

CBSE 2021-22 (TERM-1)

DATE: 10-12-2021

Questions Paper

SERIES: SSJ/2 | CODE : 055/2/4 | SET-4 SUBJECT : PHYSICS

TIME ALLOWED: 90 MINUTES

MAXIMUM MARKS: 35

NOTE		
(i)	Please	check that this question paper contains 18 pffrinted pages.
(ii)	Please	check that this question paper contains 55 multiple choice questions (MCQs.)
(iii)	QP Co	de given on the right hand side of the question paper should be written at the appropriate
	place of	of the OMR Sheet by the candidates.
(iv)	20 mir	ute additional time has been allotted to read this question paper prior to actual time of
	comm	encement of examination.

GENERAL INSTRUCTIONS:

- (i) This question paper contains 55 questions out of which 45 questions are to be attempted. All questions carry equal marks.
- (ii) The question paper consists of three Sections Section A, B and C.
- (iii) Section A contains 25 questions. Attempt any 20 questions from Q. No. 01 to 25.
- (iv) Section B contains 24 questions. Attempt any 20 questions from Q.No. 26 to 49.
- (v) Section C contains 6 questions. Attempt any 5 questions from Q.No. 50 to 55.
- (vi) The first 20 Questions attempted in Section A & Section B and first 5 questions attempted in Section – C by a candidate will be evaluated.
- (vii) There is only one correct option for every multiple choice question (MCQ). Marks will not be awarded for answering more than one option.
- (viii) There is no negative marking.

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu 📓 www.youtube.com/resowatch 🕒 blog.resonance.ac.in

This solution was download from Resonance Solution portal

	CBSE-2021-22 (TERM-1) DATE: 10-12-2021 OFFICIAL PAPER PHYSICS
	SECTION – A
This S	section consists of 25 multiple choice questions with overall choice to attempt any 20 questions. In case
more t	han desirable number of questions are attempted, only first 20 questions will be considered for evaluation.
1.	A negatively charged object X is repelled by another charged object Y. However an object Z is attracted
	to object Y. Which of the following is the most possibility for the object Z?
	(a) Positively charged only (b) negatively charged only
	(c) neutral or positively charged (d) neutral or negatively charged
Ans.	(c)
~	
Ζ.	In an experiment three microscopic latex spheres are sprayed into a chamber and become charged with
	charges +3e, +5e and -3e respectively. All the three spheres came in contact simultaneously for a
	moment and got separated. Which one of the following are possible values for the final charge of the
	spheres $(2) \pm 52$ (b) ± 62 ± 62 (c) (c) (c) ± 352 ± 552 (d) ± 52 ± 72
۸ne	(a) $+3e$, $-4e$, $+3e$ (b) $+0e$, $+0e$, $-7e$ (c) $-4e$, $+3.3e$, $+3.3e$ (d) $+3e$, $-6e$, $+7e$
Sol	By conservations of charge
001	3e + 5e + -3e = 5e
	Option (b)
	6e + 6e – 7e = 5e
3.	An object charge of 1 C and gains 5.0×10^{18} electrons. The net charge on the object becomes
	(a) -0.80 C (b) $+0.80$ C (c) $+1.80$ C (d) $+0.20$ C
Ans.	$\binom{(d)}{d} = 10$
501.	q = 10 gains 5 x 10 ¹⁸ electrons
	$a = \pm ne$
	$= -5 \times 10^{18} \times 1.6 \times 10^{-19}$
	$= -8.0 \times 10^{-1}$
	q = -0.8C
	Net charge = 1 – 0.8 = 0.20C
4.	Kirchhoff's first rule $\Sigma I = 0$ second rule $\Sigma IR = \Sigma E$ (where the symbols have their usual meanings) are
	respectively based on
	(a) conservation of momentum and conservation of charge
	(b) conservation of energy, conservation of charge
	(c) conservation of charge, conservation of momentum

(d) conservation of charge, conservation of energy

Ans. (d)

