

INDIAN NATIONAL JUNIOR SCIENCE OLYMPIAD (INJSO)

DATE: 27-01-2018

HINTS & SOLUTIONS

$$m_{\rm H_2O} = 800 \times \frac{99.98}{100} = 799.84 \,\mathrm{g}$$

$$m_{D_2O} = 200 + 800 \times \frac{0.02}{100} = 200.16 g$$

Avg. molar mass =
$$\frac{1000}{\left(\frac{799.84}{18}\right) + \left(\frac{200.16}{20}\right)} = 18.38 \text{ g mol}^{-1}$$

$$18.38 = \frac{[18 \times x] + [20 \times (100 - x)]}{100}$$

$$X = 81\% \qquad 100 - X = 19\%$$

$$0.81 \times 8$$
 + Neutrons From H₂O

Fraction mass of neutrons =
$$\frac{8.38}{18.38}$$
 = 0.455

2. (d

$$\text{AI + 2HCI} \rightarrow \text{AICI}_3 + \frac{3}{2}\,\text{H}_2$$

$$Zn + 2HCl \rightarrow ZnCl_2 + H_2$$

Moles of
$$H_2 = \frac{3}{2} \times \text{moles of Al} + 1 \times \text{moles of Zn (according to chemical reaction)}$$
.

Let mass of AI = x

Then mass of Zn = 1.67 - x

Moles of
$$H_2 = \frac{1.69}{22.4} = 0.075$$

$$0.075 = \frac{3}{2} \times \frac{x}{27} + \frac{(1.67 - x)}{65.3}$$

$$X = 1.228$$

3. (a)

$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + energy$$

for 40 gm glucose =
$$\frac{192}{180}$$
 × 40 gm of oxygen is required for one hour

Now for 30 days amount of O₂ required will be
$$=\frac{192}{180} \times 40 \times 24 \times 30 \text{ gm}$$

$$= 30720 \text{ gm} = 30.720 \text{ kg}$$

$$V = 4 - 3t - t^2$$

$$\frac{dx}{dt} = 4 - 3t - t^2$$

$$x = 4t - \frac{3t^2}{2} - \frac{t^3}{3} + C$$

$$x = C$$

so (i) option is some time correct.

(ii) at
$$t = 0$$

$$V = 4m/s^2$$

So (ii) option is never correct.

(iii)
$$a = -3 - 2t$$

$$[V = 4 - 3t - t^2]$$

$$4 - 3t - t^2 = 0$$

$$T = 1, -4$$

That means particle deaccelerates till t = 1 sec.

And speed of particle goes on increasing after t = 1 sec

6. (a)

Suppose mole of $FeSO_4 = x$

Only Fe⁺² undergoes reaction

$$Fe^{+2} + e^{-} \longrightarrow Fe^{+3}$$

Equivalence of FeSO₄ is equal to equivalence of KMnO₄ (i.e., is Oxidising agent) as Fe₂ (SO₄)₃ cannot be oxidized by KMnO₄.

Eq. of $FeSO_4 = Eq.$ of $KMnO_4$

 n_f of FeSO₄ = 1 as it oxidize from + 2 to + 3 oxidation state by KMnO₄

 n_f of KMnO₄ in acidic medium = 5.

$$MnO_4^- \longrightarrow Mn^{+2} + 5e^-$$

$$x \times 1 = \frac{100 \times 2 \times 5}{1000} = 1$$

∴ moles of FeSO₄ = 1

Mole fraction of FeSO₄ = $\frac{n_{\text{FeSO}_4}}{n_{\text{FeSO}_4} + n_{\text{Fe}_2(\text{SO}_4)_2}} = \frac{1}{3}$. Ans.

7. (c)

$$\mu = \frac{\text{Re al depth}}{\text{Apparent depth}}$$

$$= \frac{AC}{DC}$$

$$\mu = \frac{d}{DC}$$

$$\mu = \frac{d}{DC}$$
 Here $AC = d$

it is for normal view so answer is b.

