

Gujarat_X Board Examination-2019

MATHEMATICS MARCH - 2019

SET NO. - 01

PART – A : TIME 1 HOUR/MARKS – 50 PART – B : TIME 2 HOURS/MARKS : 50 12 (E)

X BOARD-2019 - 1

PART - A 1. Product of four consecutive positive integers is divisible by ____ (D) 16 (A) 32 (B) 24 (C) 48 Sol. **(B)** Quick theorem : Product of n consecutive integer is divisible by n! (Therefore product of 4 consecutive integer is divisible by 4!) i.e., $4! = 4 \times 3 \times 2 \times 1 \implies$ 24. Ans. The decimal expansion of $\frac{2517}{6250}$ will terminate after _____ digits 2. (B) 5 (C) 4 (A) 3 (D) 6 Sol. **(B)** $\frac{2517}{6250} = \frac{2517}{2 \times 5^5} = \frac{2517}{2 \times 5 \times 5^5} = \frac{2517 \times 2^4}{2^5 \times 5^5} = \frac{2517 \times 16}{10^5} = \frac{40272}{10^5} = 0.40272$... it will terminate after 5 digit. The zeros of a quadratic polynomial _____ are 4 and 3. (A) $x^2 + 7x - 12$ (B) $x^2 - 7x + 12$ (C) $x^2 + 7x + 12$ 3. (D) $x^2 - 7x - 12$ Sol. **(B)** Zeros are 4 and 3 i.e., α and β respectively. Quadratic polynomial when zeros are known. $x^{2} - (\alpha + \beta)x + \alpha\beta$ $x^{2} - (4 + 3)x + 4 \times 3$ $x^{2} - 7x + 12.$ When $p(x) = 40x^2 + 11x - 63$ is divided by x + 2, then _____ is obtained as remainder 4. (C) 75 (A) 245 (B) 85 (D) - 75 Sol. (C) $P(x) = 40x^2 + 11x - 63$ is divided by x + 2 then remainder will be x + 2 = 0 \Rightarrow x = -2 By remainder theorem Remainder = P(-2) = Value of polynomial P(x) at x = -2. $P(-2) = 40 (-2)^2 + 11(-2) - 63$ *.*.. 160 – 22 – 63 = 75. Ans. \Rightarrow If α , β and γ are the zeros of a cubic polynomial $p(x) = ax^3 + bx^2 + cx + d$, $a \neq 0$, then $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{1}{\beta} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{1}{\beta} + \frac{1$ 5. $(A) - \frac{b}{d}$ $(C) - \frac{c}{d}$ (B) $\frac{c}{d}$ (D) - c Sol. (C) α , β , γ are zeros of cubic polynomial P(x) = ax³ + bx² + cx + d. $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = ?$ $\frac{\beta\gamma + \alpha\gamma + \alpha\beta}{2} = ?$(i) αβγ Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 Resonance® PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower ;Contact : 91+0744-6635565 GUJARAT Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in Educating for better tomorro

Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

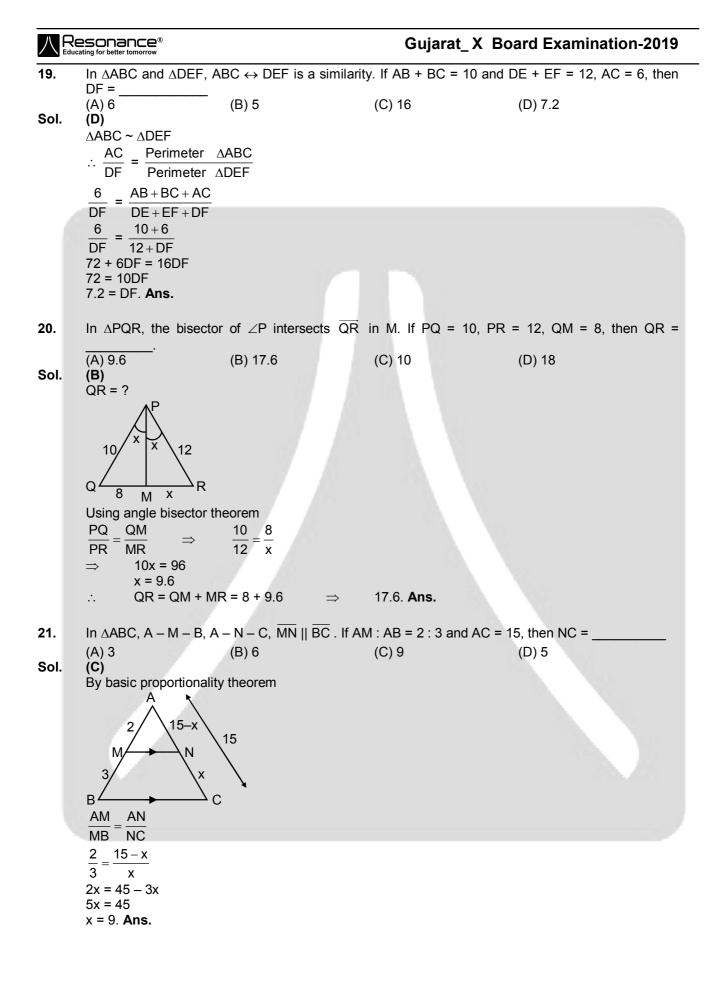
We know that for $P(x) = ax^{3} + bx^{2} + cx + d$ $\alpha + \beta + \gamma = -\frac{b}{a}$ $\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a}$(ii) $\alpha\beta\gamma = -\frac{d}{a}$(iii) ... Putting the values from (ii) and (iii) in (i) $\frac{\overline{a}}{\underline{-d}} = \frac{-c}{d} \cdot Ans.$ \Rightarrow 6. If 3x + 2y = 7 and 2x + 3y = 3, then x - y =____ (C) 2 (A) 4 (B) – 4 (D) - 2Sol. (A) 3x + 2y = 7.....(i) 2x + 3y = 3(ii) then x - y = ?Sub (ii) from (i) *.*.. 3x + 2y = 72x + 3y = 3_ _ _ x - y = 4x-y=4. *.*.. 7. If, in a two digit number, the digit at unit place is x and the digit at tens place is 4, then the two digit number is (B) 4x (C) 40x + 4 (A) 40 + x(D) 10x + 4 Sol. (A) Expanded form of two digit number = 10y + x.....(i) where, digit on unit place = x digit on ten's place = y = 4Putting y = 4 in equation (i) *.*. Number = $10 \times 4 + x = 40 + x$. Ans. 8. _ is a solution of the linear equation of two variable 2x - y = 5. (A) (3, 1) (D)(3, -1)(B)(-3, -1)(C) (-3, 1) Sol. (A) Solution of 2x - y = 5(i) putting points (3, 1) in equation (1) R.H.S $2(3) - (1) \Rightarrow 6 - 1 = 5$ ∴ L.H.S. = R.H.S. So solution is (3, 1). Ans. 9. The graph of linear polynomial p(x) = 5x + 3, $x \in R$ is (B) Line (A) Ray (C) Parabola open downward (D) Parabola open upward Sol. **(B)** P(x) = 5x + 3It is a linear polynomial : graph will be a line. Ans.

