PAPER (पेपर)- 2

PAPER-2 : INSTRUCTIONS TO CANDIDATES

- This question paper has three (03) parts: PART-I: Physics, PART-II: Chemistry and PART-III: Mathematics.
- Each part has total of eighteen (18) questions divided into three (03) Sections (Section-1, Section-2 and Section-3).
- Total number of questions in Paper-2 : Fifty four (54).
- Paper-2 Maximum Marks : One Hundred Eighty (180).

Instructions for Section-1: Questions and Marking Scheme

SECTION-1 (Maximum Marks : 24)

- This section contains SIX (06) questions.
- Each question has FOUR options for correct answer(s). ONE OR MORE THAN ONE of these four option(s) is (are) correct option(s).
- For each question, choose the correct option(s) to answer the question.
- Answer to each question will be evaluated according to the following marking scheme :

Full Marks : $\quad \mathbf{+ 4}$ If only (all) the correct option(s) is (are) chosen.
Partial Marks: $\quad+3$ If all the four options are correct but ONLY three options are chosen.
Partial Marks: $\quad+\mathbf{2}$ If three or more options are correct but ONLY two options are chosen, both of which are correct options. Partial Marks: $\quad+\mathbf{1}$ If two or more options are correct but ONLY one option is chosen and it is a correct option.

Zero Marks : $\quad \mathbf{0}$ If none of the options is chosen (i.e. the question is unanswered).
Negative Marks: $\quad \mathbf{- 2}$ In all other cases.

- For Example : If first, third and fourth are the ONLY three correct options for a question with second option being an incorrect option; selecting only two of the three correct options (e.g. the first and fourth options), without selecting any incorrect option (second option in this case), will result in +2 marks. Selecting only one of the three correct options (either first or third or fourth option), without selecting any incorrect option (second option in this case), will result in +1 marks. Selecting any incorrect option(s) (second option in this case), with or without selection of any correct option(s) will result in -2 marks.

Answering Section-1 Questions :

- To select the option(s), using the mouse click on the corresponding button(s) of the option(s).
- To deselect chosen option(s), click on the button(s) of the chosen option(s) again or click on the Clear Response button to clear all the chosen options.
- To change the option(s) of a previously answered question, if required, first click on the Clear Response button to clear all the chosen options and then select the new option(s).
- To mark a question ONLY for review (i.e. without answering it), click on the Mark for Review \& Next button.
- To mark a question for review (after answering it), click on Mark for Review \& Next button - answered question which is also marked for review will be evaluated.
- To save the answer, click on the Save \& Next button - the answered question will be evaluated.

Resonance Eduventures Ltd.

Registered \& Corporate Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Toll Free: 18002585555| Fax: +91-022-39167222| 08003444888 Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in |CIN: U80302RJ2007PLC024029

SECTION-2 (Maximum Marks : 24)

- This section contains EIGHT (08) questions. The answer to each question is NUMERICAL VALUE.
- For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 6.25, $7.00,-0.33,-0.30,30.27,-127.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme :

Full Marks : +3 If ONLY the correct numerical value is entered as answer.
Zero Marks : 0 In all other cases.

Answering Section-2 Questions :

- Using the attached computer mouse, click on numbers (and/or symbols) on the on-screen virtual numeric keypad to enter the numerical value as answer in the space provided for answer.
- To change the answer, if required, first click on the Clear Response button to clear the entered answer and then enter the new numerical value.
- To mark a question ONLY for review (i.e. answering it), click on Mark for Review \& Next button - the answered question which is also marked for review will be evaluated.
- To mark a question for review (after answering it), click Mark for Review \& Next button - the answered question which is also marked for review will be evaluated.
- To save the answer, click on the Save \& Next button - the answered question will be evaluated.

Instructions for Section-3 : Questions and Marking Scheme

SECTION-3 (Maximum Marks : 12)

- This section contains FOUR (04) questions.
- Each question has TWO (02) matching lists ; LIST-I and LIST-II
- FOUR options are given representing matching of elements from LIST-I and LIST-II. ONLY ONE of these four each question, choose the option, choose the option corresponding to the correct matching.
- For each question, mark will be awarded according to the following marking scheme :

Full Marks : $\quad \mathbf{+ 3}$ If ONLY the option corresponding to the correct matching is chosen.
Zero Marks : $\quad \mathbf{0}$ If none of the options is chosen (i.e. the question is unanswered).
Negative Marks :
$\mathbf{- 1}$ In all other cases.

Answering Section-3 Questions :

- To select an option, using the mouse click on the corresponding button of the option.
- To deselect the chosen answer, click on the button of the chosen option again or click on the Clear Response button.
- To change the chosen answer, click on the button of another option.
- To mark a question ONLY for review (i.e. without answering it), click on Mark for Review \& Next button.
- To mark a question for review (after answering it), click on Mark for Review \& Next button - the answered which is also marked for review will be evaluated.

To save the answer, click on the Save \& Next button - the answered question will be evaluated.

Resonance Eduventures Ltd.

Registered \& Corporate Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Toll Free: 18002585555 | Fax: +91-022-39167222| © 08003444888 Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

J EE (ADVANCED) 2018 | DATE : 20-05-2018 | PAPER-2 | MATHEMATICS

PART : III MATHEMATICS

SECTION 1 (Maximum Marks: 24)

- This section contains SIX (06) questions.
- Each question has FOUR options for correct answer(s). ONE OR MORE THAN ONE of these four option(s) is (are) correct option(s).
- For each question, choose the correct option(s) to answer the question.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks	$:+\mathbf{4}$	If only (all) the correct option(s) is (are) chosen.
Partial Marks	$:+\mathbf{+ 3}$	If all the four options are correct but ONLY three options are chosen.
Partial Marks	$:+\mathbf{+ 2}$	If three or more options are correct but ONLY two options are chosen, both of which are correct options.
Partial Marks	$:+\mathbf{+ 1}$	If two or more options are correct but ONLY one option is chosen and it is a correct option.
Zero Marks	$: \mathbf{0}$	If none of the options is chosen (i.e. the question is unanswered).
Negative Marks	$: \mathbf{- 2}$	In all other cases.

For Example: If first, third and fourth are the ONLY three correct options for a question with second option being an incorrect option; selecting only all the three correct options will result in +4 marks. Selecting only two of the three correct options (e.g. the first and fourth options), without selecting any incorrect option (second option in this case), will result in +2 marks. Selecting only one of the three correct options (either first or third or fourth option), without selecting any incorrect option (second option in this case), will result in +1 marks. Selecting any incorrect option(s) (second option in this case), with or without selection of any correct option(s) will result in -2 marks.