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

	ting for better tomorrow	CBSE-2021-22 (TERM-1)	DATE: 10-12-2021	OFFICIAL PAPER	PHYSICS
5.	The electric p	power consumed by a 220 V -	- 100 W bulb when opera	ted at 110 V is	
	(a) 25 W	(b) 30 W	(c) 35 W	(d) 45 W	
Ans.	(a)				
Sol.	$P = \frac{v^2}{R}$				
	$100 = \frac{(220)^2}{R}$	2			
	$R = \frac{220 \times 22}{100}$	20			
	R = 484Ω ∵ v = 1	10 Ω			
	$P = \frac{V^2}{R} = \frac{(1)^2}{4}$	$\frac{10)^2}{484} = 25W$			
6.	Which of the	following has negative tempe	rature coefficient of resist	ivity ?	
	(a) metal		(b) metal and semi	conductor	
	(c) semicond	luctor	(d) metal and alloy	,	
Ans.	(c)				
Sol.	semiconduct	or			

7. Two wires carrying currents I_1 and I_2 lie, one slightly above the other, in a horizontal plane as shown in figure. The region of vertically upward strongest magnetic field is

Ans. (b)

Sol. By Flemming right hand rule, So region of vertically upward strongest magnetic field in II

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

Resonance | CBSE-2021-22 (TERM-1) | DATE : 10-12-2021 | OFFICIAL PAPER | PHYSICS 8. Two parallel conductors carrying current of 4.0 A and 10.0 A are placed 2.5 cm apart in vacuum. The force per unit length between them is (a) 6.4 × 10⁻⁵ N/m (b) 6.4 × 10⁻² N/m (c) 4.6 × 10⁻⁴ N/m (d) 3.2 × 10⁻⁴ N/m Ans. (d) Sol. $I_1 = 4A$ $I_2 = 10A$ $r = 2.5 \text{ cm} = 2.5 \times 10^{-2} \text{ m}$ $\frac{\mathsf{F}}{\ell} = \frac{\mu_0 \mathrm{I}_1 \mathrm{I}_2}{2\pi r}$ $=\frac{4\pi \times 10^{-7} \times 4 \times 10^2}{2\pi \times 2.5 \times 10^{-2}}=\frac{16}{5} \times 10^{-4}=3.2 \times 10^{-4} \,\text{N/m}$ 9. If an ammeter is to be used in place of a voltmeter, then we must connect with ammeter a (a) low resistance in parallel (b) low resistance in series (c) high resistance in parallel (d) high resistance in series Ans. (d) The magnetic field at the centre of a current carrying circular loop of radius R, is B1. The magnetic field 10. at a point on its axis at a distance R from the center of the loop is B₂. Then the ratio (B₁/B₂) is (b) $\frac{1}{\sqrt{2}}$ (a) $2\sqrt{2}$ (c) $\sqrt{2}$ (d) 2 Ans. (a) $B_{C} = B_{1} = \frac{\mu_{0}I}{2R}$ Sol. $\mathsf{B}_{2} = \frac{\mu_{0} \mathsf{I} \mathsf{R}^{2}}{2 (\mathsf{R}^{2} + \mathsf{R}^{2})^{3/2}} = \frac{\mu_{0} \mathsf{I} \mathsf{R}^{2}}{2 (2\mathsf{R}^{2})^{3/2}} = \frac{\mu_{0} \mathsf{I} \mathsf{R}^{2}}{2 \times 2^{3/2} \times \mathsf{R}^{3}}$ $\frac{\mathsf{B}_1}{\mathsf{B}_2} = \frac{\mu_0 I}{2\mathsf{R}} \times \frac{2 \times 2^{3/2} \mathsf{R}}{\mu_0 I} = 2^{3/2} = 2\sqrt{2}$ 11. The self-inductance of a solenoid of 600 turns is 108 mH. The self-inductance of a coil having 500 turns with the same length, the same radius and the same medium will be (a) 95 mH (b) 90 mH (c) 85 mH (d) 75 mH (d) Ans.

