- This question paper has three (03) parts: PART-I: Physics, PART-II: Chemistry and PART-III: Mathematics.
- Each part has total of eighteen (18) questions divided into three (03) sections (Section-1, Section-2 and Section-3).
- Total number of questions in Paper-1 : Fifty four (54).
- Paper-1 Maximum Marks : One Hundred Eighty (180).

Instructions for Section-1: Questions and Marking Scheme

SECTION-1 (Maximum Marks : 24)

- This section contains SIX (06) questions.
- Each question has FOUR options for correct answer(s). ONE OR MORE THAN ONE of these four option(s) is (are) correct option(s).
- For each question, choose the correct option(s) to answer the question.
- Answer to each question will be evaluated according to the following marking chosen.

Full Marks : +4 If only (all) the correct option(s) is (are) chosen.
Partial Marks: +3 If all the four options are correct but ONLY three options are chosen.
Partial Marks: +2 If three or more options are correct but ONLY two options are chosen, both of which are correct options.
Partial Marks: $\quad+\mathbf{1}$ If two or more options are correct but ONLY one option is chosen and it is a correct option.
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered).
Negative Marks: $\quad \mathbf{- 2}$ In all other cases.

- For Example : If first, third and fourth are the ONLY three correct options for a question with second option being an incorrect option; selecting only two of the three correct options (e.g. the first and fourth options), without selecting any incorrect option (second option in this case), will result in +2 marks. Selecting only one of the three correct options (either first or third or fourth option), without selecting any incorrect option (second option in this case), will result in +1 marks. Selecting any incorrect option(s) (second option in this case), with or without selection of any correct option(s) will result in -2 marks.

Answering Section-1 Questions :

- To select the option(s), using the mouse click on the corresponding button(s) of the option(s).
- To deselect chosen option(s), click on the button(s) of the chosen option(s) again or click on the Clear Response button to clear all the chosen options.
- To change the option(s) of a previously answered question, if required, first click on the Clear Response button to clear all the chosen options and then select the new option(s).
- To mark a question ONLY for review (i.e. without answering it), click on the Mark for Review \& Next button.
- To mark a question for review (after answering it), click on Mark for Review \& Next button - answered question which is also marked for review will be evaluated.
- To save the answer, click on the Save \& Next button - the answered question will be evaluated.

Resonance Eduventures Ltd.

Registered \& Corporate Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Toll Free: 18002585555 | Fax: +91-022-39167222| 08003444888 Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in |CIN: U80302RJ2007PLC024029

SECTION-2 (Maximum Marks : 24)

- This section contains EIGHT (08) questions. The answer to each question is NUMERICAL VALUE.
- For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $6.25,7.00,-0.33,-0.30,, 30.27,-127.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme :

Full Marks : +3 If ONLY the correct numerical value is entered as answer.
Zero Marks : 0 In all other cases.

Answering Section-2 Questions :

- Using the attached computer mouse, click on numbers (and/or symbols) on the on-screen virtual numeric keypad to enter the numerical value as answer in the space provided for answer.
- To change the answer, if required, first click on the Clear Response button to clear the entered answer and then enter the new numerical value.
- To mark a question ONLY for review (i.e. answering it), click on Mark for Review \& Next button - the answered question which is also marked for review will be evaluated.
- To mark a question for review (after answering it), click Mark for Review \& Next button - the answered question which is also marked for review will be evaluated.
- To save the answer, click on the Save \& Next button - the answered question will be evaluated.

Instructions for Section-3: Questions and Marking Scheme

SECTION-3 (Maximum Marks : 12)

- This section contains TWO (02) paragraphs. Based on each paragraph, there are TWO (02) questions.
- Each question has FOUR options. ONLY ONE of these four options corresponds to the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme :

Full Marks : +3 If ONLY the correct option is chosen.
Zero Marks : $\quad 0$ If none of the options is chosen (i.e. the question is unanswered).
Negative Marks : $\quad \mathbf{- 1} \ln$ all other cases.

Answering Section-3 Questions :

- To select an option, using the mouse click on the corresponding button of the option.
- To deselect the chosen answer, click on the button of the chosen option again or click on the Clear Response button.
- To change the chosen answer, click on the button of another option.
- To mark a question ONLY for review (i.e. without answering it), click on Mark for Review \& Next button.
- To mark a question for review (after answering it), click on Mark for Review \& Next button - the answered which is also marked for review will be evaluated.
- To save the answer, click on the Save \& Next button - the answered question will be evaluated.

