

INDIAN NATIONAL JUNIOR SCIENCE OLYMPIAD (INJSO)

DATE: 02-02-2019

HINTS & SOLUTIONS

SECTION-A

11. Ans (D)

 $Argon \rightarrow {}^{40}_{18}Ar$

Atomic No. = 18

Mass No. = 40

No. of $n^0 = 40 - 18 = 22$

No. of $p^+ = 18$ If mass of n^0 in Argon made half then, number of $n^0 = 11$

If mass of electron is doubled

Here mass of electron is negligible.

Now, new mass of Argon = 11 + 18 = 29

Now change in mass = 40-29 = 11

In % =
$$\frac{11}{40}$$
 × 100

$$=\frac{110}{40}=27.5\%$$

Mass is reduced by approximately 27%

12. Ans (B)

Common salt (NaCl) = 0.5 g

Sodium = 40%

lodine = 380 µgm

Mass of Na in common salt = $0.5 \times \frac{40}{100} = 0.2 \text{ gm}$

Mass of iodine = 380×10^{-6} gm

 \therefore Mass of chloride = $0.5 - 0.2 - (380 \times 10^{-6}) = 0.29962$

No. of chloride ions = $\frac{0.29962}{35.5} \times 6.023 \times 10^{23} = 5 \times 10^{21}$

13. Ans (B)

LPG +
$$O_2 \rightarrow CO_2 + H_2O$$

$$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$$

4y ℓ

$$C_4H_{10} + O_2 \rightarrow 4CO_2 + 5H_2O$$

$$x + y = 5$$

x = 5 - y

for $CO_2 \rightarrow$ 3x + 4y = 17

From equation (i)

$$3(5 - y) + 4y = 17$$

 $15 - 3y + 4y = 17$
 $y = 2 \rightarrow C_4H_{10}$ (butane)
 $x = 3 \rightarrow C_3H_8$ (propane)
ratio (butane to proane) = 2 : 3

14. Ans. (D)

Acid \rightarrow 0.42 gm. (C₆H₁₀O₄)

Base \rightarrow 0.17 M (NaOH), and 33.8 ml

moles of acid =
$$\frac{0.42}{72 + 10 + 64}$$

= $\frac{0.42}{146}$
= 2.87×10^{-3} mol.
= 2.87 m mol.

Milli moles of Base = 0.17×33.8

= 5.746 m mol.

: 2.87 m mol of Acid Neutralize 5.74 m mol of base.

So. 1 m mol of Acid Neutralise =
$$\frac{5.74}{2.87}$$
 = 2 m mol.

Means two protons per acid molecule are taking part in reaction.

For 1 mol of base Acid is required =
$$\frac{1}{2}$$
 mol.

$$= \frac{1}{2} \times 146$$
$$= 73 \text{ gm}$$

15. Ans.(D)

From Ideal gas equation.

PV = nRT.

At constant temperature.

$$P \propto \frac{1}{V}$$

So correct graph between P vs.V

16. Ans.(D)

Given series

Mg > Al > Zn > Cu > Ag

If copper rod is used to stir a solution of aluminium nitrate then there will be no reaction because according to given series copper is less reactive than aluminium.

17. Ans.(A)

Compound (P) is NaCl \rightarrow

Electrolysis of aqueous NaCl:

NaCl (aq)
$$\xrightarrow{\text{electricity}}$$
 NaOH(aq) + H₂ (g) + Cl₂ (g) "P"

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 $\textbf{Website}: www.resonance.ac.in \mid \textbf{E-mail}: contact@resonance.ac.in$

Toll Free: | 1800 258 5555 | CIN: U80302RJ2007PTC024029

Gas 'Q' will be Cl₂ because it will form germicide, Bleaching powder (CaOCl₂) with Ca(OH)₂

$$Ca(OH)_2 + Cl_2 \longrightarrow CaOCl_2$$

"R" "Q" Bleaching powder

Ans,. (D) 18.

$$Fe^{2+} + MnO_4^- + H^+ \longrightarrow Fe^{3+} + Mn^{2+} + H_2O$$

Balanced Eq.

$$5Fe^{2+} + MnO_4^- + 8H^+ \longrightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O$$

$$5 + 1 + 8 + 5 + 1 + 4 \Rightarrow 24$$

19. Ans. (C)

(a)
$$2NO_2 + H_2O \longrightarrow HNO_3 + HNO_2$$

Oxidation No. of Nitrogen (+4) in NO₂ changed to +5 and +3. In a disproportionation reaction an element in one oxidation state is simultaneously oxidised and reduced". So it is disproportionation reaction.

