

Madhya Pradesh _ Xth Board Examination-2019

MATHEMATICS - 2019

X-9	23

Maxim		rks : 100			Time : 3 hours
1.	Choos (i)	e the correct option and The H.C.F. of 96 and 4 (A) 120	write it in your answer bo 104 is : (B) 4	ook. (C) 10	(D) 3
	(ii)	If α and β are the zero	es of the quadratic polyn	omial $ax^2 + bx + c$ then	the value of $\alpha \times \beta$ is
	(1)	(A) $\frac{c}{a}$	(B) $\frac{a}{c}$	(C) $\frac{-c}{a}$	(D) $\frac{-a}{c}$
	(iii)	The zeroes of the poly (A) $\pm\sqrt{3}$	(B) ± 3	(C) 3	(D) 9
	(iv)	When $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ th	en the system of equatic	$a_1x + b_1y + c_1 = 0.$ and	$a_2x + b_2y + c_2 = 0.$
		(A) has two solutions(C) has infinitely many		(B) has no solutions (D) has unique solutio	
0.4	(v)	Lines x – 2y = 0 and 3 (A) Intersect	x + 4y – 20 = 0 are : (B) Coincide	(C) Parallel	(D) None
Sol. (i)	Factor Factor		$2 \times 3 = 2^5 \times 3^1$.	ne factor	
(ii)		quadratic polynomial ax^2 s = α and β .	² + bx + c		
	$\therefore \text{ product of roots} = \frac{\text{constant term}}{\text{coefficient of } x^2}$				
	α.β=	- <u>c</u> . a			
(iii)	$zeroes$ $x^{2} - 3$ $x^{2} = 3$	g square root both sides.			
(iv)		equations $b_1y + c_1 = 0$			
		$b_2 y + c_2 = 0$	equation has no solution.		

 Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower ;Contact : 91+0744-6635569,

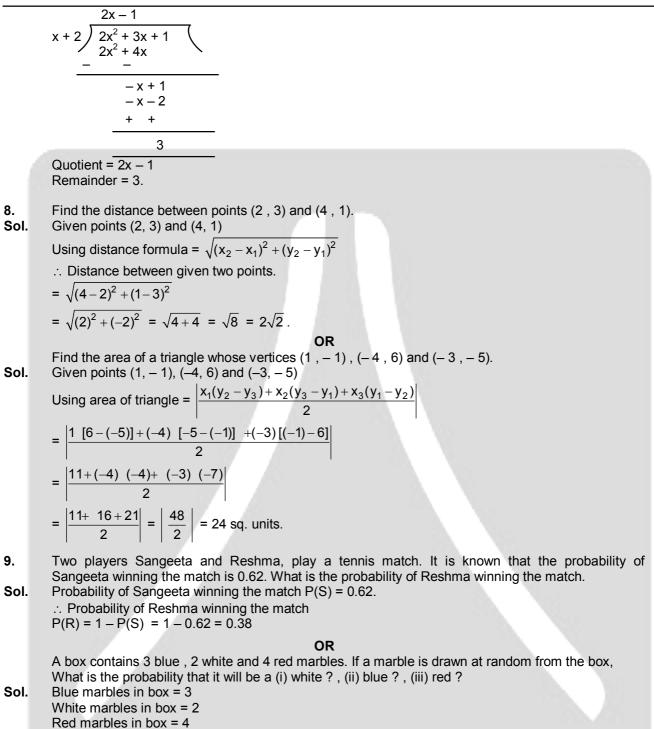
 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in

 Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

 BOARD-2019 - 1

		Madhya Pradesh _ X th Board Examination-2019
(v)	(A) Given	lines $x - 2y = 0$ and $3x + 4y - 20 = 0$
	Here	$\frac{a_1}{a_2} = \frac{1}{3}$
		$\frac{b_1}{b_2} = \frac{-2}{4} = \frac{-1}{2}$
		$\frac{c_1}{c_2} = \frac{0}{-20}$
		$\frac{a_1}{a_2} \neq \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$
	∴ Line	$a_2 b_2 c_2$ es intersect at (4, 2).
2.		the blanks
	(i)	A quadratic equation $ax^2 + bx + c = 0$ has no real root if
	(ii)	The discriminant of the equation $3x^2 - 2x + \frac{1}{3} = 0$ is
	(iii)	In the A.P. $\frac{3}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{3}{2}$ the common difference d is
Sal	(iv) (v)	The sum of the probabilities of all elementary events of an experiment is Formula of area of the sector of an angle θ is
Sol. (i)	D < 0, b ² – 4;	where D is discriminant ac < 0.
(ii)	Given equation $3x^2 - 2x + \frac{1}{3} = 0$	
	Discrir	minant $D = b^2 - 4ac$
		$=(-2)^2-4(3)\left(\frac{1}{3}\right)$
		= 4 - 4 D = 0.
(iii)	Given	$AP = \frac{3}{2}, \frac{1}{2}, \frac{-1}{2}, \frac{-3}{2}, \dots$
		non difference $d = a_2 - a_1 = a_3 - a_2$
		$=\frac{1}{2}-\frac{3}{2}$
		$=\frac{-2}{2}=-1.$
(iv)		of probabilities of an experiment = 1.
(v)	Area o	of sector of angle $\theta = \frac{\theta}{360^{\circ}} \times \pi r^2$.
3.	Write	true/false in the following :
	(i)	The perpendicular drawn from the center of a circle to a chord bisect the chord.
	(ii)	All squares are similar.
	(iii)	Area of right triangle = $\frac{1}{2}$ × base × altitude.
	(iv)	A line intersecting a circle in two points is called a secant.
	(v)	The angle of elevation of an object viewed is the angle formed by the line of sight with the horizontal, when we lower our head to look at the object.

	Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kot PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower ;Contact : 91+0744-6	a (Raj.)-324005 635569,
Educating for better tomorrow	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	MADHYA PRADESH
	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	BOARD-2019 - 2


Madhya Pradesh _ Xth Board Examination-2019 **Resonance**® Sol. (i) True True (ii) True (iii) True (iv) False (v) 4. Write the answers in one word/sentence. What will be the Arithmetic mean of 1, 2, 3, 4, 5? (i) Write the formula of the median. (ii) Find the value of probability of Event E + Probability of the EVENT "NOT E". (iii) Write the formula of volume of a frustum of a cone. (iv) (v) How many parallel tangents of a circle ? Sol. Arithmetic mean of 1, 2, 3, 4, 5 (i) Arithmetic mean = $\frac{\text{Sum of numbers}}{\text{Total numbers}} = \frac{1+2+3+4+5}{5} = \frac{15}{5} = 3.$ (ii) Median is the value separating the higher half from lower half of a data sample. Median formula is $\left(\frac{n+1}{2}\right)^{th}$ term where n is number of items If n is odd, median = $\left(\frac{n+1}{2}\right)^{th}$ term If n is even, median = $\frac{\left(\frac{n}{2}\right)^{th} term + \left(\frac{n+1}{2}\right)^{th}}{term + \left(\frac{n+1}{2}\right)^{th}}$ $P(E) + P(\overline{E}) = 1$ (iii) Volume of frustum of cone = $\frac{1}{3}\pi h (R^2 + Rr + r^2)$ (iv) h R There are always two parallel tangents about a diameter. (v) 5. Match the correct column. (Column"A") (Column"B") (i) $1 + \cot^2 \theta$ (a)sinθ (ii) sec θ (b)0 (iii) $\sin^2 \theta + \cos^2 \theta$ (c)√3 (iv)tan60° (d)1 $(v)\cos(90-\theta)$ (e) $\cos ec^2 \theta$ $(f)\frac{1}{\cos\theta}$ (g)-<u>1</u>

A Resonance®	Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kol PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower ;Contact : 91+0744-6	a (Raj.)-324005 635569,
Educating for better tomorrow	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	MADHYA PRADESH
	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	BOARD-2019 - 3

Madhya Pradesh Xth Board Examination-2019 Resonance® Sol. $1 + \cot^2 \theta$ $cosec^2\theta$ (i) (e) 1 (ii) secθ (f) $\cos \theta$ $\sin^2\theta + \cos^2\theta$ (iii) (d) 1 $\sqrt{3}$ tan60° (iv) (C) $\cos(90^{\circ} - \theta)$ (a) $sin\theta$ (v) 6. Find the LCM and HCF of 6 and 20 by the prime factorisation method. Sol. LCM and HCF of 6 and 20 by the prime factorisation method. Factors of 6 and 20 2 | 20 2 | 6 2 10 3 3 5 5 1 1 $6 = 2 \times 3 = 2^1 \times 3^1$ $20 = 2 \times 2 \times 5 = = 2^2 \times 5^1$. HCF = Product of smallest power of each common prime factor = 2^{1} . Now we know HCF × LCM = Product of two given numbers $2 \times LCM = 6 \times 20$ $LCM = \frac{6 \times 20}{2} = 60$ LCM = 60 HCF = 2.OR Find the H.C.F. of 6, 72 and 120 using the prime factorisation method. Sol. HCF of 6, 72 and 120 using prime factorisation method. Factors of 6, 72 and 120. 2 | 72 2 120 2 36 2 60 2 | 6 2 18 3 2 3 30 3 9 1 3 15 3 3 5 5 1 1 $6 = 2^1 \times 3^1$ $72 = 2^3 \times 3^2$ $120 = 2^3 \times 3^1 \times 5^1$ HCF = product of smallest power of each common prime factor $2^1 \times 3^1 = 6.$ 7. Find a quadratic polynomial, the sum and product of whose zeroes are – 3 and 2. Sol. Given sum of zeroes = -3product of zeroes = 3We know quadratic polynomial $= x^{2} - (sum of zeroes) x + (product of zeroes)$ $= x_{2}^{2} - (-3)x + (2)$ $= x^{2} + 3x + 2$ OR Divide $2x^2 + 3x + 1$ by x + 2. Divide $2x^2 + 3x + 1$ by x + 2Sol. Using long division method

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kol PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower ;Contact : 91+0744-6	a (Raj.)-324005 635569,
Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	MADHYA PRADESH
Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	BOARD-2019 - 4

A Resonance®

Total number of marbles = 9

 \therefore Probability of white marble = P(W)