Resonance Eduventures Ltd.

Registered \& Corporate Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Toll Free: 18002585555 | Fax: +91-022-39167222| 08003444888 Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in |CIN: U80302RJ2007PLC024029

PART-II : CHEMISTRY

SECTION - 1 : (Maximum Marks : 24)

- This section contains SIX (06) questions.
- Each question has FOUR options for correct answer(s). ONE OR MORE THAN ONE of these four option(s) is (are) correct option(s).
- For each question, choose the correct option(s) to answer the question.
- Answer to each question will be evaluated according to the following marking chosen.

Full Marks : $\quad+4$ If only (all) the correct option(s) is (are) chosen.
Partial Marks: +3 If all the four options are correct but ONLY three options are chosen.
Partial Marks: +2 If three or more options are correct but ONLY two options are chosen, both of which are correct options.
Partial Marks: +1 If two or more options are correct but ONLY one option is chosen and it is a correct option.
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered).
Negative Marks: -2 In all other cases.
For Example : If first, third and fourth are the ONLY three correct options for a question with second option being an incorrect option; selecting only two of the three correct options (e.g. the first and fourth options), without selecting any incorrect option (second option in this case), will result in +2 marks. Selecting only one of the three correct options (either first or third or fourth option), without selecting any incorrect option (second option in this case), will result in +1 marks. Selecting any incorrect option(s) (second option in this case), with or without selection of any correct option(s) will result in -2 marks.

1. The compound(s) which generate(s) N_{2} gas upon thermal decomposition below $300^{\circ} \mathrm{C}$ is (are)
(A) $\mathrm{NH}_{4} \mathrm{NO}_{3}$
(B) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
(C) $\mathrm{Ba}\left(\mathrm{N}_{3}\right)_{2}$
(D) $\mathrm{Mg}_{3} \mathrm{~N}_{2}$

Ans. (B, C)
Sol. (A) $\mathrm{NH}_{4} \mathrm{NO}_{3}$ (decompose below $300^{\circ} \mathrm{C}$ to produce $\mathrm{N}_{2} \mathrm{O} \& \mathrm{H}_{2} \mathrm{O}$, but to produce N_{2}, it should be heated above $300^{\circ} \mathrm{C}$).
(B) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \xrightarrow{\Delta} \mathrm{~N}_{2}+\mathrm{Cr}_{2} \mathrm{O}_{3}+\mathrm{H}_{2} \mathrm{O}$
(C) $\mathrm{Ba}\left(\mathrm{N}_{3}\right)_{2} \xrightarrow{\Delta} \mathrm{Ba}+\mathrm{N}_{2}$
(D) $\mathrm{Mg}_{3} \mathrm{~N}_{2}$ (an ionic compound; will not decompose below $300^{\circ} \mathrm{C}$)
2. The correct statement(s) regarding the binary transition metal carbonyl compounds is (are)
(Atomic numbers: $\mathrm{Fe}=26, \mathrm{Ni}=28$)
(A) Total number of valence shell electrons at metal centre in $\mathrm{Fe}(\mathrm{CO})_{5}$ or $\mathrm{Ni}(\mathrm{CO})_{4}$ is 16
(B) These are predominantly low spin in nature
(C) Metal-carbon bond strengthens when the oxidation state of the metal is lowered
(D) The carbonyl $\mathrm{C}-\mathrm{O}$ bond weakens when the oxidation state of the metal is increased

Ans. (B, C)
Sol. $\Rightarrow \mathrm{Fe}(\mathrm{CO})_{5} \quad$: Total number of valence electrons is 18
: low spin complex.
$\Rightarrow \mathrm{Ni}(\mathrm{CO})_{4} \quad$: Total number of valence electrons is 18
: low spin complex
\Rightarrow Metal-carbonyl bond strengthens when the oxidation state of metal is lowered.
\Rightarrow The carbonyl C-O bond is stronger in case of increased oxidation state of metal.
3. Based on the compounds of group 15 elements, the correct statement(s) is (are)
(A) $\mathrm{Bi}_{2} \mathrm{O}_{5}$ is more basic than $\mathrm{N}_{2} \mathrm{O}_{5}$
(B) NF_{3} is more covalent than BiF_{3}
(C) PH_{3} boils at lower temperature than NH_{3}
(D) The $\mathrm{N}-\mathrm{N}$ single bond is stronger than the $\mathrm{P}-\mathrm{P}$ single bond

Ans. (A, B, C)

Resonance Eduventures Ltd.