N Resonance®	Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kot PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower ;Contact : 91+0744-6	a (Raj.)-324005 635569,
Educating for better tomorrow	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	GUJARAT
	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	X_BOARD-2019 - 2

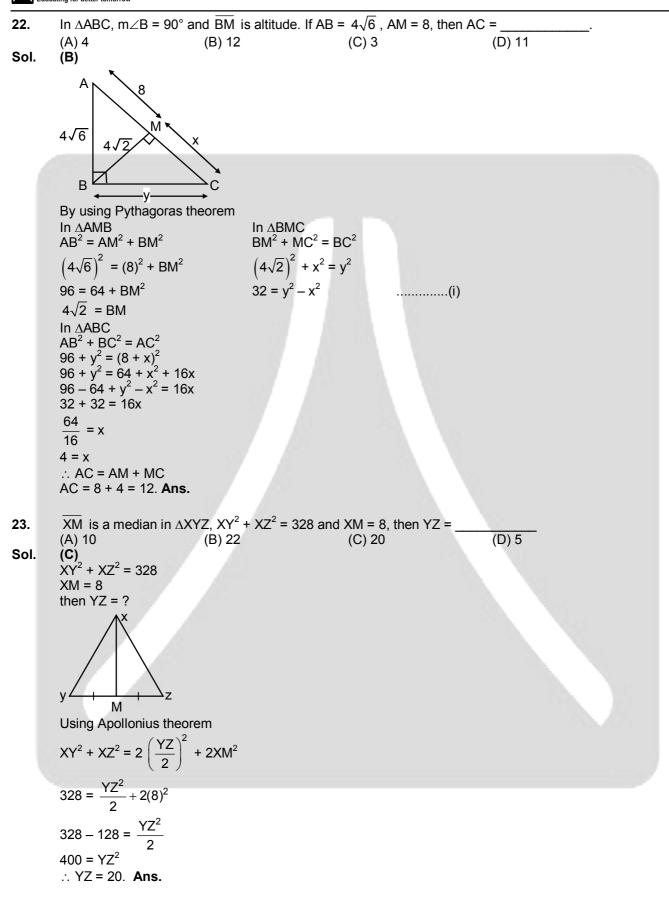
	caung for better tomorrow
10.	The solution set of the given pair of linear equation $5x - 5y = -5$ and $\frac{3x}{2} - \frac{3y}{2} + \frac{3}{2} = 0$ is
	(A) $\left(\frac{5}{2}, 0\right)$ (B) empty set (C) infinite set (D) $\left(0, -\frac{3}{2}\right)$
Sol.	(C) 5x - 5y + 5 = 0(i) $a_1x + b_1y + c_1 = 0$ $\frac{3x}{2} - \frac{3y}{2} + \frac{3}{2} = 0$ (ii)
	2 2 2 2 $a_2x + b_1y + c_1 = 0$ from equation (i) and (ii) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ it satisfies the condition of coincident lines. i.e., $\frac{5}{\frac{3}{2}} = \frac{-5}{\frac{-3}{2}} = \frac{5}{\frac{3}{2}} \implies \frac{10}{3} = \frac{10}{3} = \frac{10}{3}$ \therefore They are coincident lines \therefore Solution set = infinite set. Ans.
11.	If one root of quadratic equation $Kx^2 - 4\sqrt{5}x + 5 = 0$ is $\sqrt{5}$, then K =
Sol.	(A) 3 (B) -3 (C) $-\sqrt{5}$ (D) 5 (A)
	$Kx^{2} - 4\sqrt{5}x + 5 = 0$ (i) one root $\sqrt{5}$ (put $x = \sqrt{5}$ in equation (i)) $K(\sqrt{5})^{2} - 4\sqrt{5}(\sqrt{5}) + 5 = 0$ 5K - 20 + 5 = 0 5K = 15 K = 3. Ans.
12.	If, then the quadratic equation has no real roots (A) $D = 0$ (B) $D > 0$ (C) $D < 0$ (D) $D = 1$
Sol.	(C) Condition for no real roots of quadratic equation is $b^2 - 4ac < 0$ i.e., $D < 0$. Ans.
13.	Discriminant D =, for the quadratic equation $25x^2 - 10x + 1 = 0$ (A) 0 (B) 1 (C) - 10 (D) 25
Sol.	(A) 0 (B) 1 (C) - 10 (D) 25 (A) $25x^2 - 10x + 1 = 0$ $ax^2 + bx + c = 0$ $\therefore a = 25, b = -10, c = 1.$ \therefore Discriminant D = b ² - 4ac D = (-10) ² - 4(25) (1) \Rightarrow 100 - 100 = 0. Ans.
14.	The formula to find the root of a quadratic equation $ax^2 + bx + c = 0$, $a \neq 0$, by method of completing
Sol.	square was given by mathematician (A) Pythagoras (B) Sridhar Acharya (C) Hilbert (D) Uclid (B) Sridhar Acharya