1. For any positive integer n, define $f_{n}:(0, \infty) \rightarrow R$ as
$f_{n}(x)=\sum_{j=1}^{n} \tan ^{-1}\left(\frac{1}{1+(x+j)(x+j-1)}\right)$ for all $x \in(0, \infty)$.
(Here, the inverse trigonometric function $\tan ^{-1} x$ assumes values in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$)
Then, which of the following statement(s) is (are) TRUE ?
(A) $\sum_{\mathrm{j}=1}^{5} \tan ^{2}\left(\mathrm{f}_{\mathrm{j}}(0)\right)=55$
(B) $\sum_{j=1}^{10}\left(1+f_{j}^{\prime}(0)\right) \sec ^{2}\left(f_{j}(0)\right)=10$
(C) For any fixed positive integer n, $\lim _{x \rightarrow \infty} \tan \left(f_{n}(x)\right)=\frac{1}{n}$
(D) For any fixed positive integer n, $\lim _{x \rightarrow \infty} \sec ^{2}\left(f_{n}(x)\right)=1$

Ans. (D)

Resonance Eduventures Ltd.

REG. \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph.No. : +91-744-3012222, 6635555 | To Know more : sms RESO at 56677
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

Sol. $\quad f_{n}(x)=\sum_{j=1}^{n} \tan ^{-1}\left(\frac{1}{1+(x+j)(x+j-1)}\right)$
$\mathrm{f}_{\mathrm{n}}(\mathrm{x})=\tan ^{-1}(\mathrm{x}+\mathrm{n})-\tan ^{-1}(\mathrm{x}) \quad \Rightarrow \quad \mathrm{f}_{\mathrm{n}}^{\prime}(\mathrm{x})=\frac{1}{1+(\mathrm{x}+\mathrm{n})^{2}}-\frac{1}{1+\mathrm{x}^{2}}$
$\mathrm{f}_{\mathrm{n}}(0)=\tan ^{-1}(\mathrm{n}) \Rightarrow \quad \tan ^{2}\left(\tan ^{-1} \mathrm{n}\right)=\mathrm{n}^{2}$
(A) $\quad \sum_{\mathrm{j}=1}^{5} \tan ^{2}\left(\mathrm{f}_{\mathrm{j}}(0)\right)=\sum_{\mathrm{j}=1}^{5} \mathrm{j}^{2}=\frac{5.6 .11}{6}=55$ (since 0 is not in domain so A and B are wrong)
(B)

$$
\begin{aligned}
& f_{n}^{\prime}(0)=\frac{1}{1+n^{2}}-1 \quad \Rightarrow \quad 1+f_{n}(0)=\frac{1}{1+n^{2}} \\
& \sec ^{2}\left(f_{n}(0)\right)=\sec ^{2}\left(\tan ^{-1}(n)\right)=1+n^{2} . \\
& \text { Hence }\left(1+f_{n}^{\prime}(0)\right) \cdot \sec ^{2}\left(f_{n}(0)\right)=\left(\frac{1}{1+n^{2}}\right)\left(1+n^{2}\right)=1 \\
& \text { so } \sum_{i=1}^{10}\left(1+f_{i}^{\prime}(0)\right) \sec ^{2}\left(f_{i}(0)\right)=\sum_{i=1}^{10} 1=10 \\
& \lim _{x \rightarrow \infty} f_{n}(x)=\lim _{x \rightarrow \infty} \tan ^{-1}\left(\frac{n}{1+x(n+x)}\right)=0 \\
& \lim _{x \rightarrow \infty} \tan \left(f_{n}(x)\right)=0 \quad \& \quad \lim _{x \rightarrow \infty} \sec ^{2}\left(f_{n}(x)\right)=1
\end{aligned}
$$

2. Let T be the line passing through the points $P(-2,7)$ and $Q(2,-5)$. Let F_{1} be the set of all pairs of circles $\left(S_{1}, S_{2}\right)$ such that T is tangent to S_{1} at P and tangent to S_{2} at Q, and also such that S_{1} and S_{2} touch each other at a point, say, M. Let E_{1} be the set representing the locus of M as the pair $\left(S_{1}, S_{2}\right)$ varies in F_{1}. Let the set of all straight line segments joining a pair of distinct points of E_{1} and passing through the point $R(1,1)$ be F_{2}. Let E_{2} be the set of the mid-points of the line segments in the set F_{2}. Then, which of the following statement(s) is (are) TRUE
(A) The point $(-2,7)$ lies in E_{1}
(B) The point $\left(\frac{4}{5}, \frac{7}{5}\right)$ does NOT lie in E_{2}
(C) The point $\left(\frac{1}{2}, 1\right)$ lies in E_{2}
(D) The point $\left(0, \frac{3}{2}\right)$ does NOT lie in E_{1}

Ans. (BD)

Resonance Eduventures Ltd.

REG. \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph.No. : +91-744-3012222, 6635555 | To Know more : sms RESO at 56677
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

Let C_{1} and C_{2} be the centre of circle S_{1} and S_{2} respectively
Let $\angle \mathrm{C}_{2} \mathrm{QM}=\angle \mathrm{C}_{2} \mathrm{MQ}=\theta \Rightarrow \angle \mathrm{QC}_{2} \mathrm{M}=\pi-2 \theta$
Let $\angle \mathrm{C}_{1} \mathrm{PM}=\angle \mathrm{C}_{1} \mathrm{MP}=\phi \Rightarrow \angle \mathrm{PC}_{1} \mathrm{M}=\pi-2 \phi$
Now $\angle \mathrm{QC}_{2} \mathrm{M}+\angle \mathrm{PC}_{1} \mathrm{M}=\pi \Rightarrow \pi-2 \theta+\pi-2 \phi=\pi \Rightarrow \theta+\phi=\pi / 2$
Now $\angle \mathrm{QMP}=\pi-\angle \mathrm{QMC}_{2}-\angle \mathrm{PMC}_{1}=\pi-(\theta+\phi)=\pi-\pi / 2=\pi / 2$
hence locus equation of variable point M is $(x+2)(x-2)+(y-7)(y+5)=0$
but locus of M does not contains point P and Q because P is included when radius of S_{1} is zero and circle S_{2} becomes straight line which is impossible. Q is included when radius of S_{2} is zero and circle S_{1} becomes straight line which is also impossible.
so set E_{1} does not contain point $P(-2,7)$ and $Q(2,-5)$
Locus of mid-points of chords passing through $(1,1)$ is $h+K-(1+k)=h^{2}+k^{2}-2 K$
$\Rightarrow h^{2}+K^{2}-2 K-h+1=0 \Rightarrow x^{2}+y^{2}-x-2 y+1=0$
Now equation of line passing through $P(-2,7)$ and $R(1,1)$ is $\frac{y-1}{x-1}=\frac{6}{-3} \Rightarrow y+2 x-3=0$
Let centre of $x^{2}+y^{2}-2 y-39=0$ is $C_{3}(0,1) \Rightarrow$ centre of locus of M is $C_{3}(0,1)$
Now foot of $C_{3}(0,1)$ on line $y+2 x-3=0$ is $\left(\frac{4}{5}, \frac{7}{5}\right)$. which is mid-point of chord PR of circle
$x^{2}+y^{2}-2 y-39=0$
But if P is not the part of locus of M then $P Q$ is not the chord of locus of M.
So point $\left(\frac{4}{5}, \frac{7}{5}\right)$ does not lies in set E_{2}

Resonance Eduventures Ltd.