Let suppose mass of original sample = 100 gm

mass of water in original sample = 15 gm.

and mass of (impurity + silica) in original sample = 85 gm.

% water after drying = 8%.

Let x be the mass of water left and y be the mass of silica in original sample.

% water after drying =
$$\frac{\text{mass of water left}}{\text{mass of sample after drying}} \times 100$$

$$8 = \frac{x}{85 + x} \times 100$$

$$x = \frac{85 \times 8}{92} = 7.391 \text{ gm}$$

% Silica after drying =
$$\frac{\text{Mass of silica}}{\text{Mass of sample after drying}} \times 100$$

$$60 = \frac{y}{85 + 7.391} \times 100$$

% Silica in original sample =
$$\frac{55.5}{100} \times 100 \approx 55.5\%$$

10. (b)

11. (c)

Reading of weighing machine = 400 gm

Mass of water = 262 gm

Mass of beaker = 50 gm

In equilibrium.

$$400 g = (262 + 50) g + weight of sphere$$

$$400 g = 312 g + mg$$

$$m = 88 gm$$

volume of sphere =
$$36\pi = \frac{4}{3}\pi R^3$$

$$R = 3 cm$$

$$\frac{4}{3}\pi(R^3-r^3)\times d=88$$

$$R^3 - r^3 = \frac{88 \times 3}{4\pi 8}$$

r = 2.899 cm

So thickness = R - r = 3 - 2.899 = 3 - 2.9 = 0.1 cm = 1 mm.

$$3F - f = 100 \times a$$
(i)

$$3F - f = 100 \times 0.5 = 50$$

$$3F - 2F = 50$$

$$F = 50$$

Put the value in equation (ii)

$$2 \times 50 = \mu \times N$$

$$100 = \mu \times 10 \times 100$$

$$\mu = \frac{1}{10}$$

$$\mu = 0.1$$

13. (d)

Element Group
A 1
B 2
C 14
D 17

Elements of group (14) & (17) are non-metals so they will react with each other to give covalent compound.

14. (c)

Given that

 $C_2H_2O_4$. $2H_2O = 252 \text{ mg}$

Now, moles of oxalic acid = $\frac{\text{Given mass}}{\text{GMM}}$

$$= \frac{252 \times 10^{-3}}{126}$$
$$= 2 \times 10^{-3}$$

One mole molecule of oxalic acid contains 2 mole of H₂O

So in 2×10^{-3} moles of oxalic acid amount of water will be = $2 \times 2 \times 10^{-3} = 4 \times 10^{-3}$ mole

So, No. of molecules of water of hydration = $4 \times 10^{-3} \times 6.023 \times 10^{23}$

$$= 24.08 \times 10^{20} = 2.4 \times 10^{21}$$

- 15. (c)
- 16. (d)
- 17. (b)

No change in flux.

18. (b)

For first echo

$$\frac{\left(\frac{d}{2} + \frac{d}{2} - 2V\right)}{2} = V_s$$

$$\frac{d - 2V}{2} = V_s \qquad (1)$$

And for second echo

$$\frac{\frac{d}{2}+\frac{d}{2}+3V}{3}=V_s$$

Or
$$\frac{d+3V}{3} = V_s$$
(2)

From equation (1) and (2)

$$\frac{d-2V}{2}=\frac{d+3V}{3}$$

$$3d - 6V = 2d + 6V$$

$$d = 12 V$$

Using this value in equation (1)

$$\frac{12V-2V}{2}=V_s$$

$$5V = V_s$$

That means velocity of sound is five times of velocity of sound so option (b) is correct.

19.