REG. \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph.No. : +91-744-3012222, 6635555 | To Know more : sms RESO at 56677
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

Sol. $\quad \Rightarrow \mathrm{Bi}_{2} \mathrm{O}_{5}$ is more basic than $\mathrm{N}_{2} \mathrm{O}_{5}$
$\Rightarrow \mathrm{NF}_{3}$ is more covalent than BiF_{3}
$\Rightarrow \mathrm{NH}_{3}$ boiling point is higher than PH_{3}
$\Rightarrow \mathrm{P}-\mathrm{P}$ single bond is stronger than $\mathrm{N}-\mathrm{N}$ single bond.
4. In the following reaction sequence, the correct structure(s) of \mathbf{X} is (are)
$X \xrightarrow[\substack{\text { 2) } \mathrm{Nal}_{3}, \mathrm{Me}_{2} \mathrm{CO} \\ \text { 3) } \mathrm{NaN}_{3}, \mathrm{HCONMe} \\ 2}]{\text { 1) } \mathrm{HBr}_{2}, \mathrm{Et}_{2} \mathrm{O}}$

(A)

(B)

(C)

(D)

Ans. (B)
Sol.

5. The reaction(s) leading to the formation of $1,3,5$-trimethylbenzene is (are)
(A)

(B)

(C)

1) $\mathrm{Br}_{2}, \mathrm{NaOH}$
2) $\mathrm{H}_{3} \mathrm{O}^{+}$
3) sodalime, Δ
(D)

Ans. (A,B,D)

Resonance Eduventures Ltd.

REG. \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph.No. : +91-744-3012222, 6635555 | To Know more : sms RESO at 56677
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

Resonance
 | J EE (ADVANCED) 2018

Sol. Detail mechanism of mesitylene formation from acetone can be found in our video solution by SM Sir, HOD Chemistry Resonance.

Conc $\mathrm{H}_{2} \mathrm{SO}_{4}$ / Heat

Heated Iron tube / 873 K

6. A reversible cyclic process for an ideal gas is shown below. Here, P, V, and T are pressure, volume and temperature, respectively. The thermodynamic parameters $\mathrm{q}, \mathrm{w}, \mathrm{H}$ and U are heat, work, enthalpy and internal energy, respectively.

The correct option(s) is (are)
(A) $q_{A C}=\Delta U_{B C}$ and $w_{A B}=P_{2}\left(V_{2}-V_{1}\right)$
(B) $\mathrm{W}_{\mathrm{BC}}=\mathrm{P}_{2}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)$ and $\mathrm{q}_{\mathrm{BC}}=\Delta \mathrm{H}_{\mathrm{AC}}$
(C) $\Delta \mathrm{H}_{\mathrm{CA}}<\Delta \mathrm{U}_{\mathrm{CA}}$ and $\mathrm{q}_{\mathrm{AC}}=\Delta \mathrm{U}_{\mathrm{BC}}$
(D) $\mathrm{q}_{\mathrm{BC}}=\Delta \mathrm{H}_{\mathrm{AC}}$ and $\Delta \mathrm{H}_{\mathrm{CA}}>\Delta \mathrm{U}_{\mathrm{CA}}$

Ans. (B, C)
Sol. $A C \Rightarrow$ isochoric process
$A B \Rightarrow$ isothermal process
$B C \Rightarrow$ isobaric process
$\Rightarrow q_{A C}=\Delta U_{A C}=n C_{v, m}\left(T_{2}-T_{1}\right)=\Delta U_{B C}$
$\Rightarrow \mathrm{W}_{\mathrm{AB}}=-\mathrm{nR} T_{1} \ell \mathrm{n}\left(\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}\right)$
$\Rightarrow W_{B C}=-P_{2}\left(V_{1}-V_{2}\right)=P_{2}\left(V_{2}-V_{1}\right)$
$\Rightarrow \mathrm{q}_{\mathrm{BC}}=\Delta \mathrm{H}_{\mathrm{BC}}=\mathrm{nC}_{\mathrm{P}, \mathrm{m}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)=\Delta \mathrm{H}_{\mathrm{AC}}$
$\Rightarrow \Delta \mathrm{H}_{\mathrm{CA}}=\mathrm{nC}_{\mathrm{P}, \mathrm{m}}\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)$
$\Rightarrow \Delta \mathrm{U}_{\mathrm{CA}}=\mathrm{nC}_{\mathrm{V}, \mathrm{m}}\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)$
$\Delta H_{C A}<\Delta U_{C A}$ since both are negative $\left(T_{1}<T_{2}\right)$