REG. \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph.No. : +91-744-3012222, 6635555 | To Know more : sms RESO at 56677
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

Resanance |J EE (ADVANCED) 2018 | DATE : 20-05-2018 | PAPER-2 | MATHEMATICS

 variables)$$
\begin{aligned}
& -x+2 y+5 z=b_{1} \\
& 2 x-4 y+3 z=b_{2} \\
& x-2 y+2 z=b_{3}
\end{aligned}
$$

has at least one solution. Then, which of the following system(s) (in real variables) has (have) at least one solution for each $\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right] \in S$?
(A) $x+2 y+3 z=b_{1}, 4 y+5 z=b_{2}$ and $x+2 y+6 z=b_{3}$
(B) $x+y+3 z=b_{1}, 5 x+2 y+6 z=b_{2}$ and $-2 x-y-3 z=b_{3}$
(C) $-x+2 y-5 z=b_{1}, 2 x-4 y+10 z=b_{2}$ and $x-2 y+5 z=b_{3}$
(D) $x+2 y+5 z=b_{1}, 2 x+3 z=b_{2}$ and $x+4 y-5 z=b_{3}$

Ans. (AD)
Sol. $\quad \Delta=0$ so for at least one solutions $\Delta_{1}=\Delta_{2}=\Delta_{3}=0 \Rightarrow b_{1}+7 b_{2}=13 b_{3}$
option $(A) \Delta \neq 0 \quad \Rightarrow \quad$ unique solution \Rightarrow option (A) is correct
option (D) $\Delta \neq 0 \quad \Rightarrow \quad$ unique solution \Rightarrow option (D) is correct
option (C) $\Delta=0 \Rightarrow$ equations are $x-2 y+5 z=-b_{1}$

$$
\begin{aligned}
& x-2 y+5 z=\frac{b_{2}}{2} \\
& x-2 y+5 z=b_{3}
\end{aligned}
$$

There planes are parallel so they must be coincident

$$
\Rightarrow \quad-b_{1}=\frac{b_{2}}{2}=b_{3}
$$

All b_{1}, b_{2}, b_{3} obtained from equation (1) may not satisfy this relation so option (C) is wrong.
option (B)

$$
\Delta=\left|\begin{array}{lll}
1 & 1 & 1 \\
5 & 2 & 2 \\
2 & 1 & 1
\end{array}\right|=0 . \text { Also } \Delta_{1}=0
$$

For infinite solutions, Δ_{2} and Δ_{3} must be 0

$$
\begin{aligned}
& \Rightarrow \quad\left|\begin{array}{lll}
1 & b_{1} & 1 \\
5 & b_{2} & 2 \\
2 & b_{3} & 1
\end{array}\right|=0 \\
& \Rightarrow \quad-b_{1}-b_{2}+3 b_{3}=0 \text { which does not satisfy (1) for all } b_{1}, b_{2}, b_{3} \text { so option(B) is wrong }
\end{aligned}
$$

Resonance Eduventures Ltd.

REG. \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph.No. : +91-744-3012222, 6635555 | To Know more : sms RESO at 56677
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

4. Consider two straight lines, each of which is tangent to both the circle $x^{2}+y^{2}=\frac{1}{2}$ and the parabola $y^{2}=4 x$. Let these lines intersect at the point Q. Consider the ellipse whose center is at the origin $O(0,0)$ and whose semi-major axis is OQ. If the length of the minor axis of this ellipse is $\sqrt{2}$, then which of the following statement(s) is (are) TRUE ?
(A) For the ellipse, the eccentricity is $\frac{1}{\sqrt{2}}$ and the length of the latus rectum is 1
(B) For the ellipse, the eccentricity is $\frac{1}{2}$ and the length of the latus rectum is $\frac{1}{2}$
(C) The area of the region bounded by the ellipse between the lines $x=\frac{1}{\sqrt{2}}$ and $x=1$ is $\frac{1}{4 \sqrt{2}}(\pi-2)$
(D) The area of the region bounded by the ellipse between the lines $x=\frac{1}{\sqrt{2}}$ and $x=1$ is $\frac{1}{16}(\pi-2)$

Ans. (AC)

Sol.

Let equation of common tangent is $y=m x+\frac{1}{m}$

$$
\begin{aligned}
& \therefore \quad\left|\frac{0+0+\frac{1}{m}}{\sqrt{1+m^{2}}}\right|=\frac{1}{\sqrt{2}} \\
& \Rightarrow \quad m^{4}+m^{2}-2=0 \\
& \Rightarrow \quad m= \pm 1
\end{aligned}
$$

Equation of common tangents are $y=x+1 \& y=-x-1$
point Q is $(-1,0)$
$\therefore \quad$ Equation of ellipse is $\frac{\mathrm{x}^{2}}{1}+\frac{\mathrm{y}^{2}}{1 / 2}=1$
(A) $\quad e=\sqrt{1-\frac{1}{2}}=\frac{1}{\sqrt{2}}$
\& $L R=\frac{2 b^{2}}{a}=1$

Resonance Eduventures Ltd.

REG. \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph.No. : +91-744-3012222, 6635555 | To Know more : sms RESO at 56677
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

(C)

Area

$$
\begin{aligned}
& \text { 2. } \int_{1 / \sqrt{2}}^{1} \frac{1}{\sqrt{2}} \cdot \sqrt{1-x^{2}} \mathrm{dx} \\
& =\sqrt{2}\left[\frac{x}{2} \sqrt{1-x^{2}}+\frac{1}{2} \sin ^{-1} x\right]_{1 / \sqrt{2}}^{1} \\
& =\sqrt{2}\left[\frac{\pi}{4}-\left(\frac{1}{4}+\frac{\pi}{8}\right)\right]=\sqrt{2}\left(\frac{\pi}{8}-\frac{1}{4}\right)=\frac{\pi-2}{4 \sqrt{2}}
\end{aligned}
$$

Resonance Eduventures Ltd.

