} - \theta_1 \qquad \dots (1)$$

Now perimeter $p(\theta_1, \theta_2) = 2\{(\theta_2 - \theta_1) + 2\sin 2\theta_1\}$

$$p(\theta_1) = 2\left[\frac{\pi}{2} - 2\theta_1 + 2\sin 2\theta_1\right]$$

$$p'(\theta_1) = 2(-2 + 4\cos 2\theta_1)$$

$$p''(\theta_1) = 2(-8 \sin 2\theta_1)$$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029 Toll Free: 1800 258 5555 🔊 7340010333 f facebook.com/ResonanceEdu 💆 twitter.com/ResonanceEdu 🛗 www.youtube.com/resowatch

for maximum perimeter

$$p'(\theta_1) = 0$$
 and $P''(\theta_1) < 0$

$$\cos 2\theta_1 = \frac{1}{2} \Rightarrow 2\theta_1 = \frac{\pi}{3} \Rightarrow \theta_1 = \frac{\pi}{6}$$

$$\theta_1 = \frac{\pi}{6}$$

Now area at
$$\theta_1 = \frac{\pi}{6}$$

$$= (\theta_2 - \theta_1) \times 2\sin 2\theta_1$$

$$= \left(\frac{\pi}{2} - 2\theta_1\right).2\sin 2\theta_1$$

$$=\left(\frac{\pi}{2} - \frac{\pi}{3}\right) \times 2\sin\frac{\pi}{3} = \frac{\pi}{6}.\sqrt{3} = \frac{\pi}{2\sqrt{3}}$$

SECTION-2 (Maximum Marks: 24)

- This section contains SIX (06) questions.
- Each question has FOUR options. ONE OR MORE THAN ONE of these four option(s) is (are) correct answer(s)
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme.

Full Marks +4 If only (all) the correct option(s) is (are) chosen.

Partial Marks: +3 If all the four options are correct but ONLY three options are chosen.

Partial Marks: +2 If three or more options are correct but ONLY two options are chosen and both of which are correct.

Partial Marks: +1 If two or more options are correct but ONLY one option is chosen and it is a correct option.

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered).

Negative Marks: -2 In all other cases.

- 7. Let the function $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^3 - x^2 + (x - 1) \sin x$ and let $g: \mathbb{R} \to \mathbb{R}$ be an arbitrary function. Let f g: R \rightarrow R be the product function defined by (fg)(x) = f(x)g(x). Then which of the following statements is/are TRUE?
 - (A) If g is continuous at x = 1, then fg is differentiable at x = 1
 - (B) If fg is differentiable at x = 1, then g is continuous at x = 1
 - (C) If g is differentiable at x = 1, then f g is differentiable at x = 1
 - (D) If fg is differentiable at x = 1, then g is differentiable at x = 1
- Ans. (A,C)
- Sol. Differentiability of fg at x = 1

$$(fg)'(1) = \lim_{h\to 0} \frac{fg(1+h)-fg(1)}{h}$$

$$\lim_{h\to 0} \frac{\left\{ (1+h)^3 (1+h)^2 + h \sin(1+h) \right\} g(1+h) - 0}{h}$$

$$\lim_{h \to 0} \left\{ (1+h)^2 + \sin(1+h) \right\} g(1+h)$$

If q(x) is continuous at x = 1

then
$$\lim_{h\to 0} g(1+h) = g(1)$$

so
$$\lim_{h\to 0} (fg)'(1) = (1+\sin 1)g(1)$$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

8. Let M be a 3×3 invertible matrix with real entries and let I denote the 3×3 identity matrix. If $M^{-1} = adj(adjM)$, then which of the following statements is/are ALWAYS TRUE?