Resonance Eduventures Ltd.

REG. \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph.No. : +91-744-3012222, 6635555 | To Know more: sms RESO at 56677
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

SECTION 2 (Maximum Marks: 24)

- This section contains EIGHT (08) questions. The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 6.25, 7.00, -0.33, -.30, 30.27, -127.30) using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct numerical value is entered as answer.
Zero Marks: 0 In all other cases.
7. Among the species given below, the total number of diamagnetic species is \qquad .
H atom, NO_{2} monomer, O_{2}^{-}(superoxide), dimeric sulphur in vapour phase,
$\mathrm{Mn}_{3} \mathrm{O}_{4},\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{FeCl}_{4}\right],\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{NiCl}_{4}\right], \mathrm{K}_{2} \mathrm{MnO}_{4}, \mathrm{~K}_{2} \mathrm{CrO}_{4}$
Ans. 1
Sol. Paramagnetic : $\mathrm{Mn}_{3} \mathrm{O}_{4},\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{FeCl}_{4}\right],\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{NiCl}_{4}\right], \mathrm{K}_{2} \mathrm{MnO}_{4}$
Diamagnetic : $\mathrm{K}_{2} \mathrm{CrO}_{4}$
8. The ammonia prepared by treating ammonium sulphate with calcium hydroxide is completely used by $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ to form a stable coordination compound. Assume that both the reactions are 100% complete. If 1584 g of ammonium sulphate and 952 g of $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ are used in the preparation, the combined weight (in grams) of gypsum and the nickel-ammonia coordination compound thus produced is \qquad .
(Atomic weights in $\mathrm{g} \mathrm{mol}^{-1}: \mathrm{H}=1, \mathrm{~N}=14, \mathrm{O}=16, \mathrm{~S}=32, \mathrm{Cl}=35.5, \mathrm{Ca}=40, \mathrm{Ni}=59$)
Ans. 2992
Sol. $\mathrm{Ca}(\mathrm{OH})_{2}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \longrightarrow 2 \mathrm{NH}_{3}+\mathrm{CaSO}_{4} .2 \mathrm{H}_{2} \mathrm{O}$
1584 g

Number of Moles of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}=\frac{1584}{132}=12$ moles
Moles of NH_{3} released $=24$ moles
Moles of moles of $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}=\frac{952}{238}=4$ moles
Number of moles of Gypsum ($\mathrm{CaSO}_{4} .2 \mathrm{H}_{2} \mathrm{O}$) formed $=12$ moles
Mass of Gypsum formed $=12 \times 172=2064$
Number of moles of complex formed $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{2}=\frac{24}{6}=4$ moles
Mass of complex formed $=4 \times 232=928 \mathrm{~g}$
Total Mass $=2064+928=2992 \mathrm{~g}$
9. Consider an ionic solid $\mathbf{M X}$ with NaCl structure. Construct a new structure (\mathbf{Z}) whose unit cell is constructed from the unit cell of MX following the sequential instructions given below. Neglect the charge balance.
(i) Remove all the anions (\mathbf{X}) except the central one
(ii) Replace all the face centered cations (\mathbf{M}) by anions (\mathbf{X})
(iii) Remove all the corner cations (M)
(iv) Replace the central anion (\mathbf{X}) with cation (M)

The value of $\left(\frac{\text { number of anions }}{\text { number of catons }}\right)$ in Z is \qquad .
Ans. 3

Resonance Eduventures Ltd.

REG. \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph.No. : +91-744-3012222, 6635555 | To Know more : sms RESO at 56677
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

Sol. As per given information cation form FCC lattice and anion occpy all the actahedral void.