REG. \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph.No. : +91-744-3012222, 6635555 | To Know more : sms RESO at 56677
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

Resanance |J EE (ADVANCED) 2018 | DATE : 20-05-2018 | PAPER-2 | MATHEMATICS

5. Let s, t, r be non-zero complex numbers and L be the set of solutions $z=x+i y(x, y \in R, i=\sqrt{-1})$ of the equation $s z+t \bar{z}+r=0$, where $\bar{z}=x-i y$. Then, which of the following statement(s) is (are) TRUE ?
(A) If L has exactly one element, then $|s| \neq|t|$
(B) If $|s|=|t|$, then L has infinitely many elements
(C) The number of elements in $L \cap\{z:|z-1+i|=5\}$ is at most 2
(D) If L has more than one element, then L has infinitely many elements

Ans. (ACD)
Sol. $s z+t \bar{z}+r=0, \bar{z}=x-i y$

$$
\bar{s} \bar{z}+\bar{t} z+r=0
$$

(1) $+(2)$
$(t+\bar{s}) \bar{z}+(s+\bar{t}) z+(r+\bar{r})=0$
$(\mathrm{t}-\overline{\mathrm{s}}) \overline{\mathrm{z}}+(\mathrm{s}-\overline{\mathrm{t}}) \mathrm{z}+(\mathrm{r}-\overline{\mathrm{r}})=0$
For unique solution
$\frac{t+\bar{s}}{t-\bar{s}} \neq \frac{s+\bar{t}}{s-\bar{t}}$
On solving the above equation we get
$|t| \neq|s|$
\therefore option (A) is correct
Lines overlap if

$$
\begin{aligned}
\frac{\mathrm{t}+\overline{\mathrm{s}}}{\mathrm{t}-\overline{\mathrm{s}}}=\frac{\overline{\mathrm{t}}+\mathrm{s}}{\mathrm{~s}-\overline{\mathrm{t}}}= & \frac{\mathrm{r}+\overline{\mathrm{r}}}{\mathrm{r}-\overline{\mathrm{r}}} \\
|\mathrm{t}|=|\mathrm{s}| & \overline{\operatorname{tr} r}-\overline{\mathrm{t}} \overline{\mathrm{r}}+\mathrm{sr}-\mathrm{s} \bar{r}=\mathrm{sr}+\mathrm{s} \overline{\mathrm{r}}-\overline{\mathrm{t}} \mathrm{r}-\overline{\mathrm{t}} \overline{\mathrm{r}} \\
& 2 \overline{\operatorname{tr}}=2 \mathrm{~s} \bar{r} \\
& \overline{\operatorname{tr}}=\mathrm{s} \bar{r} \\
& \therefore|\overline{\mathrm{t}}||r|=|\mathrm{s}||r| \\
& \therefore|\mathrm{t}|=|\mathrm{s}|
\end{aligned}
$$

\therefore If $|\mathrm{t}|=|\mathrm{s}|$, lines will be parallel for sure but it may not be coincident
For option (C) if element of set L represent line, then this line and given circle can have maximum two common points so option (C) is correct
6. Let $f:(0, \pi) \rightarrow R$ be a twice differentiable function such that $\lim _{t \rightarrow x} \frac{f(x) \sin t-f(t) \sin x}{t-x}=\sin ^{2} x$ for all $x \in(0, \pi)$. If $f\left(\frac{\pi}{6}\right)=-\frac{\pi}{12}$, then which of the following statement(s) is (are) TRUE ?
(A) $f\left(\frac{\pi}{4}\right)=\frac{\pi}{4 \sqrt{2}}$
(B) $f(x)<\frac{x^{4}}{6}-x^{2}$ for all $x \in(0, \pi)$
(C) There exists $\alpha \in(0, \pi)$ such that $f^{\prime}(\alpha)=0$
(D) $f^{\prime \prime}\left(\frac{\pi}{2}\right)+f\left(\frac{\pi}{2}\right)=0$

Ans. (BCD)

Resonance Eduventures Ltd.

REG. \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph.No. : +91-744-3012222, 6635555 | To Know more : sms RESO at 56677
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

Sol. $\quad \lim _{t \rightarrow x} \frac{f(x) \sin t-f(t) \sin x}{t-x}=\sin ^{2} x$
$\frac{f(x) \cos x-f^{\prime}(x) \sin x}{\sin ^{2} x}=1$
$-d\left(\frac{f(x)}{\sin x}\right)=1$
$\frac{f(x)}{\sin x}=-x+c \because f\left(\frac{\pi}{6}\right)=-\frac{\pi}{12} \Rightarrow c=0 \Rightarrow f(x)=-x \sin x$
(A) $\quad f(x)+f^{\prime \prime}(x)=-2 \cos x$
$f\left(\frac{\pi}{2}\right)+f^{\prime \prime}\left(\frac{\pi}{2}\right)=0$
(B) $f\left(\frac{\pi}{4}\right)=\left(-\frac{\pi}{4 \sqrt{2}}\right)$
(C) $\quad f(x)$ is continuous and differentiable and $f(0)=f(x)=0$

Using Rolle's theorem $f^{\prime}(c)=0$ for some $x \in(0, \pi)$
(D)

$$
\begin{aligned}
& g(x)=-x \sin x+x^{2}-\frac{x^{4}}{6} \\
& g^{\prime}(x)=f^{\prime}(x)+2 x-\frac{2 x^{3}}{3} \\
& g^{\prime \prime}(x)=f^{\prime \prime}(x)+2 x-2 x^{2} \\
& g^{\prime \prime \prime}(x)=3 \sin x+x \cos x-4 x=3(\sin x-x)+x(\cos x-1) \\
& \Rightarrow \quad g^{\prime \prime \prime}(x)<0 \quad \Rightarrow \quad g^{\prime \prime}(x) \text { is decreasing } \\
& \text { for } x>0 \quad g^{\prime \prime}(x) \quad<g^{\prime \prime}(0) \Rightarrow \quad g^{\prime \prime}(x)<0 \\
& \text { hence } g^{\prime}(x) \text { is decreasing } \quad g^{\prime}(x)<g^{\prime}(0) \quad \Rightarrow \quad g^{\prime}(x)<0 \\
& \text { for } x>0 \quad g \\
& \text { hence } g(x)<0 \quad g(x)<g(0) \quad g(x)<0 \\
& \text { for } x>0 \quad \\
& \text { Hence } f(x)<\frac{x^{4}}{6}-x^{2} \forall x \in(0, \pi)
\end{aligned}
$$

SECTION-2 : (Maximum Marks : 24)

- This section contains EIGHT (8) questions. The answer to each question is NUMERICAL VALUE.
- For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $6.25,7.00,-0.33,-0.30,30.27,-127.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme :

Full Marks : +3 If ONLY the correct numerical value is entered as answer.
Zero Marks : $\mathbf{0}$ In all other cases.

Resonance Eduventures Ltd.

REG. \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph.No. : +91-744-3012222, 6635555 | To Know more : sms RESO at 56677
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

7. The value of the integral $\int_{0}^{\frac{1}{2}} \frac{1+\sqrt{3}}{\left((x+1)^{2}(1-x)^{6}\right)^{\frac{1}{4}}} d x$ is \qquad $-$