 $P(W) = \frac{Favourable outcome}{Total number of outcomes} = \frac{2}{9}$ Probability of red marble = P(R)

 $P(R) = \frac{4}{9}.$ Probability of blue marble = P(B) $P(B) = \frac{3}{9} = \frac{1}{2}.$

 Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower; Contact: 91+0744-6635569,

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in

 Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029
 MADHYA PRADESH

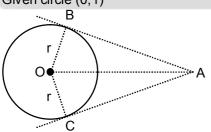
 BOARD-2019 - 5

MADHYA PRADESH

BOARD-2019 - 6

If P(E) = 0.05, what is the probability of (" not E") i.e., $P(\overline{E})$? 10. Sol. Given P(E) = 0.05 We know P(e) + P(\overline{E}) = 1 $P(\overline{E}) = 1 - P(E)$ ÷. = 1 – 0.05 = 0.95OR One card is drawn from a well-shuffled deck of 52 cards. Calculate the probability that the card will (i) be an ace. (ii) not be an ace. Sol. Total number of cards= 52. Number of Ace = 4 ... Probability of card drawn will be ace Favourable outcome Total number of outcome $=\frac{4}{52}=\frac{1}{13}$ P(not be an ace) = 1 - P(ace) $= 1 - \frac{1}{13} = \frac{12}{13}.$ Prove that : $\sqrt{\frac{1+\sin A}{1-\sin A}} = \sec A + \tan A$ 11. Given $\sqrt{\frac{1+\sin A}{1-\sin A}} = \sec A + \tan A$ Sol. Solving LHS $\sqrt{\frac{1+\sin A}{1-\sin A}}$ Rationalizing the denominator $\sqrt{\frac{1+\sin A}{1-\sin A}} \times \frac{1+\sin A}{1+\sin A}$ $= \sqrt{\frac{(1+\sin A)^2}{(1)^2 - (\sin A)^2}} = \sqrt{\frac{(1+\sin A)^2}{\cos^2 A}}$ $= \frac{1 + \sin A}{\cos A} = \frac{1}{\cos A} + \frac{\sin A}{\cos A}$ = secA + tanA = RHS Hence proved. OR Evaluate the following : sin60° × cos30° + sin30° × cos60° Sol. Given sin60° × cos30° + sin30° × cos60° $\sin 60^\circ = \frac{\sqrt{3}}{2}$ We know $\cos 30^\circ = \frac{\sqrt{3}}{2}$ $sin30^{\circ} = \frac{1}{2}$ $\cos 60^\circ = \frac{1}{2}$ Substituting the values in given equation Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 Resonance[®] Educating for better tomorrow PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower ;Contact : 91+0744-6635565

Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in


Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

$$= \left(\frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2}\right) + \left(\frac{1}{2}\right) \times \left(\frac{1}{2}\right)$$

$$= \frac{3}{4} + \frac{1}{4} = \frac{4}{4} = 1.$$
Method -2
We know
Sin (A + B) = sinA cos B + cos A sin B
 \therefore sin (60⁺ + 30⁺) = sin 60⁺ cos 30⁺ + sin 30⁺ cos 60⁺
 $=$ sin (90) = 1.
12. Find the value of K, if the points A (2, 3), B (4, K) and C (6, -3) are collinear.
Given points A(2, 3), B(4, k) and C(6, -3) are collinear.
 \therefore Area of triangle is equal to zero.
 $\frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)] = 0$
Substituting the values
 $2 (k - (-3)) + 4(-3 - 3) + 6(3 - k) = 0$
 $2 k + 6(-12) + (-12) + (13 - k) = 0$
 $k = 0.$
Find the ratio in which the y-axis divides the line segment joining the points (5, -6) and (-1, -4)
also find the point of intersection.
Sol. Given points (5, -6) and (-1, -4)
Let y-axis divides the line segment in ratio m : n
Using section formula
 $P(x, y) = \left(\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + my_1}{m+n}\right)$
Now, $x = 0$
 $\therefore \quad \frac{mx_2 + nx_1}{m+n} = 0$
 $\Rightarrow \quad \frac{m}{n} = \frac{5}{4}$
Now point of intersection
 $y = \frac{my_2 + ny_1}{m+n} = \frac{5(-4) + 1(-6)}{6}$
 $= \frac{-20 - 6}{6} = \frac{-26}{6} = \frac{-13}{3} \Rightarrow \left(0, \frac{-13}{3}\right).$

13.

The length of tangents drawn from an external point to a circle are equal. We need to prove that the length of tangents drawn from an internal point to a circle are equal Sol. Given circle (0, r)

AB and AC are two tangent on circle

Resonance ®	Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kol PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower ;Contact : 91+0744-6	ta (Raj.)-324005 6635569,
Educating for better tomorrow	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	MADHYA PRADESH
	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	BOARD-2019 - 7

To prove AB = AC Proof : In triangle(s) AOB and AOC $\angle OBA = \angle OCA = 90^{\circ}$ (Tangent is perpendicular to centre of circle) OA = OA = {common side} OB = OC = r [equal radius] Using RHS congruence criterion rule $\triangle AOB \cong \triangle AOC$ ∴ AB = AC Hence proved.