(b)
$$3S + 2H_2O \longrightarrow SO_2 + 2H_2S$$

O.S. of sulphur changed from 0 to + 4 and - 2

So it is disproportionation Reaction

(c)
$$\stackrel{-3}{\text{NH}_4} \stackrel{+5}{\text{NO}_3} \longrightarrow \stackrel{+1}{\text{N}_2} \text{O} + 2\text{H}_2\text{O}$$

O.N. of Nitrogen changed from - 3 & +5 to +1.

In comproportionation reaction, two different oxidation state of an element in reactant state is simultaneously oxidised and reduced to a single oxidation state in product.

So it is comproportionation Reaction.

(d)
$$3 \overset{0}{\text{Cl}_2} + 60 \overset{-1}{\text{H}^-} \longrightarrow 5 \overset{-1}{\text{Cl}^-} + \overset{+5}{\text{Cl}} \overset{-}{\text{O}_3} + 3 \overset{-1}{\text{H}_2} O$$

O.N. of CI changed from 0 to - 1 & + 5

So it is disproporationation Reaction.

20. Ans. (C)

$$(n-1)s^2 p^6$$
, ns^1

21. (B)

$$v_1 = \frac{u_1 + u_2}{2}$$

$$V_2 = \frac{U_2 + U_3}{2}$$

$$V_1 = \frac{u_1 + u_2}{2}$$
 $V_2 = \frac{u_2 + u_3}{2}$ $V_3 = \frac{u_3 + u_4}{2}$

$$u_2 = u_1 + a\Delta t_1$$

$$u_3 = u_2 + a \Delta t_2 = u_1 + a (\Delta t_1 + \Delta t_2)$$

$$u_4 = u_3 + a\Delta t_3 = u_1 + a (\Delta t_1 + \Delta t_2 + \Delta t_3)$$

$$\frac{v_2 - v_1}{v_3 - v_2} = \frac{u_2 + u_3 - u_1 - u_2}{u_3 + u_4 - u_2 - u_3} = \frac{u_3 - u_1}{u_4 - u_2} = \frac{a(\Delta t_1 + \Delta t_2)}{a(\Delta t_2 + \Delta t_3)}$$

$$\frac{\textbf{v}_2 - \textbf{v}_1}{\Delta t_1 + \Delta t_2} = \frac{\textbf{v}_3 - \textbf{v}_2}{\Delta t_3 + \Delta t_2}$$

$$t = \frac{d}{v_{mr} \sin \theta}$$

If $sin\theta = 1$ them t will be minimum and for Q., $\theta = 90^{\circ}$

so Q will reach in minimum time towards east of x.

23. (C)

By work energy theorem between A & C

$$W = \Delta K$$

$$W_f + W_g = K_f - K_i$$

$$-f\left(\frac{H}{2}\right) + m\left(H + \frac{H}{2}\right)g = 0 - 0$$

$$m \left(\frac{3H}{2} \right) g = \frac{fH}{2}$$

$$f = 3 mg$$

24. (B)

Potential difference across unit length (x) = $\frac{10}{1}$

In balanced condition no current will flow through galvanometer (G) so there will not be any effect of resistance r.

$$E = x \ell = \frac{10}{L} \ell \Rightarrow \ell = \frac{E \times L}{10}$$

25. (D)

 $\mu_1 \sin i = \mu_2 \sin r$

$$\frac{4}{3}$$
sini = sinr

$$\frac{4}{3}i = r$$

[:
$$\sin i = i = \tan i = \frac{x}{f}$$
 & $\sin r = r = \tan r = \frac{x}{v}$]

$$\frac{4}{3}\frac{x}{f} = \frac{x}{v}$$

$$v = \frac{3}{4}f = 0.75f$$

26. (D)

Image by M₁	Image by M ₂
25°	25°
75°	75°
125°	125°
175°	175°

$$4 + 4 = 8$$

So no image coincide

27. (B)