For upward journey

$$V = U - gt$$

$$0 = 10 - 10 t$$

$$t = 1 s$$

$$\& V^2 - U^2 = 2gh$$

$$0 + 100 = 2 \times 10 \times h$$

$$h_1 = 5 \text{ m}$$

while for downfall

$$h = \frac{1}{2}gt^2 = \frac{1}{2} \times 10 \times 3^2$$

$$h_2 = 45$$

Difference in height = $h_2 - h_1 = 45 - 5 = 40 \text{ m}$

20. (a

In case P:

Al is more reactive than Zn, So reaction will occur

$$2AI(s) + 3ZnSO_4(aq) \rightarrow AI_2(SO_4)_3 (aq) + 3Zn (s)$$

In case Q:

Pb is less reactive than Fe, So reaction will not occur.

$$Pb(s) + FeSO_4(aq) \rightarrow No reaction$$

In case R:

Fe is more reactive than Pb, So reaction will occur

$$Fe(s) + Pb(NO_3)_2(aq) \rightarrow Fe(NO_3)_2(aq) + Pb(s)$$

In case S: Ag is less reactive than Cu, So reaction will not occur

$$Ag(s) + CuSO_4(aq) \rightarrow No reaction$$

21. (a)

22. (c)

For Hydrogen gas

Given, Pressure = 0.8 bar, Volume = 0.7 ℓ

For Oxygen gas

Given Pressure = 0.6 bar,

Volume = 1.5 ℓ

Now, given total volume of gaseous mixture is 1 ℓ at 25°C

Let total pressure = P_T

So by using ideal gas equation

$$P_T \times 1 = (n_H + n_O) \times RT$$

$$\Rightarrow P_T = \left[\left(\frac{0.8 \times 0.7}{RT} \right) + \left(\frac{0.6 \times 1.5}{RT} \right) \right] \times RT$$

$$\Rightarrow$$
 P_T = 0.56 + 0.9

$$\Rightarrow$$
 P_T = 1.46 bar

23. (b)

Red and green.

24. (d)

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 $\textbf{Website}: www.resonance.ac.in \mid \textbf{E-mail}: contact@resonance.ac.in$

- **25.** (b)
- **26**. (a)
- **27.** (a)

In presence of phenolphthalein indicator, equivalents of HCI = $\frac{1}{2}$ equivalents of Na₂O₃.

 \therefore x ml of HCl will be used for $\frac{1}{2}$ eq. of Na₂CO₃.

So 1 eq. of Na₂CO₃ required = 2x ml of HCl.

- **28.** (d)
- **29**. (c)

 \therefore Length of AC, B is $\frac{1}{3}$ of total circumference or its resistance is

$$\frac{36}{3} = 12 \Omega$$

Rest part will have resistance = 24 Ω

$$\frac{1}{R_{\text{effAB}}} = \frac{1}{12} + \frac{1}{12} + \frac{1}{24} + \frac{1}{24}$$
$$\frac{1}{R_{\text{effAB}}} = \frac{1}{4}$$

- ∴ R_{effAB} = 4
- $\therefore \qquad \text{Power} = \frac{V^2}{R} = \frac{4}{4} = 1 \text{ W}$
- **30**. (a)

$$i = \frac{V}{Reff} = \frac{20}{4} = 5A$$

$$V_A - V_P = 3 \times 2 \cdot 5 = 7 \cdot 5 \text{ V}$$

 $V_A - V_Q = 2 \times 2 \cdot 5 = 5 \text{ V}$

$$V_{O} - V_{P} = 2.5 \text{ V}$$

$$V_{P} - V_{Q} = -2.5 \text{ V}$$

31. (A) Energy = 2eV, Voltage = 1V

Charge present on X = $\frac{2}{1}$ = 2 × 1.6 × 10⁻¹⁹ C

So, Ion will be X²⁻

Let no. of e^- in $X^{2-} = y$

Then number of neutrons will be

Neutron = y +
$$\frac{25}{100}$$
 y

Neutron =
$$\frac{125}{100}$$
 y

We know that

Number of proton + number of neutron = 79

$$y - 2 + \frac{125}{100}$$
 y = 79 (: lon contains two more e⁻than number of proton)

$$\frac{225}{100}$$
 y = 81

$$y = 36$$

then number of proton = y - 2

$$= 36 - 2 = 34$$

So, atomic number of X will be = $34 \& lon will be = Se^{-2}$

(B) In Pure state calcium occurs in silvery white colour. So element 'A' should be calcium (Ca)