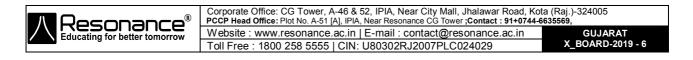
Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower ;Contact : 91+0744-6635569, Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

Resonance® Educating for better tomorrow Gujarat X Board Examination-2019 15. For an A.P. if $T_3 = 8$ and $T_7 = 24$, then $T_{10} =$ (C) 32 (D) 36 (A) - 4(B) 28 Sol. (D) $T_n = a + (n - 1)d$, $T_3 = 8$ $T_{10} = ?$ $T_3 = a + 2d = 8$ (i) $T_7 = a + 6d = 24$(ii) Sub (i) from (ii) a + 6d = 24a + 2d = 84d = 16d = 4 ∴ a + 6 × 4 = 24. a = 0 . \Rightarrow 0 + 9 × 4 = 36. **Ans.** $T_{10} = a + 9d$ If x + 2, 3x - 1, 4x + 1 are the three consecutive terms of an A.P., then x =____ 16. (B) $\frac{1}{5}$ (A) 1 (C) 5 (D) - 1 (C) Sol. (b) (a) (C) 3x –1 x + 2, 4x + 1 are in AP by using ∴ 2b = a + c 2(3x - 1) = (x + 2)(4x + 1)6x - 2 = 5x + 3x = 5 | . **Ans.** 17. If 5 + 7 + 9 + n = 437, then n = (C) 21 (B) 20 (D) 22 (A) 19 Sol. (A) 5 + 7 + 9 + upto n terms = 437 find = n. a = 5, d = 7 - 5 = 2, $S_n = 437$, n = ? $S_n = \frac{n}{2} (2a + (n - 1)d)$ $437 = \frac{n}{2} [2(5) + (n-1) (2)]$ 437 = n [5 + n – 1] $437 = 4n + n^2$ $n^2 + 23n - 19n - 437 = 0$ n(n + 23) - 19(n + 23) = 0n - 19 = 0n + 23 = 0 n = 19 n = -23n = 19. Ans. 18. – 4 and 3 are the roots of variable x of a quadratic equation _____ (B) $x^2 + x - 12 = 0$ (A) $x^2 - x - 12 = 0$ (D) $x^2 + 7x - 12 = 0$ (C) $x^2 - 7x - 12 = 0$ Sol. **(B)** $\alpha = -4, \beta = 3$ \therefore Quadratic equation = $x^2 - (\alpha + \beta) x + \alpha\beta = 0$ $= x^{2} - (-4 + 3)x + (-4)(3) = 0$ $x^2 + x - 12 = 0$. **Ans.** \Rightarrow