(A) M = I

- (B) $\det M = 1$
- (C) $M^2 = I$
- (D) $(adj M)^2 = I$

Ans. (BCD)

Sol. M^{-1} = Adj (Adj M)

 $Adj M.M^{-1} = Adj M. Adj (AdjM)$

 $Adj M. M^{-1} = |Adj M| I$

 $Adj M = |M|^2 M$

.....(1)

 $|Adj M| = ||M|^2 M| = |M|^6 |M|$

 $|M|^2 = |M|^7 \Rightarrow |M| \neq 0, |M| = 1$

....(2)

by equation (1)

Adj M = M

M.AdjM= M²

 $|M| I = M^2 \Rightarrow M^2 = I$

again by (1) (2) Adj M = M

 $(Adj M)^2 = M^2 = I$

9. Let S be the set of all complex numbers Z satisfying $|z^2 + z + 1| = 1$. Then which of the following statements is/are TRUE?

(A)
$$\left|z + \frac{1}{2}\right| \le \frac{1}{2}$$
 for all $z \in S$

(B)
$$|z| \le 2$$
 for all $z \in S$

(C)
$$\left|z + \frac{1}{2}\right| \ge \frac{1}{2}$$
 for all $z \in S$

(D) The set S has exactly four elements.

Ans. (BC)

Sol.
$$Z^2 + Z + 1 = e^{i\theta}$$

$$\theta \in (-\pi, \pi]$$

$$Z^2 + Z + 1 - e^{i\theta} = 0$$

$$Z = \frac{-1 \pm \sqrt{4e^{i\theta} - 3}}{2}$$

$$Z + \frac{1}{2} = \pm \sqrt{(4\cos\theta - 3) + i4\sin\theta}$$

$$\left| Z + \frac{1}{2} \right| = [(4\cos\theta - 3)^2 + (4\sin\theta)^2]^{1/4}$$

Now $|25 - 24\cos\theta|^{1/4} \in [1, \sqrt{7}]$

$$\left|Z+\frac{1}{2}\right| \in [1, \sqrt{7}]$$

option (C) correct

By equation (i)

$$|2Z| \le 1 + \sqrt{|4e^{i\theta} - 3|}$$

$$|2Z| \le 1 + (25 - 24\cos\theta)^{1/4}$$

$$|2Z| \le 1 + \sqrt{7} < 4$$

 $|Z| \le 2$ option (B) is correct

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555 | 7340010333 | facebook.com/ResonanceEdu | www.youtube.com/resowatch | blog.resonance.ac.in | Cin: U80302RJ2007PLC024029

Let x, γ and z be positive real numbers. Suppose x, γ and z are the lengths of the sides of a triangle opposite to its angles X, Y and Z, respectively. If

$$tan\frac{X}{2} + tan\frac{Z}{2} = \frac{2y}{x+y+z}$$

then which of the following statements is/are TRUE?

(A)
$$2Y = X + Z$$

(C)
$$\tan \frac{X}{2} = \frac{x}{y+z}$$

(C)
$$\tan \frac{X}{2} = \frac{x}{y+z}$$
 (D) $x^2 + z^2 - y^2 = xz$

Ans.

Sol.
$$\tan \frac{X}{2} + \tan \frac{Z}{2} = \frac{2y}{x + y + z}$$

$$\frac{\Delta}{s(s-x)} + \frac{\Delta}{s(s-z)} = \frac{y}{s} \Rightarrow \Delta = (s-x) (s-z)$$

$$\Delta^2 = s(s - x) (s - y) (s - z) = (s - x)^2 (s - z)^2$$

$$\Rightarrow y^2 = x^2 + z^2 \Rightarrow \angle Y = 90^\circ$$

$$\angle Y = \angle X + \angle Z$$
 option B is correct

Now
$$\tan \frac{X}{2} = \frac{\Delta}{s(s-x)} = \frac{4\Delta}{(y+z+x)(y+z-x)} = \frac{4 \times \frac{1}{2} xz}{(y+z)^2 - x^2}$$

$$= \frac{2xz}{2z^2 + 2yz} = \frac{x}{z + y}$$
 option C is correct

Let L₁ and L₂ be the following straight lines. 11.

$$L_1: \frac{x-1}{1} = \frac{y}{-1} = \frac{z-1}{3}$$
 and $L_2: \frac{x-1}{-3} = \frac{y}{-1} = \frac{z-1}{1}$

Suppose the straight line L: $\frac{x-\alpha}{\ell} = \frac{y-1}{m} = \frac{z-\gamma}{-2}$ lies in the plane containing L₁ and L₂, and passes

through the point of intersection of L₁ and L₂. If the line L bisects the acute angle between the lines L₁ and L2, then which of the following statements is/are TRUE?