2Ca + O₂
$$\xrightarrow{\Delta}$$
 2CaO

(white ash of calcium oxide)

(X)

 $CaO + H_2O \rightarrow Ca(OH)_2$ (aq)

(Y) Basic solution

$$Ca(OH)_2 + Cl_2 \rightarrow CaOCl_2$$

(Y)

(B) Bleaching powder

$$Ca(OH)_2 + H_2SO_4 \rightarrow CaSO_4(s) + H_2O$$

(Y)

(Z)

So, A → calcium (Ca)

 $B \rightarrow Bleaching powder (CaOCl₂)$

 $Y \rightarrow Calcium Hydroxide [Ca(OH)_2]$

 $Z \rightarrow Calcium sulphate [CaSO_4]$

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 $\textbf{Website}: www.resonance.ac.in \mid \textbf{E-mail}: contact@resonance.ac.in$

Toll Free: | 1800 258 5555 | CIN: U80302RJ2007PTC024029

32. Dotted part m not be a part of answer

Figure not to scale and all dimensions are in centimeters

_		,									
	U	-5	-10	-20	-30	-40	-50	-60	-70	-80	-90
	V	+6	+15	+60	8	-120	-75	-60	-52.5	-48	-45

33. (I) Given 200 ml of 5% glucose solution

100 ml of glucose solution contain = 5 gm glucose

∴ 200 ml of glucose solution contain = 10 gm glucose

(M.W. of glucose = 180 gm)

Moles of glucose given to the sprinter = $\frac{\text{given mass}}{\text{molecular mass}} = \frac{10}{180} = 0.055 \text{ moles of glucose}$

(II) Given 100% glucose converted to pyruvic acid.

Thus, Glucose \rightarrow 2 pyruvic acid

So, 0.055 glucose \rightarrow 2 × 0.055 pyruvic acid = 0.11 pyruvic acid

(III) Moles of pyruvic acid present =
$$\frac{1}{Q}$$

25% of pyruvic acid =
$$\frac{25}{100} \times \frac{1}{9} = \frac{1}{36}$$
 mole

1 mole pyruvic acid produces 1 mole lactic acid

25% PA.
$$\left(\frac{1}{36}\right)$$
 will produce $\frac{1}{36}$ moles of lactic acid

(IV) Mole of P.A.
$$\longrightarrow$$
 produces 3 moles CO_2

$$\frac{1}{9}$$
 moles of PA $\longrightarrow \frac{1}{9} \times 3 = \frac{1}{3}$ moles of CO₂

34. (i)

(ii)

(iii) Force on proton 1 do to proton 3

$$F_1 = \frac{Kq^2}{4r^2}$$

$$q = 1.6 \times 10^{-19} C$$

$$r = 2.7 \times 10^{-15} \text{m}$$

Force on proton 1 do to proton 2 or 4

$$F_2 = \frac{Kq^2}{\left(r\sqrt{2}\right)^2}$$

Force on proton 1 do to proton 5 or 6

$$F_3 = \frac{Kq^2}{\left(r\sqrt{2}\right)^2}$$

Net electrostatic force on proton 1

$$F_e = F_1 + F_2 \times \sqrt{2} + F_3 \times \sqrt{2}$$

 F_e = F_1 + F_2 × $\sqrt{2}$ + F_3 × $\sqrt{2}$ On putting the value we will get F_e = 52.46 N

For gravitation force on proton 1 (iv)

$$F_g = F_1 + F_2 \times \sqrt{2} + F_3 \times \sqrt{2}$$

Where
$$F_1 = \frac{Gm^2}{4r^2}$$

$$F_2 = \frac{Gm^2}{\left(r\sqrt{2}\right)^2}$$

$$F_3 = \frac{Gm^2}{\left(r\sqrt{2}\right)^2}$$

Where $F_1 = \frac{Gm^2}{4r^2}$ $F_2 = \frac{Gm^2}{\left(r\sqrt{2}\right)^2}$ $F_3 = \frac{Gm^2}{\left(r\sqrt{2}\right)^2}$ Here $m = 1.67 \times 10^{-27} \text{ kg}$