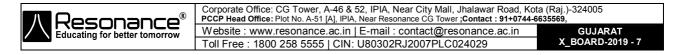

 Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

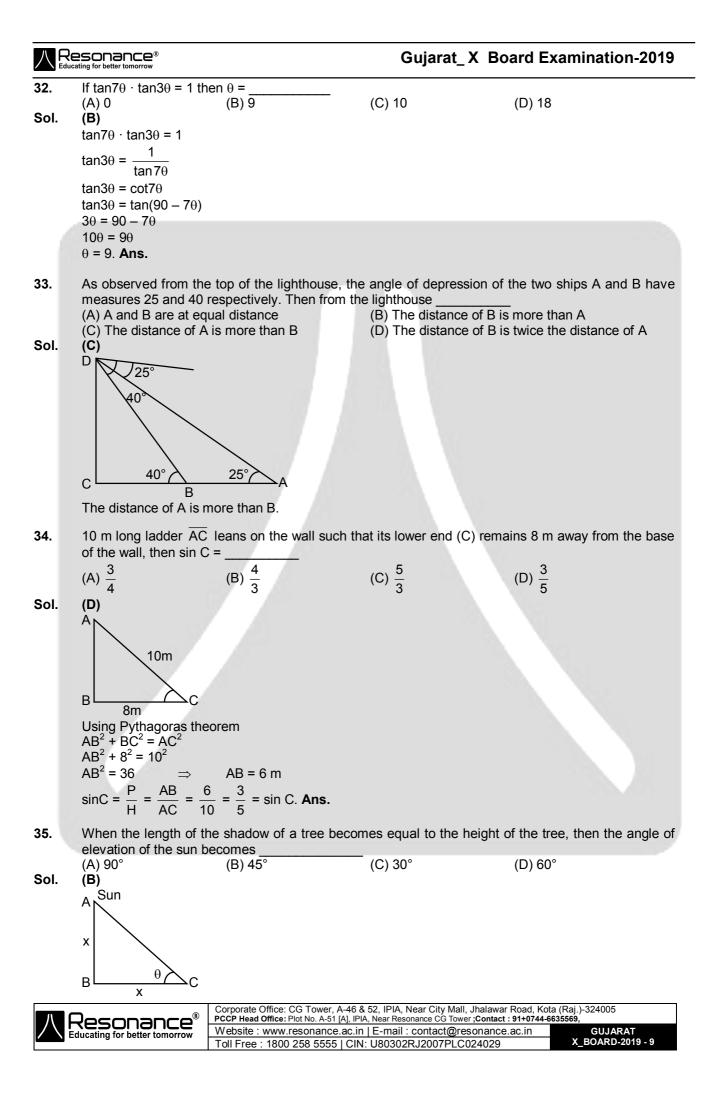
 PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower; Contact : 91+0744-6635569,


 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in


 Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

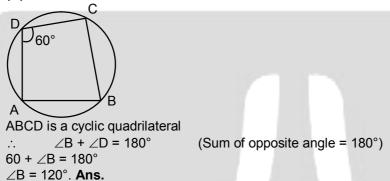
 X_BOARD-2019 - 4

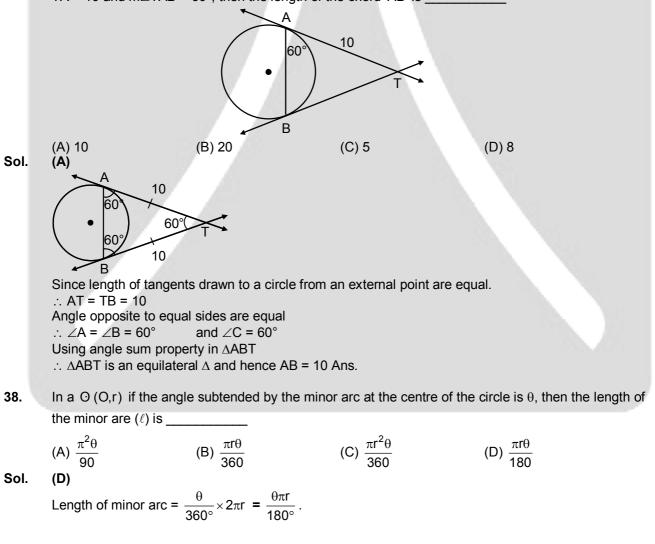

Resonance® PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower; Contact : 91+0744-6635669, Website : www.resonance.ac.in E-mail : contact@resonance.ac.in GUJARAT Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029 X_BOARD-2019 - 5		Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kot PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower ;Contact : 91+0744-6	a (Raj.)-324005 635569,
Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029 X_BOARD-2019 - 5	Educating for better tomorrow	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	GUJARAT
		Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	X_BOARD-2019 - 5


Gujarat_X Board Examination-2019

	icating for better tomorrow			
24.	The perimeter of a s	equare ABCD is 32. The	n the measure of its d	_
	(A) 8√2	(B) 2√8	(C) $\sqrt{8}$	(D) $\frac{\sqrt{8}}{2}$
Sol.	(A) Perimeter of square	(ABCD) = 32		L
	$a a\sqrt{2}$ a A B			
	a 4a = 32 a = 8. Diagonal of square :	= $a\sqrt{2} \Rightarrow 8\sqrt{2}$. Ans.		
25.	If A(3, 5) and B(8, 9) are given points, then	is the mid	point of AB
	(A) (4, 7)	(B) (3, 9)	(C) (11, 14)	$(D)\left(\frac{11}{2},\ 7\right)$
Sol.	(D) A(3, 5), B(8, 9) (x ₁ y ₁) (x ₂ y ₂)			
	Mid point = $\left(\frac{x_1 + x_2}{2}\right)$	$-, \frac{y_1 + y_2}{2} \Rightarrow \qquad \left(\frac{3}{2}\right)$	$\frac{3+8}{2}, \frac{5+9}{2}$	$\Rightarrow \qquad \left(\frac{11}{2}, 7\right).$
26.	If the distance betwee (A) 2	een the points (2, 3) and (B) 3	d (a, 0) is 3 then a = (C) 5	(D) 1
Sol.	(A) (2, 3) and (a, 0) dist. Distance = $d^2 = (x_2 - 3^2)^2 + (0 - 3^2)^2 + (0 - 3^2)^2 + (0 - 3^2)^2$ $\therefore a - 2 = 0 \implies a$	ance = 3 $(-x_1)^2 + (y_2 - y_1)^2$		
27.	A(0, 0), B(2, 0), C(0 (A) Equilateral	, –2) are the vertices of	a triar (B) Obtuse angle	
Cal	(C) Right angled iso	sceles	(D) Acute angle	
Sol.	(C) A(0, 0), B(2, 0), C(0) $(x_1 y_1) (x_2 y_2) (x_3, By using distance for AB^2 = (x_2 - x_1)^2 + (y_2 - AB^2) + (0 - AB^2) + ($	$\begin{array}{l} y_{3} \\ \text{prmula} \\ y_{2} - y_{1} \\ y_{1}^{2} \\ 0 \\ 0 \\ \cdots \\ (i) \\ - 2 \\ \end{array}$		
	$BC^{2} = 8$ $AC^{2} = (0 - 0)^{2} + (0 + 4)^{2}$ $AC^{2} = 4$ from equation (i), (ii) $AB^{2} + AC^{2} = BC^{2}$ i.e., $4 + 4 = 8$	(iii)		
	∴ Two sides are eq∴ It is a right angled	ual it is satisfying Pytha I isosceles.	goras theorem	