Efficiency of heating element is 50%

So power = 210 J/S

That means in 1 sec supplied heat is 210 J

So in 60 sec in supplied heat is = $210 \times 60 \text{ J}$

Now $Q = mS\Delta t$

$$210 \times 60 = m \times 4.2 \times 10^3 \times 5$$

$$m = \frac{210 \times 60}{4.2 \times 10^3 \times 5} = \frac{210 \times 60}{21 \times 10^3} = \frac{600}{1000} = 0.6 \text{ kg/min}$$

Now

$$\rho = \frac{m}{V}$$

So
$$V = \frac{m}{\rho} = \frac{0.6}{10^3} \times 10^3 \frac{L}{min} = 0.6 \frac{L}{min}$$

28. (C)

Total resistance in || combination = $\frac{r}{N}$ (Assuming each resistance is of value r)

Total resistance in series combination = r N

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in
Toll Free: | 1800 258 5555 | CIN: U80302RJ2007PTC024029

$$\therefore \qquad \text{Power displacement in } \| = \frac{E^2}{r/N}$$

$$\text{Power dissipated in series} = \frac{E^2}{rN}$$

 \therefore Ratio = N^2

29. (D)

Since R + G = Yellow colour . So image will be yellow.

30. (A)

$$N(\theta)\alpha \frac{1}{\sin^4 \frac{\theta}{2}}$$

So, graph between number of particles and scattered angle is

SECTION-B

B. (i) Leaf weight + Stem Weight Root weight

0.126 + 0.283 0.239 =1.711

(ii) $\frac{0.061 + 0.138}{0.089} = 2.2359$

C. (i) X = Yes

(ii) No

D. (a) Leaf weight Leaf area

32. A. 0.0055 M

В.

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in
Toll Free: | 1800 258 5555 | CIN: U80302RJ2007PTC024029

- **C**. 120 mg%
- **D**. 50 mg%
- **33.** (A)
 - (i) Z (More in number so producers).
 - (ii) Y (Herbivores)
 - (iii) X (Carnivores)
 - (B) Average weight of Z = 0.0060 gm.

Total weight = $0.0060 \times 200 = 1.2$

Average weight of Y = 0.0025

Total weight = $0.0025 \times 40 = 0\%$

- (C) 17
- (D) a

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in
Toll Free: | 1800 258 5555 | CIN: U80302RJ2007PTC024029

SOLUTION_INJSO_PAGE-8

34. (A)
$$\{ 16H^+ + 10e^- + 2MnO_4^- \rightarrow 2Mn^{+2} + 8H_2O \dots (i) \} \times 2$$
 $\{ 5C_2O_4^{2-} \rightarrow 10CO_2 + 10e^- \dots (ii) \} \times 5$ Solving equation (i) and (ii)

$$2KMnO_4 + 5H_2C_2O_4 + 3H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 8H_2O + 10CO_2$$

(B) (i) KMnO₄ (ii) H₂C₂O₄

(C) Mole of KMnO₄ participated =
$$M \times V = 0.1 \times 17.8 \times 10^{-3}$$

= 1.78 × 10⁻³

according to above equation –

for 2 mole of KMnO₄ 5 moles of oxalic acid required

∴ for
$$1.78 \times 10^{-3}$$
 mol of KMnO₄, moles of oxalic acid required = $\frac{5 \times 1.78 \times 10^{-3}}{2}$ = 4.45 m mol

(D) CaCO₃ + H₂C₂O₄
$$\rightarrow$$
 CaC₂O₄ + H₂O + CO₂ CaC₂O₄ + H₂SO₄ \rightarrow H₂C₂O₄ + CaSO₄ According to above equation for 4.45 m mol of H₂C₂O₄, CaCO₃ required = 4.45 × 100 × 10⁻³ g = 0.445 g

(E) Given mass of sample =
$$0.626$$
 g
So, mass of Na₂SO₄ in sample = $0.626 - 0.445 = 0.181$ g
% of Na₂SO₄ = $\frac{0.181}{0.626} \times 100 = 28.91\%$

35.
$$H^{+}(aq) + OH^{-}(aq) \rightarrow H_{2}O(\ell) + (E)$$
Mass of water (M) = 90 g
S = 4.18 J/gm°C
$$\Delta T = 30.5 - 29 = 1.5$$

(A) Heat absorbed by water
$$Q_{water} = M S \Delta T$$

= 90 × 4.18 × 1.5 $Q_{water} = 564.3 J$

(B) For 0.01 mole of water formation heat absorbed by water is = 564.3 J
$$OH^{-}(aq) + H^{+}(aq) \rightarrow H_{2}O(\ell)$$
 17 gm 1 gm 18 gm 1 mole 1 mol 1 mol

∴ Now for 1 mole heat evolved =
$$\frac{564.3J \times 1}{0.01}$$

$$= 56430 J = 56.430 kJ$$

36.