Ans. (2)
Sol. $\quad \int_{0}^{\frac{1}{2}} \frac{(1+\sqrt{3}) d x}{\left[(1+x)^{2}(1-x)^{6}\right]^{1 / 4}}$
$\int_{0}^{\frac{1}{2}} \frac{(1+\sqrt{3}) d x}{(1+x)^{2}\left[\frac{(1-x)^{6}}{(1+x)^{6}}\right]^{1 / 4}}$
put $\quad \frac{1-x}{1+x}=t \quad \Rightarrow \quad \frac{-2 d x}{(1+x)^{2}}=d t$
$I=\int_{1}^{\frac{1}{3}} \frac{(1+\sqrt{3}) d t}{-2 t^{6 / 4}}=\frac{-(1+\sqrt{3})}{2} \times\left|\frac{-2}{\sqrt{t}}\right|_{1}^{1 / 3}=(1+\sqrt{3})(\sqrt{3}-1)=2$
8. Let P be a matrix of order 3×3 such that all the entries in P are from the set $\{-1,0,1\}$. Then, the maximum possible value of the determinant of P is \qquad -
Ans. (4)
Sol. $\quad \operatorname{det}(P)=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|=a_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right)-a_{2}\left(b_{1} c_{3}-b_{3} c_{1}\right)+a_{3}\left(b_{1} c_{2}-b_{2} c_{1}\right) \leq 6$
value can be 6 only if $a_{1}=1, a_{2}=-1, a_{3}=1, b_{2} c_{3}=b_{1} c_{3}=b_{1} c_{2}=1, b_{3} c_{2}=b_{3} c_{1}=b_{2} c_{1}=-1$
$\Rightarrow \quad\left(b_{2} c_{3}\right)\left(b_{3} c_{1}\right)\left(b_{1} c_{2}\right)=-1 \quad \& \quad\left(b_{1} c_{3}\right)\left(b_{3} c_{2}\right)\left(b_{2} c_{1}\right)=1$
i.e. $\quad b_{1} b_{2} b_{3} c_{1} c_{2} c_{3}=1$ and -1
hence not possible
Similar contradiction occurs when $a_{1}=1, a_{2}=1, a_{3}=1, b_{2} c_{2}=b_{3} c_{1}=b_{1} c_{2}=1 b_{3} c_{2}=b_{1} c_{3}=b_{1} c_{2}=-1$
Now for value to be 5 one the terms must be zero but that will make 2 terms zero which means answer cannot be 5

Now $\left|\begin{array}{ccc}1 & 0 & 1 \\ -1 & 1 & 1 \\ -1 & -1 & 1\end{array}\right|=4$ Hence \max value $=4$

Resonance Eduventures Ltd.

REG. \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph.No. : +91-744-3012222, 6635555 | To Know more : sms RESO at 56677
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 180025855508003444888 ffacebook.com/ResonanceEdu Y twitter.com/ResonanceEdu 置 www.youtube.com/resowatch blog.resonance.ac.in
9. Let X be a set with exactly 5 elements and Y be a set with exactly 7 elements. If α is the number of one-one functions from X to Y and β is the number of onto function form Y to X, then the value of $\frac{1}{5!}(\beta-\alpha)$ is \qquad .
Ans. (119)
Sol. $n(X)=5$
$\mathrm{n}(\mathrm{Y})=7$
$\alpha \rightarrow$ Number of one-one function $={ }^{7} \mathrm{C}_{5} \times 5!=21 \times 120=2520$
$\beta \rightarrow$ Number of onto function Y to X

$1,1,1,1,3 \quad 1,1,1,2,2$
$\frac{7!}{3!4!} \times 5!+\frac{7!}{(2!)^{3} 3!} \times 5!=\left({ }^{7} C_{3}+3 .{ }^{7} C_{3}\right) 5!=4 \times{ }^{7} C_{3} \times 5!$
$\frac{\beta-\alpha}{5!}=4 \times{ }^{7} C_{3}-{ }^{7} C_{5}=4 \times 35-21=119$
10. Let $f: R \rightarrow R$ be a differentiable function with $f(0)=0$. If $y=f(x)$ satisfies the differential equation

$$
\frac{d y}{d x}=(2+5 y)(5 y-2)
$$

then the value of $\lim _{x \rightarrow-\infty} f(x)$ is \qquad .
Ans. (0.4)
Sol. $\frac{d y}{d x}=(5 y+2)(5 y-2)$
$\frac{1}{25} \int \frac{d y}{\left(y+\frac{2}{5}\right)\left(y-\frac{2}{5}\right)}=\int d x$
$\frac{1}{25} \cdot \frac{5}{4} \ln \left|\frac{y-\frac{2}{5}}{y+\frac{2}{5}}\right|=x+c$
$\frac{1}{20} \ln \left|\frac{5 y-2}{5 y+2}\right|=x+c$
at $x=0, y=0 \Rightarrow c=0$
Hence $\frac{2-5 y}{2+5 y}=e^{20 x}$
$\frac{2-5 y}{2+5 y}=e^{20 x}, \lim _{x \rightarrow \infty} e^{20 x}=0 \quad \Rightarrow \quad \lim _{x \rightarrow \infty} y=\frac{2}{5}=0.4$

Resonance Eduventures Ltd.

REG. \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph.No. : +91-744-3012222, 6635555 | To Know more : sms RESO at 56677
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

11. Let $f: R \rightarrow R$ be a differentiable function with $f(0)=1$ and satisfying the equation

$$
f(x+y)=f(x) f^{\prime}(y)+f^{\prime}(x) f(y) \text { for all } x, y \in R
$$

Then, the value of $\log _{e}(f(4))$ is \qquad -
Ans. (2)
Sol. $\quad f(x+y)=f(x) \cdot f^{\prime}(y)+f^{\prime}(x) \cdot f(y)$
substituting $x=y=0$, we get
$f(0)=2 f^{\prime}(0) \quad \Rightarrow \quad f^{\prime}(0)=\frac{1}{2}$
Now substituting $y=0$

$$
\begin{array}{ll}
& f(x)=f(x) \cdot f^{\prime}(0)+f^{\prime}(x) \cdot f(0) \\
\Rightarrow \quad & f^{\prime}(x)=\frac{f(x)}{2} \\
\Rightarrow \quad f(x)=\lambda e^{x / 2} \quad \Rightarrow & f(x)=e^{x / 2}(\text { as } f(0)=1) \\
\text { Now } \ln (f(x))=\frac{x}{2} \quad \Rightarrow \quad \ln (f(4))=2
\end{array}
$$

12. Let P be a point in the first octant, whose image Q in the plane $x+y=3$ (that is, the line segment $P Q$ is perpendicular to the plane $x+y=3$ and the mid-point of $P Q$ lies in the plane $x+y=3$) lies on the z-axis. Let the distance of P from the x-axis be 5 . If R is the image of P in the $x y$-plane, then the length of $P R$ is \qquad -

Ans. (8)
Sol. $P(\alpha, \beta, \gamma)$
$R(\alpha, \beta,-\gamma)$
Q
$\frac{x-\alpha}{1}=\frac{y-\beta}{1}=\frac{z-\gamma}{0}=\frac{-2(\alpha+\beta-3)}{2}$
$x=3-\beta, y=3-\alpha, z=\gamma$
$\mathrm{Q}(3-\beta, 3-\alpha, \gamma)$ lies on z-axis
$\therefore \quad \beta=3, \alpha=3$
$\mathrm{P}(3,3, \gamma)$ distance from x-axis is 5
$9+\gamma^{2}=25$
$\gamma^{2}=16 \quad \Rightarrow \quad \gamma=4$
$\mathrm{P}(3,3,4) \quad \therefore \quad \mathrm{PR}=8$
$R(3,3,-4)$
13. Consider the cube in the first octant with sides $O P, O Q$ and $O R$ of length 1 , along the x-axis, y-axis and z-axis, respectively, where $O(0,0,0)$ is the origin. Let $S\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ be the centre of the cube and T be the vertex of the cube opposite to the origin O such that S lies on the diagonal OT. If $\vec{p}=\overrightarrow{S P}, \vec{q}=$ $\overrightarrow{\mathrm{SQ}}, \vec{r}=\overrightarrow{\mathrm{SR}}$ and $\overrightarrow{\mathrm{t}}=\overrightarrow{\mathrm{ST}}$, then the value of $|(\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}) \times(\vec{r} \times \overrightarrow{\mathrm{t}})|$ is \qquad .
Ans. (0.5)

Resonance Eduventures Ltd.