OR

Prove that the tangents drawn at the ends of a diameter of a circle are parallel. We need to prove that the tangents drawn at the ends of a diameter of circle are parallel.

$$Q \qquad A \qquad P$$

$$Q \qquad A \qquad P$$

$$S \qquad B \qquad R$$
Given circle C(0, r)

Δ

AB is diameter. Two tangents PQ and RS drawn at points A and B respectively.

To prove PQ || RS

Proof : Radius will be perpendicular to these tangents

Thus $OA \perp PQ$ and $OB \perp RS$

 $\angle OAQ = \angle OAP = \angle OBS = \angle OBR = 90^{\circ}$

Р

Therefore

S

 $\angle OAQ = \angle OBR$ (Alternative interior angles)

 $\angle OAP = \angle OBS$ (Alternative interior angles)

Since alternate interior angles are equal

: lines PQ and RS will be parallel.

14. Find the area of the sector of a circle with radius 4 cm and angle 30°. Also find the area of the corresponding major sector. (Use π = 3.14)

Sol. Given radius of circle = 4cm

Angle of sector $\theta = 30^{\circ}$ To find area of sector (minor and major)

Solution : Area of sector = $\frac{\theta}{360^{\circ}} \times \pi r^2$

$$= \frac{30}{360^{\circ}} \times (3.14) (4)^{2}$$
$$= \frac{1}{12} \times (3.14) (16)$$

$$=\frac{50.24}{12}$$
 = 4.187 cm².

Area of corresponding major sector

$$= \left(\frac{360 - \theta}{360}\right) \times \pi r^{2}$$
$$= \frac{330}{360} \times (3.14) (4)^{2}$$

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower ;Contact : 91+0744-6635565 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

$$= \frac{33}{36} \times 3.14 \times 16$$
$$= \frac{1657.92}{36} = 46.053 \text{ cm}^2.$$

Find the area of sector of a circle with radius 6 cm whose angle of sector is 60° . Sol. Given radius of circle = 6 cm

OR

Angle of sector $\theta = 60^{\circ}$ To find area of sector of a circle

Solution : Area of sector =
$$\frac{\theta}{360} \times \pi r^2$$

= $\frac{60}{360} \times pr^2$
= $\frac{1}{6} \times \frac{22}{7} \times (6)^2$
= $\frac{22 \times 6}{7} = \frac{132}{7} = 18.85 \text{ cm}^2$

- **15.** Prove that $5 \sqrt{3}$ is irrational number.
- **Sol.** Let $5 \sqrt{3}$ is irrational number.

Η

Hence $5 - \sqrt{3}$ can be written in form $\frac{a}{b}$

where a and b are coprime ($b \neq 0$).

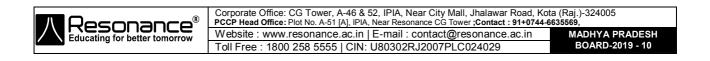
ence
$$5 - \sqrt{3} = \frac{a}{b}$$

 $- \sqrt{3} = \frac{a}{b} - 5$
 $-\sqrt{3} = \frac{a - 5b}{b}$
 $\sqrt{3}$
 \sqrt

Here $\frac{-a+5b}{b}$ is a rational number.

But $\sqrt{3}$ is irrational Since rational \neq irrational This is a contradiction \therefore Our assumption is incorrect. Hence $5 - \sqrt{3}$ is irrational. Hence proved.

OR

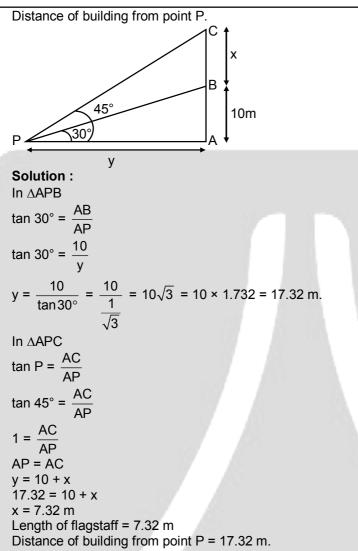

Show that any positive odd integer is of the form 4q + 1 or 4q + 3 where q is an integer. Sol. As per Euclid's division lenima If a and b are two positive integers, then a = bq + r where $0 \le r < b$ Let positive integer be a and b = 4. Hence a = 4q + rWhere $(0 \le r < 4)$ r is an integer greater than or equal to 0 and less than 4.

	Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kol PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower ;Contact : 91+0744-6	a (Raj.)-324005 635569,
Educating for better tomorrow	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	MADHYA PRADESH
	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	BOARD-2019 - 9