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555
Toll Free : 1800 258 55555

Sol. N₁ = 600 turns L₁ = 108 mH = 108 × 10⁻³H N₂ = 500 L₂ = ? $\ell = \ell$ r = r \therefore L₁ = $\frac{\mu_0 N_1^2 A}{\ell} = \frac{\mu_0 N_1^2 (\pi r_1^2)}{\ell}$ L₂ = $\frac{\mu_0 N_2^2 (\pi r^2)}{\ell}$ $\frac{L_1}{L_2} = \frac{N_1^2}{N_2^2}$ $\frac{108 \times 10^{-3}}{L_2} = \left(\frac{600}{500}\right)^2$ \Rightarrow L₂ = $\frac{108 \times 10^{-3} \times 5 \times 5}{6 \times 6} = 75 \times 10^{-3} \text{ H} = 75 \text{ mH}$

12. The rms current in a circuit connected to a 50 Hz ac source is 15 A. The value of the current in the circuit

(a)
$$\frac{15}{\sqrt{2}}$$
 A (b) $15\sqrt{2}$ A (c) $\frac{\sqrt{2}}{15}$ A (d) 8 A
Ans. (a)
Sol. Imms = 15A
f = 50 Hz
I = ?
t = $\frac{1}{600}$ sec.
I₀ = $\sqrt{2}$ I_{mms}
I₀ = $15\sqrt{2}$
I = I₀ sin ot
= $15\sqrt{2}$ sin 2π ft
= $15\sqrt{2}$ sin 2π × 50 × $\frac{1}{600}$ = $15\sqrt{2}$ sin $\frac{\pi}{6}$
I = $15\sqrt{2} \times \frac{1}{2} = \frac{15}{\sqrt{2}}$ A

 $\begin{pmatrix} 1 \end{pmatrix}$ s after the instant the current is zero is

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555
Toll Free : 1800 258 55555

🔨 Resonance® | CBSE-2021-22 (TERM-1) | DATE : 10-12-2021 | OFFICIAL PAPER | PHYSICS

- In a circuit the phase difference between the alternating current and the source voltage is ^π/₂. Which of the following cannot be the element(s) of the circuit ?
 (a) only C
 (b) only L
 (c) L and R
 (d) L or C
- Ans. (c)
- **14.** The electric potential V at any point (x, y, z) is given by $V = 3x^2$ where x is in metres and V in volts. The electric field at the point (1m, 0, 2m) is -

	(a) 6 V/m along – x-axis	(b) 6 V/m along + x-axis
	(c) 1.5 Vm along –x-axis	(d) 1.5 V/m along + x-axis
Ans.	(a)	
Sol.	$v = 3x^2$	
	$E = -\frac{dv}{dr}$	
	$=-\frac{d}{dx}(3x^2)$	
	E = – 6x	
	$E = -6 \times 1 = -6$ i.e. along to $-x$ axis.	

15. Which of the diagrams correctly represents the electric field between two charged plates if a neutral conductor is placed in between the plates?

- Ans. (d)
- 16. A variable capacitor is connected to a 200 V battery. If its capacitance is changed from 2 μ F to X μ F, the decrease in energy of the capacitor is 2 × 10⁻² J. The value of X is

(a) $1 \mu\text{F}$ (b) $2 \mu\text{F}$ (c) $3 \mu\text{F}$ (d) 4	łμF
---	-----

Ans. (a)

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu

This solution was download from Resonance Solution portal

V = 200 VSol. $C = 2 \mu F$ to x μF $U_f = 2 \times 10^{-2} J$ $U_{i} = \frac{1}{2}CV^{2} = \frac{1}{2} \times 2 \times 10^{-6} \times 200 \times 200$ $U_i = 4 \times 10^{-2} J$ $U_f = \frac{1}{2}CV^2$ $2 \times 10^{-2} = \frac{1}{2} \times (200)^2$ $x = \frac{4 \times 10^{-2}}{200 \times 200} = 10^{-6} = 1 \ \mu F$