REG. \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph.No. : +91-744-3012222, 6635555 | To Know more : sms RESO at 56677
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800258555508003444888 fffacebook.com/Resonanceedu \triangle twitter.com/ResonanceEdu

Sol.

$(0,0,1)$
point $S\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$
point $T(1,1,1)$
$\overrightarrow{\mathrm{p}}=\overrightarrow{\mathrm{SP}}=\frac{\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}}}{2}$
$\overrightarrow{\mathrm{q}}=\overrightarrow{\mathrm{SQ}}=\frac{-\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}}{2}$
$\vec{r}=\overrightarrow{\mathrm{SR}}=\frac{-\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}}{2}$
$\overrightarrow{\mathrm{t}}=\overrightarrow{\mathrm{ST}}=\frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}}{2}$

Now

Now

$$
\begin{aligned}
& \overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}=\left|\begin{array}{ccc}
\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{k} \\
1 & -1 & -1 \\
-1 & 1 & -1
\end{array}\right| \times \frac{1}{4}=\frac{1}{4}(2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}})=\frac{\mathrm{i}+\hat{\mathrm{j}}}{2} \\
& \overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{t}}=\left|\begin{array}{ccc}
\hat{\mathrm{i}} & \hat{j} & \hat{k} \\
-1 & -1 & 1 \\
1 & 1 & 1
\end{array}\right| \times \frac{1}{4}=\frac{-2 \hat{i}+2 \hat{j}}{4}=\frac{-\hat{\mathrm{i}}+\hat{j}}{2}
\end{aligned}
$$

$$
(\vec{p} \times \vec{q}) \times(\vec{r} \times \overrightarrow{\mathrm{t}})=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & 1 & 0 \\
-1 & 1 & 0
\end{array}\right| \times \frac{1}{4}=\frac{\hat{k}}{2} \Rightarrow|(\vec{p} \times \vec{q}) \times(\vec{r} \times \vec{t})|=\frac{1}{2}=0.5
$$

14. Let $X=\left({ }^{10} \mathrm{C}_{1}\right)^{2}+2\left({ }^{10} \mathrm{C}_{2}\right)^{2}+3\left({ }^{10} \mathrm{C}_{3}\right)^{2}+\ldots \ldots .+10\left({ }^{10} \mathrm{C}_{10}\right)^{2}$ where ${ }^{10} \mathrm{C}_{\mathrm{r}}, \mathrm{r} \in\{1,2, \ldots \ldots ., 10\}$ denote binomial coefficients. Then the value of $\frac{1}{1430} X$ is \qquad -.
Ans. (646)
Sol. $\quad X=\sum_{r=1}^{10} r .{ }^{10} \mathrm{C}_{\mathrm{r}} \cdot{ }^{10} \mathrm{C}_{\mathrm{r}}=10 \cdot \sum_{\mathrm{r}=1}^{10}{ }^{9} \mathrm{C}_{\mathrm{r}-1} \cdot{ }^{10} \mathrm{C}_{10-\mathrm{r}}=10 \cdot{ }^{19} \mathrm{C}_{9}$
Now $\frac{\mathrm{X}}{1430}=\frac{10 .{ }^{19} \mathrm{C}_{9}}{1430}=\frac{{ }^{19} \mathrm{C}_{9}}{143}=\frac{{ }^{19} \mathrm{C}_{9}}{11 \times 13}=\frac{19.17 .16}{8}=19 \times 34=646$

Resonance Eduventures Ltd.

REG. \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph.No. : +91-744-3012222, 6635555 | To Know more : sms RESO at 56677
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

SECTION 3 (Maximum Marks: 12)

- This section contains FOUR (04) questions.
- Each question has TWO (02) matching lists: LIST-I and LIST-II.
- FOUR options are given representing matching of elements from LIST-I and LIST-II. ONLY ONE of these four options corresponds to a correct matching.
- For each question, choose the option corresponding to the correct matching.
- For each question, marks will be awarded according to the following marking scheme:

Full Marks : 3 If ONLY the option corresponding to the correct matching is chosen.
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered).
Negative Marks : 1 In all other cases.
15. Let $E_{1}=\left\{x \in R: x \neq 1\right.$ and $\left.\frac{x}{x-1}>0\right\}$ and $E_{2}=\left\{x \in E_{1}: \sin ^{-1}\left(\log _{e}\left(\frac{x}{x-1}\right)\right)\right.$ is a real number $\}$.
(Here, the inverse trigonometric function $\sin ^{-1} x$ assumes values in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. .)
Let $f: E_{1} \rightarrow R$ be the function defined by $f(x)=\log _{e}\left(\frac{x}{x-1}\right)$
and $g: E_{2} \rightarrow R$ be the function defined by $g(x)=\sin ^{-1}\left(\log _{e}\left(\frac{x}{x-1}\right)\right)$

LIST-I

(P) The range of f is
(Q) The range of g contains
(R) The domain of f contains
(S) The domain of g is

LIST-II

(1) $\left(-\infty, \frac{1}{1-e}\right] \cup\left[\frac{e}{e-1}, \infty\right)$
(2) $(0,1)$
(3) $\left[-\frac{1}{2}, \frac{1}{2}\right]$
(4) $(-\infty, 0) \cup(0, \infty)$
(5) $\left(-\infty, \frac{e}{e-1}\right]$
(6) $(-\infty, 0) \cup\left(\frac{1}{2}, \frac{e}{e-1}\right]$

The correct option is
(A) $\mathrm{P} \rightarrow 4 ; \mathrm{Q} \rightarrow 2 ; \mathrm{R} \rightarrow 1 ; \mathrm{S} \rightarrow 1$
(B) $\mathrm{P} \rightarrow 3 ; \mathrm{Q} \rightarrow 3 ; \mathrm{R} \rightarrow 6 ; \mathrm{S} \rightarrow 5$
(C) $\mathrm{P} \rightarrow 4 ; \mathrm{Q} \rightarrow 2 ; \mathrm{R} \rightarrow 1 ; \mathrm{S} \rightarrow 6$
(D) $\mathrm{P} \rightarrow 4 ; \mathrm{Q} \rightarrow 3 ; \mathrm{R} \rightarrow 6 ; \mathrm{S} \rightarrow 5$

Ans. (A)
Sol. $E_{1}: \frac{x}{x-1}>0 \quad \Rightarrow \quad x \in(-\infty, 0) \cup(1, \infty)$
$E_{2}:-1 \leq \ln \left(\frac{x}{x-1}\right) \leq 1 \quad \Rightarrow \quad \frac{1}{e} \leq \frac{x}{x-1} \leq e \quad \Rightarrow \quad \frac{1}{e} \leq 1+\frac{1}{x-1} \leq e$

Resonance Eduventures Ltd.