A Resonance®

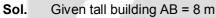
Hence r can be either 0, 1, 2, or 3. |fr = 1|a = 4q + 1This will always be an odd integer. If r = 3a = 4a + 3This will always be an odd integer. Therefore any odd integer is of the form 4q + 1 or 4q + 3 Hence proved. Find the zeroes of the quadratic polynomial $x^2 + 7x + 10$ and verify the relationship between the 16. zeroes and the coefficients. Given quadratic polynomial $x^2 + 7x + 10$ Sol. Using factorisation (splitting the middle term) $x^2 + 7x + 10 = 0$ $x^{2} + (5x + 2x) + 10 = 0$ $x^{2} + 5x + 2x + 10 = 0$ x(x + 5) + 2(x + 5) = 0(x + 5) (x + 2) = 0Hence zeroes of given quadratic polynomial are -5 and -2. Now we know Sum of roots = $-\frac{(\text{coefficient of } x)}{(x-x)} = \frac{-b}{x-x}$ Coefficient of x^2 Product of roots = $\frac{\text{Constant term}}{\text{Coefficient of } x^2} = \frac{c}{a}$ Sum of zoroes = (-5) + (-2) = -7.....(i) Product of zeroes = $(-5) \times (-2) = 10$ Given polynomial $x^2 + 7x + 10$(ii) $\frac{-b}{a} = \frac{-7}{1}$ Here(iii) $\frac{c}{a} = 10$ and(iv) Hence from equation (i) and (iii) and equation (ii) and (iv) Sum of zeroes = $\frac{-b}{a} = -7$ Product of zeroes = $\frac{c}{2}$ = 10 Hence verified. OR Divide $3x^3 + x^2 + 2x + 5$ by $1 + 2x + x^2$. Divide $3x^3 + x^2 + 2x + 5$ by $1 + 2x + x^2$ Sol. Using long Division Method $x^{2} + 2x + 1 \int \frac{3x^{3} + x^{2} + 2x + 5}{3x^{3} + 6x^{2} + 3x}$ $-5x^2 - x + 5$ $-5x^2 - 10x - 5$ + + + 9x + 10 Quotient = 3x - 5

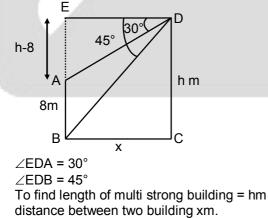
Remainder = 9x + 10.


		Madhya Pradesh _ X th Board Examination-2019
17. Sol.	If the sum of the first 14 terms of an A. Given sum of first 14 terms $S_{14} = 1050$ a = 10 To find a_{20} (20 th term) Solution $S_{14} = 1050$ $\frac{14}{2}$ [2a + (14 - 1)d] = 1050 7 [2(10) + 13d] = 1050 7 [20 + 13d] = 1050	P. is 1050 and its first term is 10, find the 20 th term.
	$20 + 13d = \frac{1050}{7} = 150.$ 13d = 150 - 20 = 130	
	$d = \frac{130}{13} = 10$ Now $a_{20} = a + (20 - 1) d$ = 10 + 19 (10) = 10 + 190 = 200	
		OR
Sol.	Find the 31^{st} term of an A.P. whose 11 Given 11 th term $a_{11} = 38$ 16^{th} term $a_{16} = 73$	th term is 38 and 16 th term is 73.
	To find a ₃₁ Solution :	
	a ₁₁ = 38 a + (11 – 1) d = 38 a + 10d = 38	(i)
	and $a_{16} = 73$ a + (16 - 1) d = 73	
	a + 15d = 73 Solving equation (i) and (ii)	(ii)
	a + 10d = 38 a + 15d = 73	
	- 5d = - 35	
	$d = \frac{-35}{-5} = \frac{35}{5} = 7$	
	Now a + 10 d = 38	
	a = 38 – 10d = 38 – 10 (7)	
	= 38 - 70 = - 32	
	Now a ₃₁ = a + (31 – 1) d	
	= a + 30d = - 32 + 210 = 178.	

18. From a point P on the ground the angle of elevation of the top of a 10 meter tall building is 30°. A flag is hosted at the top of the building and the angle of elevation of the top of the flagstaff from P is 45°. Find the length of the flagstaff and the distance of the building from the point P. (You may take $\sqrt{3} = 1.732$)

Sol. Given : Length of building = 10 Angle of elevation of top of building from point P on ground = 30° Angle of elevation of top of flagstaff from point P on ground = 45° To find : Length of flagstaff


Resonance ®	Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower ;Contact : 91+0744-6635569,	
Educating for better tomorrow	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	MADHYA PRADESH
	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	BOARD-2019 - 11