			Gujarat_X Bo	oard Examination-2019
28.	A(2, 4), B(3, 5), C(4, 3) are the vertices of ΔAB	3C. Hence the coordinate	e of centroid of the triangle is
Sol.	$(A) (4, 3) (B) A(2, 4), B(3, 5), C(4, 3) x1, y2 x2, y2 x3, y3 Centroid \left(\frac{x_1 + x_2 + x_3}{3}\right)$		(C) (9, 12)	(D) (4.5, 6)
		-)		
	$\left(\frac{2+3+4}{3}, \frac{4+5+3}{3}\right)$	\Rightarrow (3, 4). Ans.		
29.	If 5 sin θ = 4 cos θ then	n tan θ =		
	(A) $\frac{5}{4}$	(B) 5	(C) 4	(D) $\frac{4}{5}$
Sol.	(D) $5 \sin\theta = 4\cos\theta$ $\frac{\sin\theta}{\cos\theta} = \frac{4}{5}$ $\therefore \tan\theta = \frac{4}{5}$. Ans.			
	5			
30. Sol.	$(1 + \tan^{2}\theta) (1 - \sin^{2}\theta) =$ (A) 1 (A) (1 + \tan^{2}\theta) (1 - \sin^{2}\theta) By using 1 + tan ² θ = sec ² θ sin ² θ + cos ² θ = 1 (sec ² θ) (cos ² θ) $\frac{1}{\cos^{2}\theta} \times \cos^{2}\theta = 1.$ Ar	(B) 0	(C) – 1	(D) 2
31.	For $\triangle ABC$, sin $\left(\frac{B+C}{2}\right)$	=		
	(A) cos A	(B) sin A	(C) cos $\frac{A}{2}$	(D) sin $\frac{A}{2}$
Sol.	(C) In $\triangle ABC$, $\sin\left(\frac{B+C}{2}\right)$ =	= ?(i)	2	2
	We know that A + B + C $\frac{B+C}{2} = \frac{180 + A}{2}$ $\frac{B+C}{2} = 90 - \frac{A}{2}$ Put in equation (i) $Sin\left(90 - \frac{A}{2}\right) \Rightarrow cos\frac{A}{2}$			


Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kot PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower ;Contact : 91+0744-6	a (Raj.)-324005 635569,
Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	GUJARAT
Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	X_BOARD-2019 - 8
 Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	X_BOARD-2019 - 0



$$\tan \theta = \frac{P}{B} = \frac{AB}{BC} = \frac{x}{x} = 1.$$
$$\tan \theta = 1$$
$$\theta = 45^{\circ}.$$
 Ans.

36. If all the four vertices of a quadrilateral ABCD lie on the circle and $m \angle D = 60^\circ$, then $m \angle B =$ _____ (A) 30° (B) 90° (C) 120° (D) 100°

37. In the following figure, \overrightarrow{TA} and \overrightarrow{TB} are the tangents drawn from the exterior point T to the circle. If TA = 10 and m \angle TAB = 60°, then the length of the chord \overrightarrow{AB} is ______

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kot PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower ;Contact : 91+0744-6	a (Raj.)-324005 635569,
Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	GUJARAT
Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	X_BOARD-2019 - 10