REG. \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph.No. : +91-744-3012222, 6635555 | To Know more : sms RESO at 56677
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

Resinancil
$\frac{1}{e}-1 \leq \frac{1}{x-1} \leq e-1 \quad \Rightarrow \quad(x-1) \in\left(-\infty, \frac{e}{1-e}\right] \cup\left[\frac{1}{e-1}, \infty\right)$
$x \in\left(-\infty, \frac{1}{e-1}\right] \cup\left[\frac{e}{e-1}, \infty\right)$
Now $\frac{x}{x-1} \in(0, \infty)-\{1\} \forall x \in E_{1} \quad \Rightarrow \quad \ln \left(\frac{x}{x-1}\right) \in(-\infty, \infty)-\{0\}$
$\sin ^{-1}\left(\ln \left(\frac{x}{x-1}\right)\right) \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{0\}$
16. In a high school, a committee has to be formed from a group of 6 boys $M_{1}, M_{2}, M_{3}, M_{4}, M_{5}, M_{6}$ and 5 girls $G_{1}, G_{2}, G_{3}, G_{4}, G_{5}$.
(i) Let α_{1} be the total number of ways in which the committee can be formed such that the committee has 5 members, having exactly 3 boys and 2 girls.
(ii) Let α_{2} be the total number of ways in which the committee can be formed such that the committee has at least 2 members, and having an equal number of boys and girls.
(iii) Let α_{3} be the total number of ways in which the committee can be formed such that the committee has 5 members, at least 2 of them being girls.
(iv) Let α_{4} be the total number of ways in which the committee can be formed such that the committee has 4 members, having at least 2 girls and such that both M_{1} and G_{1} are NOT in the committee together.

LIST-I

(P) The value of α_{1} is
(Q) The value of α_{2} is
(R) The value of α_{3} is
(S) The value of α_{4} is

LIST-II

(1) 136
(2) 189
(3) 192
(4) 200
(5) 381
(6) 461

The correct option is
(A) $\mathrm{P} \rightarrow 4 ; \mathrm{Q} \rightarrow 6$; $\mathrm{R} \rightarrow 2 ; \mathrm{S} \rightarrow 1$
(B) $\mathrm{P} \rightarrow 1 ; \mathrm{Q} \rightarrow 4 ; \mathrm{R} \rightarrow 2 ; \mathrm{S} \rightarrow 3$
(C) $\mathrm{P} \rightarrow 4 ; \mathrm{Q} \rightarrow 6 ; \mathrm{R} \rightarrow 5$; $\mathrm{S} \rightarrow 2$
(D) $\mathrm{P} \rightarrow 4 ; \mathrm{Q} \rightarrow 2 ; \mathrm{R} \rightarrow 3 ; \mathrm{S} \rightarrow 1$

Ans. (C)
Sol. 6 Boys \& 5 girls
$\alpha_{1} \rightarrow$ number of ways of selecting 3 boys $\& 2$ girls ${ }^{6} \mathrm{C}_{3} \times{ }^{5} \mathrm{C}_{2}=200$

Resonance Eduventures Ltd.

REG. \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph.No. : +91-744-3012222, 6635555 | To Know more : sms RESO at 56677
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

$\alpha_{2} \rightarrow$ Boys \& girls are equal \& members ≥ 2
${ }^{6} \mathrm{C}_{1} \cdot{ }^{5} \mathrm{C}_{1}+{ }^{6} \mathrm{C}_{2} \cdot{ }^{5} \mathrm{C}_{2}+{ }^{6} \mathrm{C}_{3} \cdot{ }^{5} \mathrm{C}_{3}+{ }^{6} \mathrm{C}_{4} \cdot{ }^{5} \mathrm{C}_{4}+{ }^{6} \mathrm{C}_{5} \cdot{ }^{5} \mathrm{C}_{5}={ }^{11} \mathrm{C}_{5}-1=461$
$\alpha_{3} \rightarrow$ number of ways of selecting 5 having at least 2 girls ${ }^{11} \mathrm{C}_{5}-{ }^{6} \mathrm{C}_{5}-{ }^{6} \mathrm{C}_{4} \cdot{ }^{5} \mathrm{C}_{1}={ }^{11} \mathrm{C}_{5}-81=381$
$\alpha_{4} \rightarrow \mathrm{G}_{1}$ is included $\rightarrow{ }^{4} \mathrm{C}_{1} \cdot{ }^{5} \mathrm{C}_{2}+{ }^{4} \mathrm{C}_{2} \cdot{ }^{5} \mathrm{C}_{1}+{ }^{4} \mathrm{C}_{3}=40+30+4=74$
M_{1} is included $\rightarrow{ }^{4} \mathrm{C}_{2} \cdot{ }^{5} \mathrm{C}_{1}+{ }^{4} \mathrm{C}_{3}=34$
$\mathrm{G}_{1} \& \mathrm{M}_{1}$ both are excluded $\rightarrow{ }^{4} \mathrm{C}_{4}+{ }^{4} \mathrm{C}_{3} \cdot{ }^{5} \mathrm{C}_{1}+{ }^{4} \mathrm{C}_{2} \cdot{ }^{5} \mathrm{C}_{2}=81$
Total $=74+34+81=189$
17. Let $H: \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, where $a>b>0$, be a hyperbola in the $x y$-plane whose conjugate axis $L M$ subtends an angle of 60° at one of its vertices N. Let the area of the triangle LMN be $4 \sqrt{3}$.

LIST-I

(P) The length of the conjugate axis of H is
(Q) The eccentricity of H is
(R) The distance between the foci of H is
(S) The length of the latus rectum of H is

LIST-II

(1) 8
(2) $\frac{4}{\sqrt{3}}$
(3) $\frac{2}{\sqrt{3}}$
(4) 4

The correct option is:
(A) $\mathrm{P} \rightarrow 4 ; \mathrm{Q} \rightarrow 2 ; \mathrm{R} \rightarrow 1 ; \mathrm{S} \rightarrow 3$
(B) $\mathrm{P} \rightarrow 4 ; \mathrm{Q} \rightarrow 3 ; \mathrm{R} \rightarrow 1 ; \mathrm{S} \rightarrow 2$
(C) $\mathrm{P} \rightarrow 4 ; \mathrm{Q} \rightarrow 1 ; \mathrm{R} \rightarrow 3 ; \mathrm{S} \rightarrow 2$
(D) $P \rightarrow 3 ; Q \rightarrow 4 ; R \rightarrow 2 ; S \rightarrow 1$

Ans. (B)

Sol.