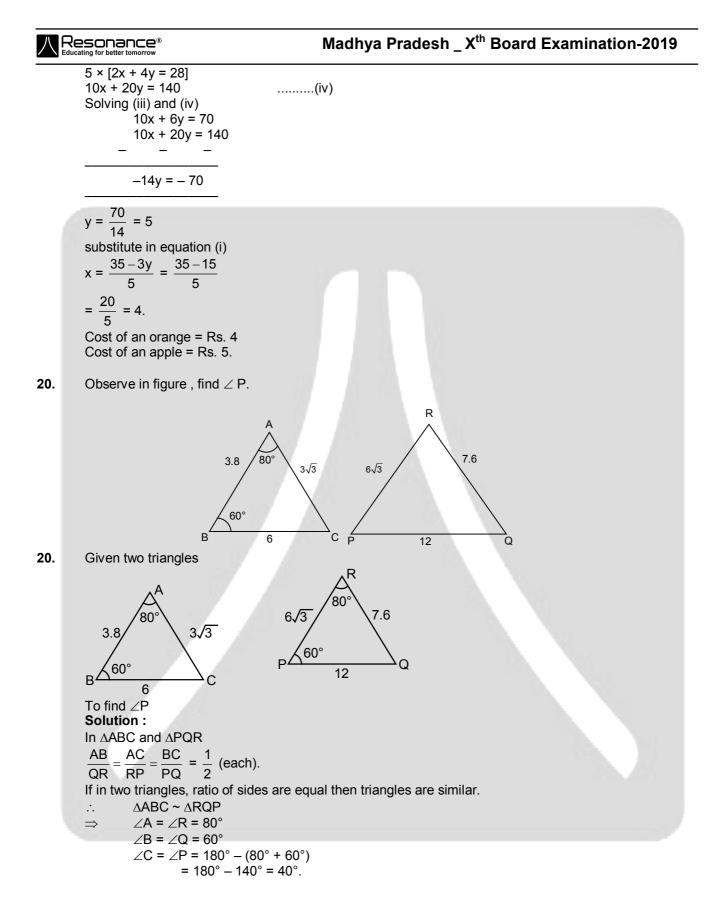


OR

The angle of depression of the top and the bottom of an 8m. tall building from the top of a multistoyered building are 30° and 45° respectively. Find the height of the multi-stoyered building and distance between the two buildings.

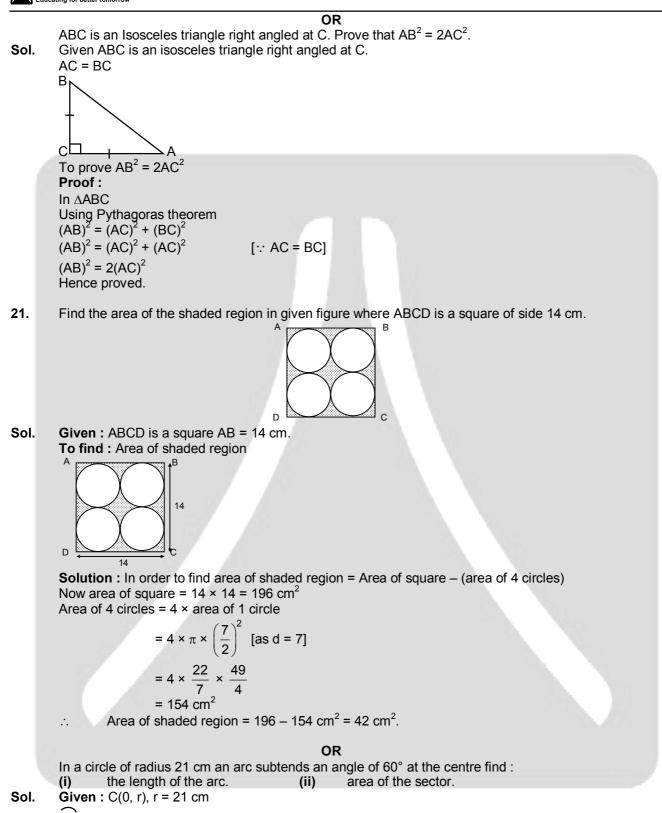
Resonance [®]	Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower ;Contact : 91+0744-6635569,	
Educating for better tomorrow	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	MADHYA PRADESH
	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	BOARD-2019 - 12

Solution : In ∆EDA tan 30° = EA ED
$\tan 30^\circ = \frac{h-8}{x}$
$\frac{1}{\sqrt{3}} = \frac{h-8}{x}$
$x = \sqrt{3} (h-8)$ (i)
In ∆EBD tan 45° = EB ED
$1 = \frac{h}{x}$ $h = x \qquad \dots \dots$
$x = x\sqrt{3} - 8\sqrt{3}$
$8\sqrt{3} = x\left(\sqrt{3} - 1\right)$
$x = \frac{8\sqrt{3}}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1} = \frac{8\sqrt{3}(\sqrt{3}+1)}{2} = 4\sqrt{3}(\sqrt{3}+1) m$
$h = 4\sqrt{3}\left(\sqrt{3} + 1\right)m.$


- **19.** Use Elimination method to find all possible solutions of the following pair of linear equations : 2x + 3y = 8
- 4x + 6y = 7Sol. Given equations 2x + 3y = 8.....(i) 4x + 6y = 7.....(ii) Using elimination method Multiplying the (i) equation by 2 $(2x + 3y = 8) \times 2$ $(4x + 6y = 7) \times 1$ 4x + 6y = 16*.*. 4x + 6y = 7and $\frac{a_1}{a_1} = \frac{b_1}{a_1} \neq \frac{c_1}{a_1}$ Here $a_2 \quad b_2 \quad c_2$
 - \therefore the given system of equations have no solution.

OR

The cost of 5 oranges and 3 apples is Rs. 35 and the cost of 2 oranges and 4 apples is Rs. 28. Let us find the cost of an orange and an apple.