17. A potential difference of 200 V is maintained across a conductor' of resistance100 Ω. The number of electrons passing through it in 1s is

	(a) 1.25 × 10 ¹⁹	(b) 2.5 × 10 ¹⁸	(c) 1.25 × 10 ¹⁸	(d) 2.5×10^{16}
Ans.	(a)			
Sol.	V = 200 V			
	R = 100 Ω	t = 1 sec		
	$I = \frac{q}{t}$			
	$I = \frac{ne}{t}$			
	$n = \frac{lt}{e} = \frac{Vt}{Re}$			
	$n = \frac{200}{100 \times 1.6 \times 10^{-19}}$			
	$=\frac{10}{8}\times10^{19}$			
	= 1.25 × 10 ¹⁹			

18. The impedance of a series LCR circuit is-

(b)
$$\sqrt{\frac{1}{X_{C}^{2}} + \frac{1}{X_{L}^{2}} + R^{2}}$$
 (c) $\sqrt{X_{L}^{2}}$

$$\frac{1}{2} - X_{\rm C}^2 + {\rm R}^2$$
 (d) $\sqrt{{\rm R}^2 + ({\rm X}_{\rm L} - {\rm X}_{\rm C})^2}$

Ans. (d)

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 💿 7340010333 🚹 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu 🔡 www.youtube.com/resowatch 🕒 blog.resonance.ac.in

This solution was download from Resonance Solution portal

		CBSE-2021-22 (TERM-1)	DATE : 10-12-2021	OFFICIAL PAPER PHYSICS		
19.	When an alte	ernating voltage E = E ₀ sin ω t is a	applied to a circuit, a cur	rent I = I ₀ sin $\left(\omega t + \frac{\pi}{2}\right)$ flows through		
	it. The avera	it. The average power dissipated in the circuit is				
	(a) E _{rms} . I _{rms}	(b) E ₀ I ₀	(c) $\frac{E_0 I_0}{\sqrt{2}}$	(d) Zero		
Ans.	(d)					
Sol.	E = E₀ sin ωt					
	$I = I_0 \sin\left(\omega t\right)$	$+\frac{\pi}{2}$				
	Phase differe	ence $\phi = \omega t - \left(\omega t + \frac{\pi}{2}\right)$				
	$\phi = -\frac{\pi}{2}$					
	= V _{rms} I _{rr}	msCOS $\frac{\pi}{2}$				
	= 0	2				
20.	A current car	rying wire kept in a uniform ma	gnetic field, will experier	nce a maximum force when it is		
	(a) perpendic	cular to the magnetic field	(b) parallel to the r	nagnetic field		
Anc	(c) at an angl	le of 45° to the magnetic field	(d) at an angle of (000 to the magnetic field		
Sol.	(α) F = BIL sin θ					
	$(F)_{maxi} \Rightarrow \theta =$	90°				
	So B $\perp \ell$	e				
21.	The voltage	across a resistor, an inductor,	and a capacitor conne	ected in series to an ac source are		
	20 V, 15 V ar	nd 30 V respectively. The result	ant voltage in the circui	t is		
Anc	(a) 5V	(b) 20V	(c) 25V	(d) 65V		
AIIS.	(C)					
Sol.	$V = \sqrt{V_R^2 + (V_R^2)}$	$(V_{\rm C} - V_{\rm L})^2$				
	$V = \sqrt{400 + (1)^{10}}$	$(15)^2 = \sqrt{625} = 25V$				
22.	In a dc circuit	t the direction of current inside t	the battery and outside	the battery respectively are -		
	(a) positive to	o negative terminal and negative	e to positive terminal			
	(b) positive to	o negative terminal and positive	to negative terminal			
	(c) negative t	to positive terminal and positive	to negative terminal			
Ans.	(u) negative t	to positive terminal and negative				
	x - 7					
		Resonance E	Eduventures	Ltd.		