(A)
$$\alpha - \gamma = 3$$

(B)
$$\ell + m = 2$$

(C)
$$\alpha - \gamma = 1$$

(D)
$$\ell + m = 0$$

Ans.

Sol.
$$L_1: \frac{x-1}{1} = \frac{y}{-1} = \frac{z-1}{3} = \lambda \implies (\lambda + 1, -\lambda 3\lambda + 1)$$

&
$$\frac{x-1}{-3} = \frac{y}{-1} = \frac{z-1}{1} = \mu \Rightarrow (-3\mu + 1, -\mu, \mu + 1)$$

Both interacts \Rightarrow $(\lambda+1,-\lambda,3\lambda+1)=(-3\mu+1,-\mu,\mu+1)$

$$\Rightarrow \lambda {+} 3\mu {=} 0$$

$$\lambda = \mu$$

$$\Rightarrow \lambda = \mu = 0$$

and
$$3\lambda = \mu$$

Both line passes through (1,0,1)

Direction ratio of the acute angle bisector between two lines is (-1, -1, -2)

Hence equation of acute angle bisector between two lines L₁ & L₂

$$\frac{x-1}{-1} = \frac{y-0}{-1} = \frac{z-1}{2} \implies \frac{x-\alpha}{\ell} = \frac{y-1}{m} = \frac{z-\gamma}{-2}$$

$$\Rightarrow \alpha = 2 \& \gamma = -1$$

and
$$\ell = 1$$
, $m = 1 \Rightarrow \alpha - \gamma = 3$, $\ell + m = 2$

A & B correct.

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029 Toll Free : 1800 258 5555 🔊 7340010333 f facebook.com/ResonanceEdu 💆 twitter.com/ResonanceEdu 🛗 www.youtube.com/resowatch ablog.resonance.ac.in

12. Which of the following inequalities is/are TRUE?

(A)
$$\int_{1}^{1} x \cos x \, dx \ge \frac{3}{8}$$

(B)
$$\int_{0}^{1} x \sin x \, dx \ge \frac{3}{10}$$

(C)
$$\int_{1}^{1} x^{2} \cos x \, dx \ge \frac{1}{2}$$

(D)
$$\int_{0}^{1} x^{2} \sin x \, dx \ge \frac{2}{9}$$

Ans. (ABD)

Sol.
$$\cos x \approx 1 - \frac{x^2}{2} + \frac{x^4}{4} \dots$$

$$\Rightarrow \cos x \ge 1 - \frac{x^2}{2}$$

$$x \cos x \ge x - \frac{x^3}{2}$$

$$\int_{0}^{1} x \cos x \, dx \ge \frac{1}{2} - \frac{1}{8} = \frac{3}{8} \quad \text{(A) correct}$$

Now

$$\sin x \approx x - \frac{x^3}{3!} + \frac{x^5}{5!}$$

$$\sin x \ge x - \frac{x^3}{3!}$$

$$x\sin x \ge x^2 - \frac{x^4}{6}$$

$$\int_{0}^{1} x \sin x \, dx \ge \frac{1}{3} - \frac{1}{6} \frac{1}{5} = \frac{9}{30} = \frac{3}{10}$$

$$x^2\cos x \ge x^2 \left(1 - \frac{x^2}{2}\right)$$

$$x^2\cos x \ge x^2 - \frac{1}{2}x^4$$

$$\int_{0}^{1} x^{2} \cos x \, dx \ge \frac{1}{3} - \frac{1}{2} \frac{1}{5} = \frac{7}{30}$$
 (C) Wrong

Now
$$x^2 \sin x \ge x^2 \left(x - \frac{x^3}{3!} \right)$$

$$\int_{0}^{1} x^{2} \sin x \, dx \ge \frac{1}{4} - \frac{1}{6} \cdot \frac{1}{6} = \frac{8}{36} = \frac{2}{9}$$
 (D) Correct s

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 **| FAX No.:** +91-022-39167222

SECTION-3 (Maximum Marks: 24)

- This section contains SIX (06) questions. The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer. If the numerical value has more than two decimal places truncate/round-off the value to TWO decimal placed.
- Answer to each question will be evaluated according to the following marking scheme :

Full Marks: +4 If ONLY the correct numerical value is entered.