 $r = 2.7 \times 10^{-15} \text{ m}$

$$F_g = 4.24 \times 10^{-35} \text{ N}$$

 $\frac{F_e}{F_q}$ obtained in step (iii) & (iv)

$$\frac{F_e}{F_g}$$
 = 12.37 × 10³⁵

(vi) Radially outward

(A)
$$\rightarrow$$
 Given KCIO₃ = 90 gm (60% purity)

Mass of pure KCIO₃ in sample =
$$\frac{90 \times 60}{100}$$
 = 54 gm.

Moles of KCIO₃ present =
$$\frac{54}{122.5}$$
 = 0.44 moles of KCIO₃.

$$2KCIO_3 \xrightarrow{\Delta} 2KCI + 3O_2$$

Oxygen gas will be produced on decomposition of KClO₃.

2 moles of KCIO₃ gives 3 moles O₂

$$\therefore$$
 0.44 moles of KCIO₃ will give = $\frac{3}{2}$ × 0.44 moles of O₂ = 0.66 moles of O₂.

 \rightarrow When O_2 reacts with H_2 , it gives H_2O .

$$O_2 + 2H_2 \rightarrow 2H_2O$$

One mole of oxygen require 2 moles of H₂.

$$\therefore$$
 0.66 mole O₂ required = 0.66 × 2 = 1.32 mole of H₂ required

 \rightarrow For the production of H₂ gas steam is passed over hot Mg metal.

$$Mg_{(s)} + H_2O_{(g)} \rightarrow MgO_{(s)} + H_{2(g)} \uparrow$$
.

1 mole of H₂ will be obtained from 24 gm Mg.

1.32 mole of H_2 will require = 24 × 1.32 gm = 31. 68 gm Mg.

31.68 gm Mg metal is required. Ans.

(B) (I)
$$A = AI$$

$$B = Fe_2O_3$$

$$D = Al_2O_3$$

(II)
$$2AI + Fe_2O_3 \rightarrow 2Fe + AI_2O_3$$

(III)
$$2AI + 3O_2 \rightarrow 2AI_2O_3$$

When (A) reacts with air, it will give aluminium oxide which is amphoteric in nature.

(IV)
$$Al_2O_3 + 6HCI(aq) \rightarrow 2AICI_3 + 3H_2O$$

 $Al_2O_3 + 2NaOH(aq) \rightarrow 2NaAIO_2 + H_2O$

36.

(I)

- (i) Statements a and b are correct as the mother and father both need to be heterozygous for a recessive trait to appear in next generation. Daughters, however can be either AA/Aa homozygous / heterozygous.
- Statements a & b are correct as mother has to be carrier X⁶X if the male child is affected (ii) (Criss –Cross inheritance). Both daughters however can receive either X^C or X from mother, Therefore, can be homozygous / heterozygous.
- **(II)** If both parents carry allele for disorder.

Aa

Probability that first daughter would carry same allele is 2/4 (b) option.

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

(III) If the affected son marries a woman, who does not carry the allele of the disorder, then child

Son = O (Male unaffected)
Daughter = 1 (Allele present)

 $a = m/s^2$

- (ii) No.
- (iii) For maximum acceleration possible the liquid level can go up to a maximum of 0.4 m (Since it is already filled up to 80% of 2 m = 1.6 m)

$$\therefore \qquad \tan \theta = \frac{a}{g}$$

$$\frac{0\cdot 4}{1\cdot 5} = \frac{a}{g}$$

$$\therefore a = \frac{4g}{15} = \frac{40}{15} = 2.66 \text{ m/s}^2$$

- (iv) (d)
- 38. (A) Given that

10.7% NH₄Cl in 100 ml solution

So, $NH_4CI = 10.7$ gm

moles of NH₄CI =
$$\frac{10.7}{\text{Gmm of NH}_4\text{CI}} = \frac{10.7}{53.5} = 0.2 \text{ moles}$$