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 💿 7340010333 🚹 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu 🔡 www.youtube.com/resowatch 🕒 blog.resonance.ac.in

Sol.

Ans.

Sol.

Resonance

outside \rightarrow (+ve) to –ve inside \rightarrow –ve to +ve

23. The magnitude of electric field due to a point charge 2q, at distance r is E. Then the magnitude of electric field due to a uniformly charged thin spherical shell of radius R with total charge q at a distance

$$\frac{1}{2} (r \gg R) \text{ will be}$$
(a) $\frac{E}{4}$ (b) 0 (c) 2E (d) 4E
(c)
$$E = \frac{Kq}{r^2} = \frac{K(2q)}{r} \qquad r \gg R$$

$$E' = \frac{Kq}{\left(\frac{r}{2}\right)^2} = \frac{4Kq}{r^2} \Rightarrow 2E$$

24. The horizontal component of earth's magnetic field at a place is 0.2 G whereas it's total magnetic field is 0.4 G. The angle of dip at the place is

	(a) 30°		(b) 45°	(c) 60°	(d) 90°
Ans.	(c)				
Sol.	Вн = 0.	2 G	$B_H = B \cos \delta$		
	B = 0.4	G	0.2 =0.4 cos δ		
			$\cos \delta = \frac{1}{2} \Rightarrow \delta = 60^{\circ}$		

- 25. The current in the primary coil of a pair of coils changes from 7 A to 3 A in 0.04 s. The mutual inductance between the two coils is 0.5 H. The induced emf in the secondary coil is –
 (a) 50 V
 (b) 75 V
 (c) 100 V
 (d) 220 C
- Ans. (a)
- **Sol.** I = 7A to 3A

=

$$M = 0.5 H$$

$$\equiv_{s} = -\frac{\Delta \phi}{\Delta t} \qquad \qquad \therefore \quad \phi = MI$$

$$= \frac{-M\Delta I}{\Delta t} = 0.5 \left(\frac{7-3}{0.04}\right) = 50 V$$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu 📓 www.youtube.com/resowatch 🕒 blog.resonance.ac.in

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555
Toll Free : 1800 258 55555

This solution was download from Resonance Solution portal

Resonance®

| CBSE-2021-22 (TERM-1) | DATE : 10-12-2021 | OFFICIAL PAPER | PHYSICS

- 28. A + 3.0 nC charges Q is initially at rest at a distance of $r_1 = 10$ cm from a + 5.0 nC charge q fixed at the origin. The charge Q is moved away from q to a new position at $r_2 = 15$ cm. In this process work done by the field is
 - (b) 3.6 × 10⁵ J (c) –4.7 × 10⁻⁷ J (d) 4.5 × 10⁻⁷ J (a) 1.29 × 10⁻⁵ J
- Ans. (d)

Sol. $Q = 3 \times 10^{-9}C$

- $r_1 = 10 \text{ cm}$ $r_2 = 15 \text{ cm}$ $W = -q\Delta V$ $= -3 \times 10^{-9} \left(\frac{K \times 5 \times 10^{-9}}{15 \times 10^{-2}} - \frac{K \times 5 \times 10^{-9}}{10 \times 10^{-2}} \right)$ = 4.5 × 10⁻⁷ J
- A car battery is charged by a 12 V supply, and energy stored in it is 7.20 × 10⁵ J. The charge passed 29. through the battery is

	(a) 6.0 × 10 ⁴ C	(b) 5.8 × 10 ³ J	(c) 8.64 × 10 ⁶ J	(d) 1.6 × 10 ⁵ C
Ans.	(a)			
Sol.	P = VI			
	$\frac{E}{t} = \frac{vq}{t}$			
	$q = \frac{E}{V} = \frac{7.20 \times 10^5}{12}$			
	= 6 × 10 ⁴ C			

A straight conducting rod of length l and mass m is suspended in a horizontal plane by a pair of flexible 30. strings in a magnetic field of magnitude B. To remove the tension in the supporting strings, the magnitude of the current in the wire is