			Gujarat_X	X Board Examination-2019
39.	The length of an arc am^2	of a circle having ra	adius 15 cm is 20 cm.	Hence its area of minor sector is
Sol.	cm². (A) 150 (A)	(B) 300	(C) 200	(D) 125
	Length of arc = 20 cm	n, r = 15 cm, Area of r	ninor sector = ?	
	Length of arc = $\frac{\theta}{360^{\circ}}$	$ imes 2\pi r$		
	$20 = \frac{\theta}{360^{\circ}} \times 2 \times \pi \times$	15		
	$\frac{10}{15} = \frac{\pi\theta}{360^\circ}$			
	Area of sector = $\frac{\theta}{360}$	$- \times \pi r^2$		
	$\frac{10}{15} \times 15 \times 15 \qquad \Rightarrow \qquad$			
	$\frac{1}{15}$ $\xrightarrow{15\times15}$ $\xrightarrow{15}$	150 cm . Ans.		
10 .			20% then the correspo	onding increase in the area of the
	circle is (7 (A) 20%	τ = 3.14) (B) 44%	(C) 40%	(D) 21%
ol.	(B)			
	Let radius = r		ncreased by = 20%	
	Area = πr^2	$r' = r + \frac{20}{10}$	<u>n</u>	
		. 6	0	
		r' = —r 5		
		Area = π	$\left(\frac{6}{5}r\right)^2 = \frac{\pi 36r^2}{25}.$	
	h		0) 20	
	Increase % in area =	original		
	1 1r ² π			
	$=\frac{25}{2} \times 100 = 44\%$. Ans.		
	πr^2			
1.			, then the ratio of their o	
ol.	(A) 9 : 16 (C)	(B) 4 : 3	(C) 3 : 4	(D) 16 : 9
	$\frac{\pi r_1^2}{\pi r_2^2} = \frac{9}{16}$			
	$\frac{r_1^2}{r_2^2} = \frac{9}{16}$			
	_			
	$\therefore \frac{r_1}{r_2} = \frac{3}{4}$			
	$\therefore \frac{2\pi r_1}{2} = \frac{3}{4}.$			
	^{···} 2πr ₂ 4 3 : 4. Ans.			
	ວ.4. ANS.			

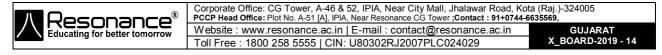
3 : 4. **Ans.**

Website : www.resonance.ac.in E-mail : contact@resonance.ac.in GUJARAT Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029 X_BOARD-2019 - 11	A Resonance®	Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kol PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower; Contact : 91+0744-6	a (Raj.)-324005 635569,
Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029 X_BOARD-2019 - 11	Educating for better tomorrow	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	GUJARAT
		Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	X_BOARD-2019 - 11

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kot PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower ;Contact : 91+0744-6	a (Raj.)-324005 635569,
Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	GUJARAT
Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	X_BOARD-2019 - 12

		Gujarat_X Board Examination-2019	
46. Sol.	For some data, $Z = 20$ and $M = 30$, then $\overline{X} = (A) 25$ (B) 35 (B) $Z = 20$ and $M = 30$, then $\overline{X} = ?$ Mode = 3 median - 2 mean $20 = 3 \times 30 - 2$ mean 2 mean = 70 mean = 35. Ans.	(C) 37.5 (D) 32.5	
47.	For $M + \overline{X} = 22$ and $M - \overline{X} = 2$, we have $Z = _$		
Sol.	(A) 16 (B) 14 (A) $M + \overline{X} = 22$ $M - \overline{X} = 2$ 2M = 24 $M = 12, \overline{X} = 12$ Mode = 3 median - 2 mean Z = 3(12) - 2(10) Z = 36 - 20 Z = 16.	(C) 10 (D) 12	
48.	The modal class of the frequency distribution g	iven below is	
Sol.	Class $0-10$ $10-20$ $20-30$ $30-4$ Frequency7151317(A) $10-20$ (B) $20-30$ (C)Modal class = highest frequency \therefore 30 - 40. Ans.	$ \begin{array}{c c} 0 & 40 - 50 \\ \hline 10 \\ \hline (C) 30 - 40 \\ \end{array} $ (D) $40 - 50$	
49.	On tossing a balanced dice once, the probability		
	(A) $\frac{1}{6}$ (B) $\frac{2}{3}$	(C) $\frac{1}{3}$ (D) $\frac{1}{5}$	
Sol.	(C) D = [1, 2, 3, 4, 5, 6] Multiple of 3 = {3, 6} P(multiple of 3) = $\frac{2}{6} = \frac{1}{3}$. Ans.		
50.	If P(C) = $\frac{3}{5}$, then P(\overline{C}) =		
Sol.	(A) $\frac{2}{5}$ (B) $\frac{3}{5}$ (A) P(C) = $\frac{3}{5}$	(C) $\frac{1}{5}$ (D) 1	
	$P(\overline{C}) = 1 - P(C)$		
	$1 - \frac{3}{5} = \frac{2}{5} = P(\overline{C})$. Ans.		

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kot PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower ;Contact : 91+0744-6	a (Raj.)-324005 635569,
Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	GUJARAT
Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	X_BOARD-2019 - 13



PART – B

SECTION - A

Answer the following questions number 1 to 8 with calculations in brief. [Each question carries 2 marks]