(i)
$$2NH_4CI$$
 (aq) + $Ca(OH)_2(aq) \rightarrow CaCl_2$ (aq) + $2NH_3$ (g) + $2H_2O$
Ammonium Slaked lime calcium Ammonia gas

chloride chloride

cium Ammonia ga

$$2NH_3(g) + 3CuO(s) \rightarrow N_2(g) + 3Cu(s) + 3H_2O$$

(ii) 3 moles of CuO require 1 moles Ca(OH)₂

3x79.5 gm CuO is required by = $1 \times 74 \text{ gm Ca(OH)}_2$

So **25.85 gm** CuO is required by =
$$\frac{1 \times 74 \times 25.85}{3 \times 79.5}$$
 = **8.02 gm** Ca(OH)₂

(iii)
$$2NH_3(g) + 3 CuO(s) \longrightarrow 3Cu(s) + N_2(g) + 3H_2O$$

0.2 mole 23.85 gm.
=0.3 mole

2 moles of NH₃ gives ----- 3 moles of Cu

(B) As per the fourth period

а	b	С	d	е	f	g	h	i	j	k	L	m	n	0	р	q	r
Κ	Ca	Sc	Τi	٧	Cr	Mn	Fe	О	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr

- (i) According to above table covalency of **o** [As] is three and Covolency of **q** [Br] is one, so compound formed when **o** reacts with **q** will be **oq**₃ or **AsBr**₃
- (ii) Element **g** [manganese (Mn)] will show maximum oxidation state (+7).
- (iv) Element k [Copper (Cu)] is Coinage metal.)
- (v) Element **n** [Germanium (Ge)] and **o** [Arsenic (As)] are metalloids)
- (vi) Brass is an alloy made up of copper and zinc [70 : 30 ratio]. So Element I [Zinc (Zn)] has lower percentage ($\approx 30\%$).

39

- 1. (b) The starch free leaves can be obtained by keeping the plant in dark, so that already present starch is utilized in 48 hrs.
- (c) Starch presence can be tested by adding iodine solution which gives bluish black colour of starch – iodine mixture.
- 3. (c) Purpose of illumination to specific wavelengths of light is the excitation of chlorophyll (light reaction).
- 4. (b) Wilting occurs due to wax blocks the transpiration so water transportation inhibits.
- 5. (c) The transport of glucose, occurs in the form of sucrose, in phloem therefore, when cell sap oozes out, liquid contains sucrose
- 6. (b) Photosynthesis will occur till the test tube is illuminated with white light & sodium bicarbonate is present which yields CO₂ in solution.

40.

(A) Since potential is a scalar quantity.

$$\Delta W = \Delta KE$$

$$qV = \frac{1}{2}mV_2^2 - \frac{1}{2}mV_1^2$$

$$q \times 10 = \frac{1}{2} \times 0.02 \times (1600 - 400)$$
$$= 600 \times 0.02$$

(B)

height of ice block outside the water = 9 % of 50m = 4.5 m Since density of ice = 910 kg/m & density of water = 1000 kg/m³

Distance = YW =
$$\sqrt{80^2 + 60^2}$$
 = 100m

(i)

(ii) By similar Δ s

$$\frac{50}{60} = \frac{BM}{80}$$

$$\therefore BM = \frac{4000}{6} = \frac{200}{3m}$$

$$\therefore WM = \sqrt{BM^2 + 50^2} = \sqrt{\frac{40000}{9} + 2500} = \frac{250}{3} m$$

$$\therefore MY = 100 - \frac{250}{3} = \frac{50}{3} m$$

(iii)
$$\begin{split} t_{WY} &= \frac{D_{WM}}{V_{water}} + \frac{D_{YM}}{V_{air}} \\ &= \frac{250}{3 \times 1500} + \frac{50}{3 \times 350} = 0.103s \\ \text{(iv)} \qquad t_{WX} &= t_{WY} - 0.07 = 0.103 - 0.07 = 0.033 \ s \end{split}$$