(a)
$$\frac{\text{mgB}}{\ell}$$
 (b) $\frac{\text{mg}\ell}{\text{B}}$ (c) $\frac{\text{mg}}{\ell\text{B}}$ (d) $\frac{\ell\text{B}}{\text{mg}}$

Ans. (C)

Sol. Magnetic field is equal and opposite to the weight of the wire so,

Mq = BI ℓ .

$$I = \frac{mg}{\ell B}$$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 💿 7340010333 🚹 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu 🔠 www.youtube.com/resowatch 🕒 blog.resonance.ac.in

		CBSE-2021-22 (TERM-1)	DATE : 10-12-2021	OFFICIAL PAPER PHYSICS
31.	A constant c	current is flowing through a sole	enoid. An iron rod is ins	serted in the solenoid along its axis.
	Which of the	following quantities will not incr	rease?	
	(a) The mag	neitc field at the centre	(b) The magnetic f	lux linked with the solenoid
	(c) The rate	of heating	(d) The self-induct	ance of the solenoid
Ans.	(c)			
20	A			fan mun a f tha an un a in in an an al
32.	A circuit is co	onnected to an ac source of vari	able frequency. As the following	requency of the source is increased,
	to comprise t	the circuit?		ig combinations of elements is likely
	(a) L. C and	R (b) L and C	(c) L and R	(d) R and C
Ans.	(a) _, c and		()	
	.,			
33.	If n, e, τ and	m have their usual meanings,	then the resistance of a	a wire of length I and cross-sectional
	area A is giv	en by		
	(a) ne ² A	(b) <u>mℓ</u>	(c) $\frac{m\tau A}{2}$	(d) $\frac{ne^2\tau A}{T}$
	(u) 2mτℓ	^(ο) ne ² τA	ne ² ℓ	(u) <u>2mℓ</u>
Ans.	(b)			
34.	A proton and	l an alpha particle move in circu	lar orbits in a uniform m	agnetic field. Their speeds are in the
			$(\mathbf{r}_{\mathbf{n}})$	
	ratio of 9 : 4.	The ratio of radii of their circula	ar orbits $\left(\frac{P}{r_{alpha}}\right)$ is :	
	3	4	8	9
	(a) $\frac{3}{4}$	(b) $\frac{1}{3}$	(c) $\frac{9}{9}$	(d) $\frac{3}{8}$
Ans.	(d)			
Sol.	$\frac{vp}{va} = \frac{9}{4}$			
	r my	$a B m \times 9 \times 20 $		
	$\frac{r_p}{r_\alpha} = \frac{m_p v_p}{q_p B} \times$	$\frac{\mathbf{q}_{\alpha}\mathbf{b}}{\mathbf{m}_{\alpha}\mathbf{v}_{\alpha}} = \frac{\mathbf{m}_{p} \times 3 \times 2\mathbf{q}_{p}}{\mathbf{q}_{p} \times 4\mathbf{m}_{p} \times 4} = \frac{9}{8}$		
35.	A coil of are	a 100 cm² is kept at an angle o	of 30° with a magnetic	field of 10 ⁻¹ T. The magnetic field is
	reduced to z	ero in 10 ⁻⁴ s. The induced emf i	n the coil is :	
	_(a) 5√3 V	(b) 50√3 V	(c) 5.0 V	(d) 50.0 V
Ans.	(c)			