Sol. Given : Cost of 5 orange and 3 apple = Rs. 35 Cost of 2 orange and 4 apple = Rs. 28 To find cost of an orange and an apple Solution : Let cost of an orange be Rs. x and cost of an apple be Rs. y : A/C to problem [5x + 3y = 35].....(i) [2x + 4y = 28].....(ii) Using elimination Method Multiplying equation (i) by 2 and equation (ii) by 5. $2 \times [5x + 3y = 35]$ 10x + 6y = 70.....(iii)

	Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower ;Contact : 91+0744-6635569,		
	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	MADHYA PRADESH	
	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	BOARD-2019 - 13	

	Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower ;Contact : 91+0744-6635569,		
	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	MADHYA PRADESH	
	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	BOARD-2019 - 14	

AB is arc $\angle AOB = 60^{\circ}$ **To find** : length of arc AB and area of sector AB area of sector AB

 Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower ;Contact : 91+0744-6635569,

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in

 Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

 BOARD-2019 - 15

22. Find the roots of the following equation :

$$+\frac{1}{x}=3, x\neq 0$$

x

Sol.

Sol. Given equation $x + \frac{1}{x} = 3$ $x \neq 0$

$$\frac{x^2 + 1}{x} = 3$$

$$x^2 + 1 = 3x$$

$$x^2 - 3x + 1 = 0$$

$$D = b^2 - 4ac$$

$$= 9 - 4(1) (1)$$

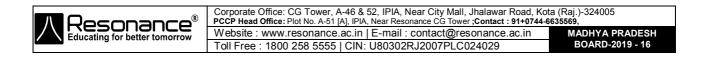
$$D = 5$$

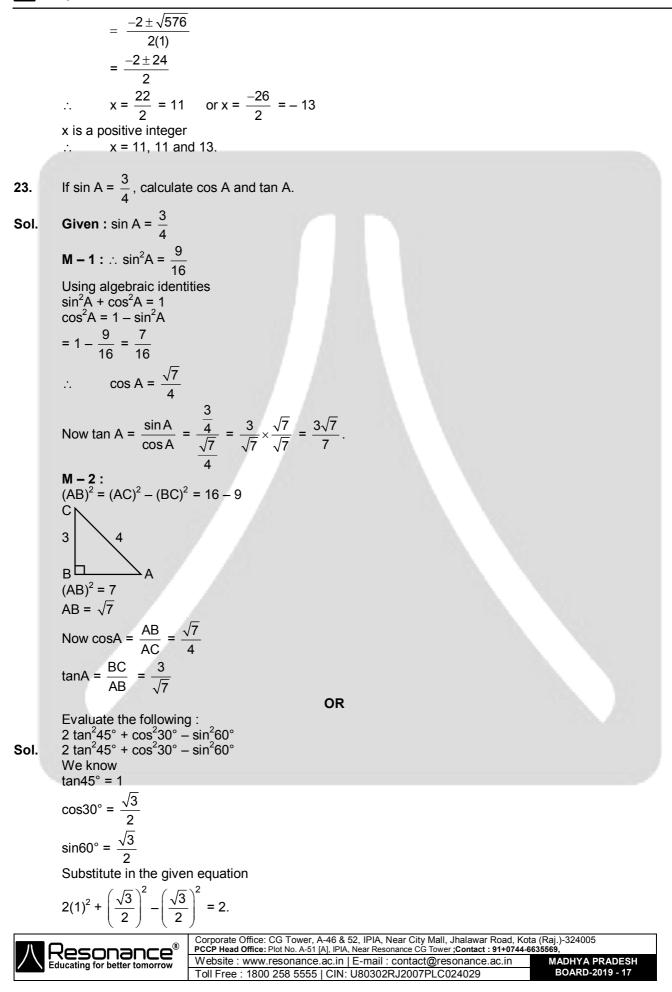
$$D > 0$$

$$\therefore \quad \text{Real and distinct roots}$$

$$x = \frac{-b \pm \sqrt{D}}{2a} = \frac{-(-3) \pm \sqrt{5}}{2(1)} = \frac{3 \pm \sqrt{5}}{2}$$
Hence $x = \frac{3 + \sqrt{5}}{2}$ or $x = \frac{3 - \sqrt{5}}{2}$

OR


Find two consecutive odd positive integers, sum of whose squares is 290.


Let two consecutive odd positive integers be x and x + 2.

Now, A/c to problem (x)² + (x + 2)² = 290 x² + x² + 4 + 4x = 290 2x² + 4x + 4 - 290 = 0 Divide the equation by 2 $\frac{2x^{2}}{2} + \frac{4x}{2} - \frac{286}{2} = 0$ x² + 2x - 143 = 0 Using quadratic formula D = b² - 4ac = (2)² - 4(1) (-143) = 4 + (4 × 143) D = 576

 $D = \frac{-b \pm \sqrt{D}}{2a}$

÷.

Sol.

24. Construct a triangle similar to a given triangle ABC with its side equal to $\frac{5}{3}$ of the corresponding

sides of the triangle ABC.

Given
$$\triangle ABC$$

Scale factor = $\frac{5}{3} > 1$

$$B \longrightarrow C$$

Steps of construction :

- **1.** Draw any ray BX making an acute angle with BC, on the side opposite to the vertex A.
- **2.** Mark 5 (the greater of 5 and 3 in $\frac{5}{3}$) points B₁, B₂, B₃, B₄, B₅ on BX so that

$$BB_1 = B_1B_2 = B_3B_4 = B_4B_5.$$

- **3.** Join B_3C and draw a line through B_5 parallel to B_3C , to intersect BC extended at C'.
- 4. Draw a line through C' parallel to the line CA to intersect BA extended at A'.