Zero Marks: 0 In all other cases.

Let m be the minimum possible value of $\log_3(3^{y_1} + 3^{y_2} + 3^{y_3})$, where y_1 , y_2 , y_3 are real numbers for which $y_1 + y_2 + y_3 = 9$. Let M be the maximum possible value of $(\log_3 x_1 + \log_3 x_2 + \log_3 x_3)$, where x_1 , x_2 , x_3 are positive real numbers for which $x_1 + x_2 + x_3 = 9$. Then the value of $\log_2(m^3) + \log_3(M^2)$ is

Ans. 8

Sol.
$$\left(\frac{3^{y_1} + 3^{y_2} + 3^{y_3}}{3}\right) \ge \left(3^{y_1} \cdot 3^{y_2} \cdot 3^{y_3}\right)^{1/3} = \left(3^{y_1 + y_2 + y_3}\right)^{1/3}$$

$$\Rightarrow 3^{y_1 + y_2 + y_3} \ge 81 \text{ so m} = \log_3(81) = 4$$

$$\Rightarrow \log_3 x_1 + \log_3 x_2 + \log_3 x_3 = \log_3(x_1 \cdot x_2 \cdot x_3)$$

$$\therefore \frac{x_1 + x_2 + x_3}{3} \ge (x_1 \cdot x_2 \cdot x_3)^{1/3} \Rightarrow x_1 x_2 x_3 \le 27$$

 $M = log_3 27 = 3$ so $log_2(m^3) + log_3(M^2) = 8$

Let a₁, a₂, a₃,... be a sequence of positive integers in arithmetic progression with common difference
2. Also, let b₁, b₂, b₃,.... be a sequence of positive integers in geometric progression with common ratio
2. If a₁ = b₁ = c, then the number of all possible values of c, for which the equality
2 (a₁ + a₂ + + a_n) = b₁ + b₂ + + b_n

holds for some positive integer n, is _____

Ans.

Sol.
$$2[a_1 + a_2 + \dots + a_n] = b_1 + b_2 + \dots + b_n$$

$$\Rightarrow 2\frac{n}{2}[2a_1 + (n-1).2] = \frac{b.(2^n - 1)}{2-1}$$

$$\Rightarrow \qquad n [2c + 2n - 2] = c(2^n - 1)$$

⇒
$$2n [c + n - 1] = c(2^n - 1)$$

⇒ $c (2^n - 2n - 1] = 2n^2 - 2n$

$$\Rightarrow c = \frac{2n^2 - 2n}{2^n - 2n - 1} \ge 1 \qquad(1)$$

$$\Rightarrow$$
 2n (n -1) \geq 2ⁿ - 2n - 1

$$\Rightarrow$$
 $2n^2 + 1 \ge 2^n \Rightarrow n \le 6$

now put n = 1, 2, ...6 in equation (1) and using $c \in I$ we get c = 12, when n = 3 (only one value of c)

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

$$f(x) = (3 - \sin(2\pi x)) \sin\left(\pi x - \frac{\pi}{4}\right) - \sin\left(3\pi x + \frac{\pi}{4}\right).$$

If $\alpha, \beta \in [0, 2]$ are such that $\{x \in [0, 2] : f(x) \ge 0\} = [\alpha, \beta]$, then the value of $\beta - \alpha$ is _____.

Ans.