So	M^{+}	X^{-}	\&	Formula MX
	4 ion	4 ion		
After step I	4 ion	1 ion		
After step II	1 ion	4 ion		
After step III	0 ion	4 ion		
After step IV	1 ion	3 ion		
So ratio of	No. of anion			
	$=\frac{3}{1}$			

10. For the electrochemical cell,
$\mathrm{Mg}(\mathrm{s})\left|\mathrm{Mg}^{2+}(\mathrm{aq}, 1 \mathrm{M}) \| \mathrm{Cu}^{2+}(\mathrm{aq}, 1 \mathrm{M})\right| \mathrm{Cu}(\mathrm{s})$
the standard emf of the cell is 2.70 V at 300 K . When the concentration of Mg^{2+} is changed to $x \mathrm{M}$, the cell potential changes to 2.67 V at 300 K . The value of x is \qquad -.
(given, $\frac{F}{R}=11500 \mathrm{~K} \mathrm{~V}^{-1}$, where F is the Faraday constant and R is the gas constant,
$\ln (10)=2.30)$
Ans. 10
Sol.

$$
\begin{gathered}
\mathrm{Mg} \longrightarrow \mathrm{Mg}^{2+}+2 \mathrm{e}^{-} \\
\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu} \\
\mathrm{Mg}+\mathrm{Cu}^{2+} \mathrm{Mg} \longrightarrow \mathrm{Mg}^{2+}+\mathrm{Cu} \\
\mathrm{E}=2.67=2.7-\frac{\mathrm{RT}}{\mathrm{nF}} \ln \frac{\mathrm{x}}{1} \\
0.03=\frac{300}{2 \times 11500} \operatorname{lnx} \\
2.3=\ell \mathrm{nx} \\
\mathrm{X}=10
\end{gathered}
$$

11. A closed tank has two compartments \mathbf{A} and \mathbf{B}, both filled with oxygen (assumed to be ideal gas). The partition separating the two compartments is fixed and is a perfect heat insulator (Figure 1). If the old partition is replaced by a new partition which can slide and conduct heat but does NOT allow the gas to leak across (Figure 2), the volume (in m^{3}) of the compartment \mathbf{A} after the system attains equilibrium is

Figure 1

Figure 2

Resonance Eduventures Ltd.

REG. \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph.No. : +91-744-3012222, 6635555 | To Know more : sms RESO at 56677
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

Sol.

```
        \(\mathrm{m}^{3}, 5 \mathrm{bar}\),
400 K
```

 A
 B
 Finally, $P_{A}=P_{B} \quad$ also $T_{A}=T_{B}$
So $\frac{n_{A}}{n_{B}}=\frac{V_{A}}{V_{B}}$
5
$\frac{\frac{500 R}{3}}{\frac{300 R}{300}}=\frac{V_{A}}{V_{B}} \quad \Rightarrow \quad \frac{V_{A}}{V_{B}}=\frac{5}{4} \quad \Rightarrow \quad V_{A}=\frac{5}{9} \times 4=\frac{20}{9}=2.22$
12. Liquids \mathbf{A} and \mathbf{B} form ideal solution over the entire range of composition. At temperature T , equimolar binary solution of liquids \mathbf{A} and \mathbf{B} has vapour pressure 45 Torr. At the same temperature, a new solution of \mathbf{A} and \mathbf{B} having mole fractions x_{A} and x_{B}, respectively, has vapour pressure of 22.5 Torr. The value of x_{A} / x_{B} in the new solution is \qquad .
(given that the vapour pressure of pure liquid A is 20 Torr at temperature T)
Ans. 19
Sol. $\quad p_{T}=p{ }^{0} X_{A}+p 0_{B} X_{B}$
$45=20(0.5)+P_{B}^{\circ}(0.5)$
$\mathrm{P}_{\mathrm{B}}^{\circ}=70$
$22.5=20 X_{A}+70\left(1-X_{A}\right)$
$50 X_{A}=47.5$
$X_{A}=\frac{4.75}{5}=0.95$
$X_{B}=0.05$
$\frac{X_{A}}{X_{B}}=19$
13. The solubility of a salt of weak acid (AB) at pH 3 is $Y \times 10^{-3} \mathrm{~mol}^{-1}$. The value of Y is \qquad .
(Given that the value of solubility product of $\mathbf{A B}\left(\mathrm{K}_{\mathrm{sp}}\right)=2 \times 10^{-10}$ and the value of ionization constant of $\mathrm{HB}\left(\mathrm{K}_{\mathrm{a}}\right)=1 \times 10^{-8}$)
Ans. 4.47
Sol.