Area of $\mathrm{LMN}=4 \sqrt{3}$

$$
\frac{1}{2}(2 b)(\sqrt{3} b)=4 \sqrt{3} \quad \Rightarrow \quad b^{2}=4 \quad \Rightarrow \quad b=2 \quad \Rightarrow \quad 2 b=4
$$

Resonance Eduventures Ltd.

REG. \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph.No. : +91-744-3012222, 6635555 | To Know more : sms RESO at 56677
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

Here $\frac{a}{b}=\cot 30^{\circ} \quad \Rightarrow \quad a=\sqrt{3} b \Rightarrow a=2 \sqrt{3}$

$$
\begin{aligned}
& \mathrm{b}^{2}=\mathrm{a}^{2}\left(\mathrm{e}^{2}-1\right) \\
& 4=12\left(\mathrm{e}^{2}-1\right) \\
& \mathrm{e}^{2}=1+\frac{1}{3}=\frac{4}{3} \Rightarrow \mathrm{e}=\frac{2}{\sqrt{3}} \text { and } 2 \mathrm{ae}=2 \times 2 \sqrt{3} \times \frac{2}{\sqrt{3}}=8 \\
& \text { and length of latus ractum }=\frac{2 \mathrm{~b}^{2}}{\mathrm{a}}=\frac{2 \times 4}{2 \sqrt{3}}=\frac{4}{\sqrt{3}}
\end{aligned}
$$

18. Let $f_{1}: R \rightarrow R, f_{2}:\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow R, f_{3}:\left(-1, e^{\frac{\pi}{2}}-2\right) \rightarrow R$ and $f_{4}: R \rightarrow R$ be functions defined by
(i) $f_{1}(x)=\sin \left(\sqrt{1-e^{-x^{2}}}\right)$
(ii) $f_{2}(x)=\left\{\begin{array}{ccc}\frac{|\sin x|}{\tan ^{-1} x} & \text { if } & x \neq 0 \\ 1 & \text { if } & x=0\end{array}\right.$, where the inverse trigonometric function $\tan ^{-1} x$ assumes values in

$$
\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
$$

(iii) $f_{3}(x)=\left[\sin \left(\log _{e}(x+2)\right)\right]$, where for $t \in R$, $[t]$ denotes the greatest integer less than or equal to t,
(iv) $f_{4}(x)=\left\{\begin{array}{cc}x^{2} \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right.$

LIST-I

(P) The function f_{1} is
(Q) The function f_{2} is
(R) The function f_{3} is
(S) The function f_{4} is

LIST-II

(1) NOT continuous at $x=0$
(2) continuous at $x=0$ and NOT differentiable at $x=0$
(3) differentiable at $x=0$ and its derivative is NOT continuous at $x=0$
(4) differentiable at $x=0$ and its derivative is continuous at $x=0$

The correct option is:

Resonance Eduventures Ltd.

REG. \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph.No. : +91-744-3012222, 6635555 | To Know more : sms RESO at 56677
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

(A) $\mathrm{P} \rightarrow 2 ; \mathrm{Q} \rightarrow 3 ; \mathrm{R} \rightarrow 1 ; \mathrm{S} \rightarrow 4$
(B) $\mathrm{P} \rightarrow 4 ; \mathrm{Q} \rightarrow 1 ; \mathrm{R} \rightarrow 2 ; \mathrm{S} \rightarrow 3$
(C) $\mathrm{P} \rightarrow 4 ; \mathrm{Q} \rightarrow 2 ; \mathrm{R} \rightarrow 1 ; \mathrm{S} \rightarrow 3$
(D) $P \rightarrow 2 ; Q \rightarrow 1 ; R \rightarrow 4 ; S \rightarrow 3$

Ans. (D)
Sol. (i)

$$
f_{1}^{\prime}(0)=\lim _{h \rightarrow 0} \frac{\sin \sqrt{1-e^{-h^{2}}}-0}{h}=\lim _{h \rightarrow 0} \frac{\sin \sqrt{1-e^{-h^{2}}}}{\sqrt{1-e^{-h^{2}}}} \times \sqrt{\frac{1-e^{-h^{2}}}{h^{2}}} \times \frac{|h|}{h}
$$

$$
=1 \times 1 \times \frac{|h|}{h}=1 \times 1 \times \frac{|h|}{h}
$$

$$
=\text { limit does not exist. }
$$

$\Rightarrow \quad$ for option (P), (2) is correct.
(ii) $\lim _{x \rightarrow 0} f_{2}(x)=\lim _{x \rightarrow 0} \frac{|\sin x|}{\tan ^{-1} x}$

$$
=\lim _{x \rightarrow 0} \frac{|\sin x|}{|x|} \times \frac{x}{\tan ^{-1} x} \times \frac{|x|}{x}
$$

$$
=\lim _{x \rightarrow 0} 1 \times 1 \times \frac{|x|}{x}
$$

(iii)

$$
=\text { limit does not exist } \Rightarrow \quad \text { for option } Q,(1) \text { is correct. }
$$

$$
\lim _{x \rightarrow 0} f_{3}(x)=\lim _{x \rightarrow 0}\left[\sin \left(\log _{e}(x+2)\right)\right]
$$

now at x tends to zero $(x+2)$ tends to 2
$\Rightarrow \quad \log _{\mathrm{e}}(\mathrm{x}+2)$ tends to $\ell \mathrm{n} 2$
which is less than 1
$0<\lim _{x \rightarrow 0} \sin \left(\log _{e}(x+2)\right)<\sin 1 \Rightarrow \quad \lim _{x \rightarrow 0}\left[\sin \left(\log _{e}(x+2)\right)\right]=0$

$$
\begin{array}{ll}
f_{3}(x)=\{0 & x \in\left[-1, e^{\pi / 2}-2\right) \\
\Rightarrow & f_{3}^{\prime}(x)=0
\end{array} \quad \forall x \in\left(-1, e^{\pi / 2}-2\right)
$$

Hence for (R), (4) is correct.
(iv)

$$
\begin{aligned}
& \lim _{x \rightarrow 0} f_{4}(x)=\lim _{x \rightarrow 0}\left(x^{2} \sin \frac{1}{x}\right)=\lim _{x \rightarrow 0} x^{2}\left(\sin \frac{1}{x}\right)=0 \\
& f_{4}^{\prime}(0)=\lim _{h \rightarrow 0} \frac{h^{2} \sin \left(\frac{1}{x}\right)-0}{x}=\lim _{h \rightarrow 0} h \sin \left(\frac{1}{x}\right)=0 \\
& f^{\prime} 4(x)=-\cos \frac{1}{x}+x \sin \frac{1}{x}, x \neq 0 \\
& f^{\prime} 4(0)=\frac{-\cos \frac{1}{h}+h \sin \frac{1}{h}-0}{h} \Rightarrow \text { does not exist }
\end{aligned}
$$

hence for (S), (3) is correct.

Resonance Eduventures Ltd.

REG. \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph.No. : +91-744-3012222, 6635555 | To Know more : sms RESO at 56677
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