Find the square root : $14 + 6\sqrt{5}$ 1. Sol. Square root $14 + 6\sqrt{5}$ $(a + b)^2 = a^2 + b^2 + 2ab$ $14 + 6\sqrt{5} = a^2 + b^2 + 2ab$ $2ab = 6\sqrt{5}$ $2 \times a \times b = 2 \times 3 \times \sqrt{5}$ a = 3, b = $\sqrt{5}$ $14 + 6\sqrt{5} = (3 + \sqrt{5})^2$ Square root of $\sqrt{\left(3+\sqrt{5}\right)^2}$ \Rightarrow $3+\sqrt{5}$. Ans. Find zeros of $p(x) = x^2 + 9x + 14$. Also find the sum and product of the zeros. 2. Sol. $x^{2} + 9x + 14$ Let α and β are zeros $x^{2} + 7x + 2x + 14 = 0$ Sum of zeros x(x + 7) + 2(x + 7) = 0 $\Rightarrow \alpha + \beta = -2 - 7 = -9$ (x + 2) (x + 7) = 0product of zeros $\alpha = -2, \beta = -7$ $\alpha\beta = -2 \times -7 \Rightarrow$ 14. Ans. \Rightarrow 3. Find the solution set for the given pair of equations x + y = 7, 3x - 2y = 11. Sol. $a_2 b_2 c_2$ $a_1 b_1 c_1$ x + y = 7; 3x - 2y = 11 $\frac{a_1}{a_2} = \frac{1}{3} \neq \frac{1}{-2} \neq \frac{7}{11}.$ 3x + 3y = 213x - 2y = 11+ 5y = 10.y = 2, x = 5.*.*.. Hence $\frac{a_1}{a_2} \neq \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ it will have unique solution. • For an A.P. 1, 1.5., 2, 2.5, find the sum of the first 16 terms. 4. Sol. 1, 1.5, 2., 2.5 S₁₆ = ? AP $S_n = \frac{n}{2} (20 + (n-1) d)$ $a = 1, d = a_2 - a_1 = 1.5 - 1 = 0.5, n = 16$ $S_{16} = \frac{16}{2} \left[2 + (16 - 1) \ 0.5 \right] \implies 8 \left[2 + 7.5 \right] = 8 \times 9.5 = 76.0.$ Ans. OR Find 10th term of an A.P. 115, 100, 85, 70,...... Sol. $AP \rightarrow 115, 100, 85, 70, \dots, a_{10} = ?$ $a = 115, d = a_2 - a_1 = 100 - 115 = -15$ $a_n = a + (n - 1)d$ $a_{10} = a + 9d$ 115 + 9 × (– 15) 115 - 135 = -20. \Rightarrow \Rightarrow a₁₀ = – 20. **Ans.**

Land		
5. Sol.	In $\triangle ABC$, m $\angle B$ = 90° and \overline{BM} is altitude of	\overline{AC} . If $BM = 2\sqrt{30}$. MC = 6, then find AC.
0011	^	
	x M	
	2130 6	
	Using Pythagoras theoremIn \triangle MBCIn \triangle ABCP ² + B = H ² AB ² + BC	
	$MB^2 + MC^2 = BC^2$ $x^2 + 156 =$	$(6 + y)^2$
	$(2\sqrt{30})^2$ + (6) ² = BC ² x ² + 156 =	$= 36 + y^2 + 12y$
		20 = 12y(i)
	In ∆ABM	
	$\left(2\sqrt{30}\right)^2 + y^2 = x^2$	
	120 = x ² - y ² (ii) Put (ii) in (i)	
	120 + 120 = 12y 240 = 12y	
	20 = y = AM AC = AM + MC	
	AC = 20 + 6 = 26	
	AC = 26. Ans.	
6. Sol.	In $\triangle ABC$, m $\angle B$ = 90°, A(2, 3), B(4, 5) and 0 $\triangle ABC$ is a right angled \triangle	C(a, 2). Then find a.
	A (2, 3)	
	$B \square C (4, 5) (a., 2) AB2 + BC2 = AC2(a)$	
	$AB^{2} + BC^{2} = AC^{2}$ ($AB^{2} = (4-2)^{2} + (5-3)^{2} \Rightarrow 4 + 4 = 8$	i)
	$AB^{2} = (4-2)^{2} + (5-3)^{2} \Rightarrow 4+4=8$ BC ² = (a-4)^{2} + (2-5)^{2} = a^{2} + 16 - 8a + 9 AC ² = (a-2)^{2} + (2-3)^{2} = a^{2} + 4 - 4a + 1	
	Putting values in equation (i) 8 + a^2 + 16 – 8a + 9 = a^2 + 4 – 4a + 1	
	28 = 4a a = 7.	
7.	Prove that $\frac{\sin 70}{\cos 20} + \frac{\csc 20}{\sec 70} - 2\cos 70 - c$	osec 20 = 0.
Sol.	$\frac{\sin 70}{\cos 20} + \frac{\csc 20}{\sec 70} - 2\cos 70 - \csc 20 = 0$	
	L.H.S	
	$\frac{\sin 70}{\cos 20} + \frac{\csc 20}{\sec 70} - 2\cos 70 \times \csc 20$	

 Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower ;Contact : 91+0744-6635569,

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in

 Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

 X_BOARD-2019 - 15

$$\frac{\sin 70}{\sin(90-20)} + \frac{\cos 20}{\cos \cos (90-70)} - 2\cos 70 \times \csc 20$$

$$\frac{\sin 70}{\sin 70} + \frac{\csc 20}{\csc 20} - 2\cos 70 \times \csc 20$$

$$1 + 1 - 2\cos 70 \frac{1}{\sin 20}$$

$$1 + 1 - 2\cos 70 \times \frac{1}{\cos(90-20)}$$

$$1 + 1 - 2\cos 70 \times \frac{1}{\cos 70} \implies 2 - 2 = 0.$$

OR

Prove that $(\sin\theta + \csc\theta)^2 + (\cos\theta + \sec\theta)^2 = 7 + \tan^2\theta + \cot^2\theta$.