$$
\begin{align*}
& A B \rightleftharpoons A^{+}+B^{-} \\
& x \quad x-y \\
& 2 \times 10^{-10}=x(x-y) \tag{1}\\
& B^{-}+H^{+} \rightleftharpoons y B \\
& x-y 10^{-3} \rightleftharpoons y \\
& 10^{8}=\frac{y}{(x-y) 10^{-3}} \\
& \frac{y}{x-y}=10^{5} \\
& x-y=10^{-5} y
\end{align*}
$$

solubility
)

$$
2 \times 10^{-10}=x^{2}-2 \times 10^{-5}
$$

$$
x^{2}=2 \times 10^{-5}
$$

$$
x=\sqrt{20} \times 10^{-3}
$$

$$
=4.47 \times 10^{-3}
$$

Resonance Eduventures Ltd.

REG. \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph.No. : +91-744-3012222, 6635555 | To Know more : sms RESO at 56677
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

14. The plot given below shows $P-T$ curves (where P is the pressure and T is the temperature) for two solvents X and Y and isomolal solutions of NaCl in these solvents. NaCl completely dissociates in both the solvents.

On addition of equal number of moles of a non-volatile solute \mathbf{S} in equal amount (in kg) of these solvents, the elevation of boiling point of solvent \mathbf{X} is three times that of solvent \mathbf{Y}. Solute \mathbf{S} is known to undergo dimerization in these solvents. If the degree of dimerization is 0.7 in solvent \mathbf{Y}, the degree of dimerization in solvent \mathbf{X} is \qquad .
Ans. 0.05
Sol. $\quad 2=2\left(\mathrm{~K}_{\mathrm{b}}\right)_{x} \mathrm{~m}$
$1=2\left(K_{b}\right)_{y} m$
$\frac{\left(\mathrm{K}_{\mathrm{b}}\right)_{\mathrm{x}}}{\left(\mathrm{K}_{\mathrm{b}}\right)_{\mathrm{y}}}=2$
$\Delta\left(\mathrm{T}_{\mathrm{b}}\right)_{\mathrm{x}}=\left(1-\frac{\beta}{2}\right)\left(\mathrm{K}_{\mathrm{b}}\right)_{\mathrm{x}} \mathrm{m}$
$\Delta\left(\mathrm{T}_{\mathrm{b}}\right)_{\mathrm{y}}=\left(1-\frac{0.7}{2}\right)\left(\mathrm{K}_{\mathrm{b}}\right)_{\mathrm{y}} \mathrm{m}$
On taking the ratio of eq. no. (1) \& (2)
$\Rightarrow 3=\frac{1-\frac{\beta}{2}}{0.65} \times 2$
$1-\frac{\beta}{2}=1.5 \times 0.65$
$\beta=0.05$

SECTION 3 (Maximum Marks: 12)

- This section contains TWO (02) paragraphs. Based on each paragraph, there are TWO (02) questions.
- Each question has FOUR options. ONLY ONE of these four options corresponds to the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct option is chosen.
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered).
Negative Marks : -1 In all other cases.

Resonance Eduventures Ltd.

REG. \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph.No. : +91-744-3012222, 6635555 | To Know more : sms RESO at 56677
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

PARAGRAPH "X"

Treatment of benzene with $\mathrm{CO} / \mathrm{HCl}$ in the presence of anhydrous $\mathrm{AICl}_{3} / \mathrm{CuCl}$ followed by reaction with $\mathrm{Ac}_{2} \mathrm{O} / \mathrm{NaOAc}$ gives compound \mathbf{X} as the major product. Compound \mathbf{X} upon reaction with $\mathrm{Br}_{2} / \mathrm{Na}_{2} \mathrm{CO}_{3}$, followed by heating at 473 K with moist KOH furnishes \mathbf{Y} as the major product. Reaction of \mathbf{X} with $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}$, followed by $\mathrm{H}_{3} \mathrm{PO}_{4}$ treatment gives \mathbf{Z} as the major product.
(There are two questions based on PARAGRAPH "X", the question given below is one of them)
15. The compound Y is
(A)

(B)

(C)

(D)

Ans. C

Sol.