Sol. $3-\sin 2\pi x > 0 \ \forall \ x$

$$\Rightarrow \sin\left(\pi x - \frac{\pi}{4}\right) - \sin\left(3\pi + \frac{\pi}{4}\right) \ge 0$$

$$\Rightarrow 2\sin\left(-\pi \times -\frac{\pi}{4}\right)\cos(2\pi x) \ge 0$$

$$\Rightarrow 2\sin(\pi x + \frac{\pi}{4})\cos 2\pi \le 0$$

Case I
$$\sin\left(\pi x + \frac{\pi}{4}\right) \ge 0$$
 and $\cos 2\pi x \le 0$

$$\pi \times + \frac{\pi}{4} \in \left[\frac{\pi}{4}, \pi\right] \cup \left[2\pi, 2\pi + \frac{\pi}{4}\right] \text{ and } \mathbf{x} \in \left[\frac{1}{4}, \frac{3}{4}\right] \cup \left[\frac{5}{4}, \frac{7}{4}\right]$$

$$\Rightarrow x \in \left[0, \frac{3}{4}\right] \cup \left[\frac{7}{4}, 2\right] \text{ and } x \in \left[\frac{1}{4}, \frac{3}{4}\right] \cup \left[\frac{5}{4}, \frac{7}{4}\right]$$

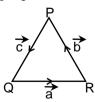
$$\Rightarrow x \in \left[\frac{1}{4}, \frac{3}{4}\right] \quad \dots (i)$$

Case II $\sin\left(\pi x + \frac{\pi}{4}\right) < 0$ and $\cos 2\pi x > 0$

$$\Rightarrow x \in \left[\frac{3}{4}, \frac{7}{4}\right] \text{ and } \left[0, \frac{1}{4}\right] \cup \left[\frac{3}{4}, \frac{5}{4}\right] \cup \left[\frac{7}{4}, 2\right]$$

$$\Rightarrow x \in \left(\frac{3}{4}, \frac{5}{4}\right) \dots (ii)$$

Hence
$$x \in \left[\frac{1}{4}, \frac{5}{4}\right]$$


16. In a triangle PQR, let $\vec{a} = \overrightarrow{QR}$, $\vec{b} = \overrightarrow{RP}$ and $\vec{c} = \overrightarrow{PQ}$.

If
$$|\vec{a}| = 3$$
, $|\vec{b}| = 4$ and $\frac{\vec{a} \cdot (\vec{c} - \vec{b})}{\vec{c} \cdot (\vec{a} - \vec{b})} = \frac{|\vec{a}|}{|\vec{a}| + |\vec{b}|}$

then the value of $|\vec{a} \times \vec{b}|^2$ is _____

Ans. 108

Sol.
$$\vec{a} + \vec{b} + \vec{c} = 0$$

$$\frac{\vec{a}.(\vec{c}-\vec{b})}{\vec{c}.(\vec{a}-\vec{b})} = \frac{-(\vec{b}+\vec{c}).(\vec{c}-\vec{b})}{-(\vec{a}+\vec{b}).(\vec{a}-\vec{b})} = \frac{\mid\vec{a}\mid}{\mid\vec{a}\mid+\mid\vec{b}\mid}$$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

PAGE#9

$$\Rightarrow \frac{|\vec{c}|^2 - |\vec{b}|^2}{|\vec{a}|^2 - |\vec{b}|^2} = \frac{3}{3+4} = \frac{3}{7}$$

$$\Rightarrow |\vec{c}|^2 = 13$$

$$\vec{a} + \vec{b} = -\vec{c} \Rightarrow |\vec{a} + \vec{b}|^2 = |-\vec{c}|^2$$

$$\Rightarrow |\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a}.\vec{b} = |\vec{c}|^2$$

$$\Rightarrow 9 + 16 + 2(\vec{a}.\vec{b}) = 13$$

$$\vec{a}.\vec{b} = -6$$

$$|\vec{a} \times \vec{b}|^2 + (\vec{a}.\vec{b}) = |\vec{a}|^2 |\vec{b}|^2$$

$$|\vec{a} \times \vec{b}| + (\vec{a}.\vec{b}) = |\vec{a}| \cdot |\vec{b}|$$

 $|\vec{a} \times \vec{b}|^2 + 36 = (9) (16) \implies |\vec{a} \times \vec{b}|^2 = 108$

17. For a polynomial g(x) with real coefficients, let m_0 denote the number of distinct real roots of g(x). Suppose S is the set of polynomials with real coefficients defined by

$$S = \{(x^2 - 1)^2 (a_0 + a_1x + a_2x^2 + a_3x^3) : a_0, a_1, a_2, a_3 \in \mathbb{R} \}$$

For a polynomial f, let f'and f" denote its first and second order derivatives, respectively. Then the minimum possible value of $(m_{f'} + m_{f''})$, where $f \in S$, is _____

Ans.