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

Resonance | CBSE-2021-22 (TERM-1) | DATE : 10-12-2021 | OFFICIAL PAPER | PHYSICS

Sol.	$\varepsilon = \frac{-\Delta\phi}{\Delta t} = \frac{-(B_2 - B_1)A}{\Delta t}$	$A\cos\theta$			
	$= - \frac{(0 - 10^{-1}) \times 100}{10^{-4}}$	$\frac{\times 10^{-4}}{2} \times \frac{1}{2} = 5V$			
36.	A 15 Ω resistor, an 80 r	mH inductor and a capac	citor of capacitance C	are connected in series with	a 50 Hz
	ac source. If the source	e voltage and current in	the circuit are in pha	se, then the value of capacita	ance is :
	(a) 100 μF	(b) 127 μF	(c) 142 μF	(d) 160 μF	
Ans.	(b)				
Sol.	$\tan \phi = \frac{\omega L - \omega C}{R} = 0$				
	$\omega L = \frac{1}{\omega C}$				
	$C = \frac{1}{\omega^2 L}$				
	$\omega = 2\pi f$				
	$\omega = 2 \times 3.14 \times 50 = 31$	4 s ⁻¹			
	$C = \frac{1}{(314)^2 \times 80 \times 10^{-3}}$	$\frac{1}{3} = 1.27 \times 10^{-4} \text{F} = 127 \mu$	F		

37. Four objects W, X, Y and Z, each with charge +q are held fixed at four points of a square of side d as shown in the figure. Objects X and Z are on the midpoints of the sides of the square. The electrostatic force exerted by object W on object X is F. Then the magnitude of the force exerted by object W on Z is:

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 💿 7340010333 🚹 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu 🔠 www.youtube.com/resowatch 🕒 blog.resonance.ac.in

This solution was download from Resonance Solution portal

38. Two sources of equal emf are connected in series. This combination is, in turn connected to an external resistance R. The internal resistance of two sources are r_1 and r_2 ($r_2 > r_1$). If the potential difference across the source of internal resistance r_2 is zero, then R equals to :

:. Potential difference across cell of internal resistance is r2 is zero so

$$E - Ir_2 = 0$$

$$E - \frac{2E}{R + r_1 + r_2} = 0$$

$$\Rightarrow R + r_1 + r_2 - 2r_2 = 0$$

$$R = r_2 - r_1$$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu

Resonance[®] | CBSE-2021-22 (TERM-1) | DATE : 10-12-2021 | OFFICIAL PAPER | PHYSICS

- **39.** Which of the following statements is correct ?
 - (a) Magnetic field lines do not form closed loops.
 - (b) Magnetic field lines start from north pole and end at south pole of a magnet.
 - (c) The tangent at a point on a magnetic field line represents the direction of the magnetic field at that point.
 - (d) Two magnetic field lines may intersect each other.
- Ans. (c)
- 40. The equivalent resistance between A and B of the network shown in figure is :

Sol. Here $R + R = 2R \Omega$

41. A bar magnet has magnetic dipole moment \overline{M} . Its initial position is parallel to the direction of uniform magnetic field \overline{B} . In this position, the magnitudes of torque and force acting on it respectively are :

(a) 0 and MB	(b) MB and MB	(c) 0 and 0	(d) │M×B│ and 0
--------------	---------------	-------------	-----------------

42. Two charges 14 µC and -4m µC are placed at (-12 cm, 0, 0) and (12 cm, 0, 0) in an external electric field E = $\left(\frac{B}{r^2}\right)$, where B = 1.2 × 10⁶ N/(cm²) and r is in meters. The electrostatic potential energy of the configuration is : (a) 97.9 J (b) 102.1 J (c) 2.1 J (d) -97.9 J Ans. (a) $Ur = q_1 V + q_2 V + \frac{1}{4\pi \epsilon_0} \cdot \frac{q_1 q_2}{r}$ Sol. $= q_1 Er_1 + q_2 Er_2 + \frac{1}{4\pi \in_0} \cdot \frac{q_1 q_2}{r}$ $\therefore E = \frac{V}{r}$ $= q_1 \frac{B}{r_1^2} r_1 + q_2 \frac{B}{r_2^2} r_2 + \frac{1}{4\pi \epsilon_0} \frac{q_1 q_2}{r}$ $= \frac{Bq_1}{r_1} + \frac{Bq_2}{r_2} + \frac{1}{4\pi \in n} \frac{q_1q_2}{r}$

$$= \frac{1.2 \times 10^{6}}{10^{-4}} \times \frac{14 \times 10^{-6}}{12 \times 10^{-2}} + \frac{1.2 \times 10^{-6}}{10^{-4}} \times \frac{(-4) \times 10^{-6}}{12 \times 10^{-2}} + \frac{9 \times 10^{9} \times 14 \times (-4) \times 10^{-12}}{24 \times 10^{-2}}$$