Thus $\Delta A'B'C'$ is the required triangle.

OR

Draw a circle with help of bangle. Take a point outside the circle. Construct the pair of tangents from this point to the circle.

- **Sol.** 1. Draw a circle with the help of a bangle.
 - 2. Draw a secant ARS from an external point A, produce RA to C such that AR = AC.
 - **3.** With CS as diameter, draw a semi-circle.
 - **4.** At the point A, draw AB \perp AS, cutting the semi circle at B.
 - 5. With A as centre and AB as radius, draw an arc to intersect the given circle, in T and T'.
 - 6. Join AT and AT'
 - AT and AT' are the required tangent lines.
- **25.** The radii of the ends of a frustum of a cone 45 cm high are 28 cm and 7 cm respectively, find the volume.
- Sol. Radii of ends of frustum of cone are R = 28 cm , r = 7 cm, h = 45 cm

To find : Volume Solution :

Volume of frustum =
$$\frac{1}{3}\pi h (R^2 + r^2 + Rr)$$

= $\frac{1}{3} \times \frac{22}{7} \times 45 [(28)^2 + (7)^2 + (28) 7]$
= $\frac{22 \times 15}{7} [784 + 49 + 196]$
= $\frac{22 \times 15 \times 1029}{7}$
= $22 \times 15 \times 147$
= $48,510 \text{ cm}^2$.

A hemispherical tank full of water is emptied by a pipe at the rate of $3\frac{4}{7}$ litres per second. How much time will it take to empty half the tank, if it is 3 m in diameter ? (Take $\pi = \frac{22}{7}$)

 Resonance
 Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower; Contact : 91+0744-6635569,

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
 MADHYA PRADESH

 Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029
 MADHYA PRADESH

Given hemispherical tank $r = \frac{3}{2}m$ Sol. Rate = $3\frac{4}{7}$ litres **To find :** Time taken to empty the tank. **Solution :** Tank is in form of hemisphere with D = 3 m $r = \frac{3}{2}m$ Volume of tank = $\frac{2}{3}\pi r^3$ $=\frac{2}{3}\times\frac{22}{7}\times\left(\frac{3}{2}\right)^3$ $=\frac{2}{3} \times \frac{22}{7} \times \frac{27}{8} = \frac{99}{14} \text{ m}^3$ $=\frac{99}{14} \times 1000$ litres $=\frac{99000}{14}$ (1m³ = 1000 litre) Volume of water to be emptied = $\frac{1}{2}$ × Volume of tank $=\frac{1}{2} \times \frac{99000}{14}$ litres $=\frac{99000}{28}$ litres Now it is given that tank is emptied at $3\frac{4}{7}$ litre per second = $\frac{25}{7}$ litres per second Time taken to empty $\frac{25}{7}$ litre = 1 second. Time taken to empty 1 litre = $1 \times \frac{7}{25}$ second. Time taken to empty $\frac{99000}{28}$ litre $=\frac{7}{25}\times\frac{99000}{28}$ $=\frac{693000}{700}$ = 990 second = 16.5 minutes.

26. A survey conduct on 20 households in a locality by a group of students resulted in the following frequency table for the number of family member in a household.

Family Size	1-3	3-5	5-7	7-9	9-11
Number of Families	7	8	2	2	1

Find the Mode of this data

Sol.

Given

Family size	Number of families	
1 – 3	7 f ₀	
3 – 5	8 f ₁	
5 – 7	2 f ₂	
7 – 9	2	
9 – 11	1	
We know		

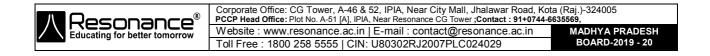
	Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower ;Contact : 91+0744-6635569,		
	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	MADHYA PRADESH	
	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	BOARD-2019 - 19	

Mode = $\ell = \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$ Modal class = 3 - 5 ℓ = lower limit of modal class = 3 h = class interval = 3 - 1 = 2f₁ = 8 $f_0 = 7$ $f_2 = 2$ Mode = $3 + \frac{8-7}{2(8)-7-2} \times 2$ $= 3 + \frac{1}{16 - 9} \times 2$ $= 3 + \frac{1}{7} \times 2$ $= 3 + \frac{2}{7}$

= 3.286.

OR

In the given data


ClassInterval	No.of Students
10 – 25	2
25 – 40	3
40 – 55	7
55 – 70	6
70 – 85	6
85 – 100	6

Find the Arithmetic Mean of this data

Sol.

	ClassInterval	Mid value x _i	No. of students f _i	f _i x _i	
	10 – 25	17.5	2	35	
	25 – 40	32.5	3	97.5	
	40 – 55	47.5	7	332.5	
	55 – 70	62.5	6	375	
	70 – 85	77.5	6	465	
	85 – 100	92.5	6	555	
			$\Sigma f_i = 30$	$\Sigma f_i x_i = 1860$	
I	Mean $\overline{\mathbf{x}} = \frac{\Sigma \mathbf{f}_i \mathbf{x}_i}{\Sigma \mathbf{f}_i} = \frac{1860}{30}$				

$$\overline{x} = 62$$