	% by mass	Atomic mass	Relative mole	
С	85.7	12	85.7/12	7.14
Н	14.30	1	14.30/1	14.3

	Simplest ratio		
С	1		
Н	2		

Empirical formula = CH₂

Empirical formula mass = 14 gm

Molecular formula = (Empirical formula) × n

Molecular mass (M) =
$$\frac{\text{density} \times R \times T}{P}$$
 = $\frac{2.28 \times 0.0821 \times 300}{1}$

Molecular mass (M) = 56.15 g

(A) No. of moles of carbon in 100 g of compound % of C = 85.7%

Number of Moles =
$$\frac{85.7}{12}$$
 = 7.14

- (C) Empirical formula of the compound = CH₂
- (D) Moles / Litre of compound = $\frac{\text{density}(g/L)}{1} = 0.0406$
- (E) Empirical formula unit (n) = 4
- (F) Molecular formula = C₄H₈

$$n = \frac{Molecular mass}{empirical formula mass}$$

$$n = \frac{56.14}{14} = 4$$

Molecular formula = C_4H_8

37.

For point A₁A₂

$$u = -18''$$
 and $f = -12''$

so from mirror formula $\frac{1}{f} = \frac{1}{v_1} + \frac{1}{u}$

$$\frac{1}{v_1} = \frac{1}{f} - \frac{1}{u} = \frac{-1}{12} - \left(-\frac{1}{18}\right)$$

$$= -\frac{1}{12} + \frac{1}{18} = \frac{-3+2}{36}$$

$$v_1 = -36''$$

Now for point B₁B₂

$$u = -30"$$
 and $f = -12"$

So from mirror formula

$$\frac{1}{f} = \frac{1}{v_2} + \frac{1}{u}$$

$$\frac{1}{v_2} = \frac{1}{f} - \frac{1}{u}$$

$$=\frac{-1}{12}-\left(-\frac{1}{30}\right)=\frac{-30+12}{360}$$

$$\frac{1}{v_2} = \frac{-18}{360} \qquad \Rightarrow \qquad v_2 = -20''.$$

Image of $C_1\,C_2\,$ will be at – 24" for point $A_1\,A_2\,$

$$h_2 = -\frac{v}{u}h_1 = -\frac{-36}{-18} \times 3 = -6$$
".

And for point B₁B₂

$$h_2 = \frac{v}{u}h_1 = \frac{-20}{-30} \times 3 = -2$$
".

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: | 1800 258 5555 | CIN: U80302RJ2007PTC024029

So for point C₁C₂

$$h_2 = \left(\frac{6-2}{36-20}\right)(24-20)+2 = \frac{4\times4}{16}+2$$

 $h_2 = 3''$.

38

(A)
$$\frac{\lambda}{4} = L + e$$

$$\frac{\lambda}{4} = L + 0.3 \times D$$

$$\therefore \frac{\lambda}{4} = L + 0.015$$

$$\frac{V}{4f} = L + 0.015$$

$$\frac{1}{f} = \frac{4}{v} [L + 0.015]$$

$$T = \frac{4}{v} [L + 0.015]$$

- X-axis $\rightarrow L$ Y-axis $\rightarrow T$

$$y = \frac{4}{v} [x + 0.015]$$

or $y = mx + c$

or
$$y = mx + c$$

where m =
$$\frac{4}{v}$$
 & c = $\frac{0.06}{v}$

(B)	
(-)	

L(cm)	19.9	16	10	7.5	5.1
X – axis					
T(s)	0.0025	.002	.00133	.001	0.0008

(C) Graph

(D) From graph C = 0.00018

$$\therefore$$
 0.00018 = $\frac{0.06}{v} \Rightarrow v = 333 \text{ m/s}$