= 97.9J

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu

This solution was download from Resonance Solution portal

Resonance[®] | CBSE-2021-22 (TERM-1) | DATE : 10-12-2021 | OFFICIAL PAPER | PHYSICS

- 43. A 300 Ω resistor and a capacitor of $\left(\frac{25}{\pi}\right)\mu$ F are connected in series to a 200V 50 Hz ac source. The current in the circuit is : (a) 0.1A (b) 0.4A (c) 0.6A (d) 0.8A Ans. (b) Sol. $I_0 = \frac{V_0}{\sqrt{R^2 + X_C^2}}$ $= \frac{V_0}{\sqrt{R^2 + \left(\frac{1}{\omega C}\right)^2}}$ $\therefore \omega = 2\pi f$ $I_0 = 0.4 A$
- 44. The core of a transformer is laminated to reduce the effect of(a) flux leakage(b) copper loss(c) hysteresis loss(d) eddy current

Ans. (d)

Question No. 45 to 49 are **Assertion (A)** and **Reason (R)** type questions. Given below are the two statements labeled as **Assertion (A)** and **Reason (R)**. Select the most appropriate answer from the options given below as :

(a) Both (A) & (R) are true and (R) is correct explanation of (A).

(b) Both (A) & (R) are true, and (R) is not correct explanation of (A).

- (c) (A) is true, but (R) false
- (d) (A) is false, and (R) is also false.
- **45.** Assertion (A) : A negative charge in an electric field moves along the direction of the electric field **Reason (R)** : On a negative charge a force acts in the direction of the electric field.

Ans. (d)

46. Assertion (A) : The poles of a bar magnet cannot be separated.Reason (R) : Magnetic monopoles do not exist.

Ans. (a)

47. Assertion (A) : When radius of a current carrying loop is doubled, its magnetic moment becomes four times.

Reason (R): The magnetic moment of a current carrying loop is directly proportional to the area of the loop.

Ans. (a)

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu

	SONANCe® CBSE-2021-22 (TERM-1) DATE : 10-12-2021 OFF	ICIAL PAPER	PHYSICS
48.	Assertion (A) : Higher the range, lower is the resistance of a ammeter.		
	Reason (R): To increase the range of an ammeter additional shunt is added in series to it.		
Ans.	(C)		
49.	Assertion (A) : A step-up transformer cannot be used as a step-down transformer. Reason (R) : A transformer works only in one direction.		
Ans.	(d)		
SECTION – C			
	Section-C consists 6 questions. Attempt any 5 questions from the	his section.	
50.	Equipotential at a large distance from a collection of a charges whose total	l sum is not zero ar	e -

(a) spheres (b) planes (c) ellipsoids (d) paraboloids

Ans. (a)

51. For charges –q, –q, +q and +q are placed at the corners of a square of side 2 L is shown in figure. The electric potential at point A midway between the two charges +q and +q is –

Ans. (a)

Sol. $\mathbf{V} = \frac{\mathbf{kq}}{\mathbf{L}} + \frac{\mathbf{kq}}{\mathbf{L}} - \frac{\mathbf{kq}}{\sqrt{5}\mathbf{L}} - \frac{\mathbf{kq}}{\sqrt{5}\mathbf{L}}$ 1 $2\mathbf{q}\begin{bmatrix} 1 \end{bmatrix}$

$$= \frac{1}{4\pi\varepsilon_0} \cdot \frac{2q}{L} \left[1 - \frac{1}{\sqrt{5}} \right]$$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 👫 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu

Case study:

An experiment was set up with the circuit diagram shown in figure. Given that $R_1 = 10 \Omega$, $R_2 = R_3=5\Omega$,

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 555
Tol