PARAGRAPH "X"

Treatment of benzene with $\mathrm{CO} / \mathrm{HCl}$ in the presence of anhydrous $\mathrm{AlCl}_{3} / \mathrm{CuCl}$ followed by reaction with $\mathrm{Ac}_{2} \mathrm{O} / \mathrm{NaOAc}$ gives compound \mathbf{X} as the major product. Compound \mathbf{X} upon reaction with $\mathrm{Br}_{2} / \mathrm{Na}_{2} \mathrm{CO}_{3}$, followed by heating at 473 K with moist KOH furnishes \mathbf{Y} as the major product. Reaction of \mathbf{X} with $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}$, followed by $\mathrm{H}_{3} \mathrm{PO}_{4}$ treatment gives \mathbf{Z} as the major product.
(There are two questions based on PARAGRAPH "X", the question given below is one of them)
16. The compound \mathbf{Z} is
(A)

(B)

(C)

(D)

Ans. (A)

Resonance Eduventures Ltd.

REG. \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph.No. : +91-744-3012222, 6635555 | To Know more : sms RESO at 56677
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

Sol.

PARAGRAPH "A"

An organic acid $\mathbf{P}\left(\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2}\right)$ can easily be oxidized to a dibasic acid which reacts with ethyleneglycol to produce a polymer dacron. Upon ozonolysis, \mathbf{P} gives an aliphatic ketone as one of the products. \mathbf{P} undergoes the following reaction sequences to furnish \mathbf{R} via \mathbf{Q}. The compound \mathbf{P} also undergoes another set of reactions to produce \mathbf{S}.

1) $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}$
2) $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}$
3) HCl
4) NH_{3} / Δ

S $\stackrel{\text { 3) } \mathrm{Br}_{2} / \mathrm{NaOH}}{\text { 4) } \mathrm{CHCl}_{3} \cdot \mathrm{KOH}, \Delta}$ P 2) SOCl_{2} $Q \xrightarrow[\text { 3) } \mathrm{CO}_{2} \text { (dry ice) }]{\text { 2) } \mathrm{Mg} / \mathrm{Et}_{2} \mathrm{O}} R$
5) $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}$
4) NaBH_{4}
4) $\mathrm{H}_{3} \mathrm{O}^{+}$
(There are two questions based on PARAGRAPH "A", the question given below is one of them)
17. The compound \mathbf{R} is
(A)

(B)

(C)

(D)

Ans. (A)

Sol.

Resonance Eduventures Ltd.

REG. \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph.No. : +91-744-3012222, 6635555 | To Know more : sms RESO at 56677
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

An organic acid $\mathbf{P}\left(\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2}\right)$ can easily be oxidized to a dibasic acid which reacts with ethyleneglycol to produce a polymer dacron. Upon ozonolysis, \mathbf{P} gives an aliphatic ketone as one of the products. \mathbf{P} undergoes the following reaction sequences to furnish \mathbf{R} via \mathbf{Q}. The compound \mathbf{P} also undergoes another set of reactions to produce \mathbf{S}.

1) $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}$
2) NH_{3} / Δ
3) $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}$
4) HCl
S $\stackrel{\text { 4) } \mathrm{Br}_{2} / \mathrm{NaOH}}{\text { 4) } \mathrm{CHCl}_{3} \cdot \mathrm{KOH}, \Delta} \mathrm{P}$
$\xrightarrow[\text { 3) } \mathrm{MeMgBr}, \mathrm{CdCl}_{2}]{\text { 2) } \mathrm{SOCl}_{2}}$
$\xrightarrow[\text { 3) } \mathrm{CO}_{2} \text { (dry ice) }]{\text { 2) } \mathrm{Mg} / \mathrm{Et}_{2} \mathrm{O}} R$
5) $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}$
6) NaBH_{4}
7) $\mathrm{H}_{3} \mathrm{O}^{+}$
(There are two questions based on PARAGRAPH " A ", the question given below is one of them)
18. The compound \mathbf{S} is
(A)

(B)

(C)

(D)

Ans. (B)

Sol.

Resonance Eduventures Ltd.

REG. \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph.No. : +91-744-3012222, 6635555 | To Know more : sms RESO at 56677
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