Sol. f(x) is 7 degree polynomial in x

$$f'(x) = 2(x^2 - 1) 2x (a_0 + a_1x + a_2x^2 + a_3x^3) + (x^2 - 1)^2 (a_1 + 2a_2x + 3a_3x^2)$$

$$f'(x) = (x^2 - 1) [4x(a_0 + a_1x + a_2x^2 + a_3x^3) + (x^2 - 1) (a_1 + 2a_2x + 3a_3x^2)]s$$

- f'(x) = 0 has at least 2 real roots
- f'(x) is 6 degree polynomial in x
- f"(x) is 5 degree polynomial in x

has at least 1 real root.

so minimum value of m + n = 3

18. Let e denote the base of the natural logarithm. The value of the real number a for which the right hand limit

$$\lim_{x\to 0^+} \frac{(1-x)^{1/x}-e^{-1}}{x^a}$$

is equal to a nonzero real number, is

Ans.

Sol.
$$\lim_{x \to 0^+} \frac{(1-x)^{1/x}}{ax^{a-1}} \frac{d \left[\frac{\ell n (1-x)}{x} \right]}{dx} = \lim_{x \to 0^+} \frac{(1-x)^{1/x}}{ax^{a-1}} \left[+ \frac{1}{(x)(x-1)} - \frac{\ell n (1-x)}{x^2} \right]$$

$$= \lim_{x \to 0^+} \frac{(1-x)^{1/x}}{a \, x^{a-1}} \, \left[\frac{x - (x-1) \ell n (1-x)}{x^2 (x-1)} \right]$$

$$\lim_{x\to 0^+} \frac{(1-x)^{1/x} \left\{ x + (x-1)(x + \frac{x^2}{2} + \frac{x^3}{3}) \right\}}{-a(1-x)x^{a+1}}$$

$$= \lim_{x \to 0} \frac{(1-x)^{1/x} \left\{ \frac{x^2}{2} + x^3 \left(\frac{1}{2} - \frac{1}{3} \right) + x^4 \left(\frac{1}{3} - \frac{1}{4} \right) + \dots \right\}}{-a(1-x)x^{a+1}}$$

which is real number iff $a + 1 = 2 \Rightarrow a = 1$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

JEE (MAIN) 2020 RESULT

Few things remain unchanged forever... So, is our tradition of delivering

Self-Earned & Owned Result

Success % of Eligibility to appearance

Classroom: 11047 | Distance: 3670

STUDENTS ELIGIBLE FOR JEE (ADVANCED) 2020

ALL INDIA RANKS (AIRs) IN TOP-200 FROM CLASSROOM

AVI KUMAR With us since Class 11th

SANKALP PARASHAR With us since Class 11th

STATE TOPPER **WEST BENGAL**

ACHINTYA NATH With us since Class 11th

UTKARSH P. SINGH With us since Class 10th

AARYAN K. GUPTA With us since Class 9th

SREEMANTI DEY With us since Class 11th

With us since Class 13th हिन्दी माध्यम विद्यार्थी

RAHUL KANOONGO DHANANJAY KEJRIWAL With us since Class 9th

PRAKHAR BANSAL With us since Class 11th

HARSH TRIVEDI With us since Class 8th

DARSHAN RAKHEWAR With us since Class 11th With us since Class 11th

JATIN K. GUPTA

MIR MOHAMMAD ASIF

KUSHAGRA GUPTA With us since Class 11th With us since Class 11th

RESULT HIGHLIGHTS

7 AIRs (AIR-53, 81, 91, 106, 113, 132, 142) in TOP-200 Distance (DLP)

41 Students (Classroom: 25 | Distance: 16) with 100 %tile in P/C/M

50 AIRs in TOP-500 (Classroom: 36 | Distance: 14)

109 AIRS in TOP-1000 (Classroom: 77 | Distance: 32)

(SC: AIR-4, 8 & 10 | ST: AIR-9) in TOP-10 Classroom