(iv)
$$t_{WX} = t_{WY} - 0.07 = 0.103 - 0.07 = 0.033 s$$

(v)
$$t_{WX} = \frac{4.5}{1500} + \frac{50}{V_{ice}} + \frac{5.5}{350}$$

 $t_{WY} = t_{WX} + 0.07$ (As per given condition)

$$0.103 = \frac{4.5}{1500} + \frac{50}{V_{\text{ice}}} + \frac{5.5}{350} + 0.07$$

$$0.033 = \frac{4.5}{1500} + \frac{50}{V_{\text{jce}}} + \frac{5.5}{350}$$

$$V_{ice} = \frac{50}{0.0143}$$

$$V_{\text{sound in ice}} = 3496.5 \text{ m/s}$$

41.

(A) Volume of NaOH =
$$\frac{6 \times 2}{100}$$
 = 0.12 mL

(HCI) (NaOH)

$$M_1V_1 = M_2V_2$$

 $M_1 = \frac{1 \times 0.12}{5} = 0.024 \text{ M}$

Weight of HCI=
$$\frac{\text{M1V1}}{1000}$$
 x mol. wt. of HCI = $\frac{0.024 \times 5}{1000}$ x 36.5 = 4.38 x10⁻³g

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: | 1800 258 5555 | CIN: U80302RJ2007PTC024029

$$N_1V_1 = N_2V_2$$

$$N_1 \times 11.3 = 10 \text{ ml} \times 0.05 \times 2$$

amount of NaOH present in 250 ml NaOH solution.

Wt =
$$\frac{\text{ENV}}{1000} = \frac{40 \times 0.088 \times 250}{1000} = 0.88 \text{ gm NaOH reacted.}$$

(I) Amount of NaOH spilled on floor is = 1 gm - 0.88 gm = 0.12 gm NaOH spilled on floor.

(II) Molecules of NaOH present during titration =
$$\frac{M \times V}{1000} X N_A$$

$$= \frac{0.0885 \times 11.3}{1000} \times 6.023 \times 10^{23}$$

$$= 6.023 \times 10^{20}$$
 molecules

Molecules of Dibasic acid present during titration = 3.0115×10^{20} molecules

42. (A) (i) 5 food chains are present in the food web

$$(ii)$$
 A = 1200 J

B = 1200 J

C = 1200 J

D = 120 J

E = 12 or 120 J

F = 120 J

(iii) Tertiary consumer here is Eagle, so for eagle the most energy efficient link is rabbit, as the rabbit is not being eaten in any other food chain.

(ii) Production efficiency =
$$\frac{\text{Net productivity}}{\text{assimilatory energy}} \times 100\text{s}$$

= $\frac{12}{(100-52)} \times 100 = \frac{12}{48} \times 100 = 25\%$ (b) Ans.

(C) Answer is (d) because maximum production efficiency is of micro organisms.

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 $\textbf{Website}: www.resonance.ac.in \mid \textbf{E-mail}: contact@resonance.ac.in$

Toll Free: | 1800 258 5555 | CIN: U80302RJ2007PTC024029

ADMISSION OPEN

—— For Students Moving to Class ——

Enroll Now for Academic Session 2018-19 at Coaching Fee of 2017-18

Test Dates 7 & 21 January 2018 | 4 February 2018

Call: 0744-6635569 | Website: www.pccp.resonance.ac.in | E-mail: pccp@resonance.ac.in

PCCP HEAD OFFICE: CG TOWER-2, Plot No. A-51 (A), IPIA, Behind City Mall, Jhalawar Road, Kota (Raj.) - 324005

Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: | 1800 258 5555 | CIN: U80302RJ2007PTC024029

SOLUTION_INJSO_PAGE-16