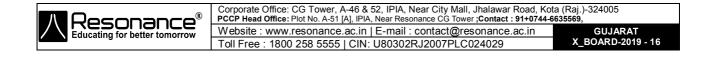
 $\begin{array}{ll} \textbf{Sol.} & \sin^2\theta + \csc^2\theta + 2\sin\theta + \csc\theta + \cos^2\theta + \sec^2\theta + 2\cos\theta \sec\theta. \\ & 1 + \csc^2\theta + 2 + 2 + \sec^2\theta. \\ & 1 + 1 + \cot^2\theta + 2 + 2 + 1 + \tan^2\theta \\ & 7 + \tan^2\theta + \cot^2\theta. \end{array}$

٢h

8. For certain data, if
$$\overline{X} = 35.8$$
, C = 10, $\sum f_i u_i = 4$, $\sum f_i = 50$, then find assumed mean A.

Sol.
$$\overline{X} = 35.8$$
, C or h = 10, $\sum f_i u_i = 4$, $\sum f_i = 50$

Mean
$$\Rightarrow$$
 a + $\frac{\sum f_i u_i}{\sum f_i} \times$


 $35.8 = a + \frac{4}{50} \times 10$ 35.8 = a + 0.835 = a. **Ans.**

SECTION – B

Answer the following questions number 9 to 12 with calculations. [Each question carries 3 marks]

9. The sum and product of two numbers are 27 and 182 respectively. Find the two numbers.
 Sol. a + b = 27(i)

a + b = 27(i) a × b = 182 $(a = b)^2 = (27)^2$ $a^2 + b^2 + 2ab = 729$ $a^{2} + b^{2} + 2 \times 182 = 725$ $a^2 + b^2 = 729 - 364$ $a^2 = b^2 = 365$ $(a - b)^2 = a^2 + b^2 - 2ab$ $(a - b)^2 = 365 - 2 \times 182$ $(a - b)^2 = 365 - 364$ a - b = 1.....(ii) Solving (i) and (ii) a + b = 27a – b = 1 2a = 28 a = 14 b = 13. Ans.

Gujarat_X Board Examination-2019

10. The angle of elevation of the top of a tower as observed from the foot of a temple has measure 60. The angle of elevation of the top of the temple as observed from the foot of the tower has measure 30. If the temple is 50 m high, find the height of the tower.

A		
×)	
5	50m	
B 30° 60°	C	
In ∆ABC	In ∆DBC	
$\frac{AB}{BC}$ = tan 60°	$\frac{50}{v}$ = tan 30°	
$\frac{x}{y} = \sqrt{3} \dots (i)$	$\frac{50}{y} = \frac{1}{\sqrt{3}}$	
	$\frac{1}{y} = \frac{1}{\sqrt{3}}$ $y = 50\sqrt{3}$	(ii)
Dut (ii) in (i)		

Put (ii) in (i) $\frac{x}{50\sqrt{3}} = \sqrt{3}$

x = 50 × 3 = 150 m. Height of tower = 150 m. Ans.

11. Find the median of the following data :

Class	4-8	8-12	12-16	16-20	20-24	24-28
Frequency	9	16	12	7	15	1

Sol.

Class	Frequency	cf	
4-8	9	9	
8-12	16	25	
12 - 16	12	37	
16-20	7	44	
20 - 24	15	59	
24 – 28	1	60	
	$\Sigma f_i = 60$		


$$\Rightarrow \frac{60}{2}, \frac{60}{2} + 1 \Rightarrow 30, 31^{\text{th}} \text{ term}$$

$$\text{Median} = \ell + \left(\frac{\frac{N}{2} - \text{cf}}{F}\right) \times h$$

I = 12, N = 60, cf = 25 (upper class) F = 12, h = 4. (60

Median =
$$12 + \left(\frac{\frac{60}{2} - 25}{12}\right) \times 4 \implies 12 + \left(\frac{5}{12}\right) \times 4 \implies 12 + \frac{5}{3}$$

 $\Rightarrow 12 + 0.6 \implies 12.6.$ Ans.

OR

Gujarat_X Board Examination-2019

Find the mode of the following data

Class	30-40	40 - 50	50-60	60-70	70-80	80-90	90-100
Frequency	12	17	28	23	7	8	5

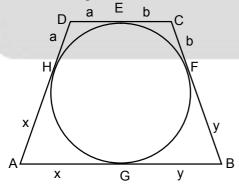
Sol.

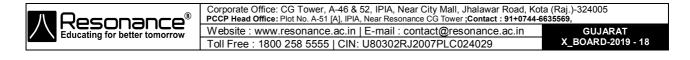
Class	f			
30-40	12			
40 - 50	17 f ₀			
50-60	28 f ₁			
60 - 70	23 f ₂			
70 - 80	7			
80-90	8			
90-100	5			
ℓ = 50, h =	= 10			
Mode = $\ell + \frac{F_1 - F_0}{2F_1 - F_0 - F_2} \times h$				
Mode = $50 + \frac{11}{56 - 40} \times 10$				
$\Rightarrow \qquad 50 + \frac{11}{16} \times 10$				
⇒ 5	$0 + \frac{110}{16}$			
= 50 + 6.875 = 56.875. Ans.				

12. A box contains 8 black, 7 white and 6 yellow balls in it. One ball is taken out from the box at random. What is the probability that the ball taken out is :

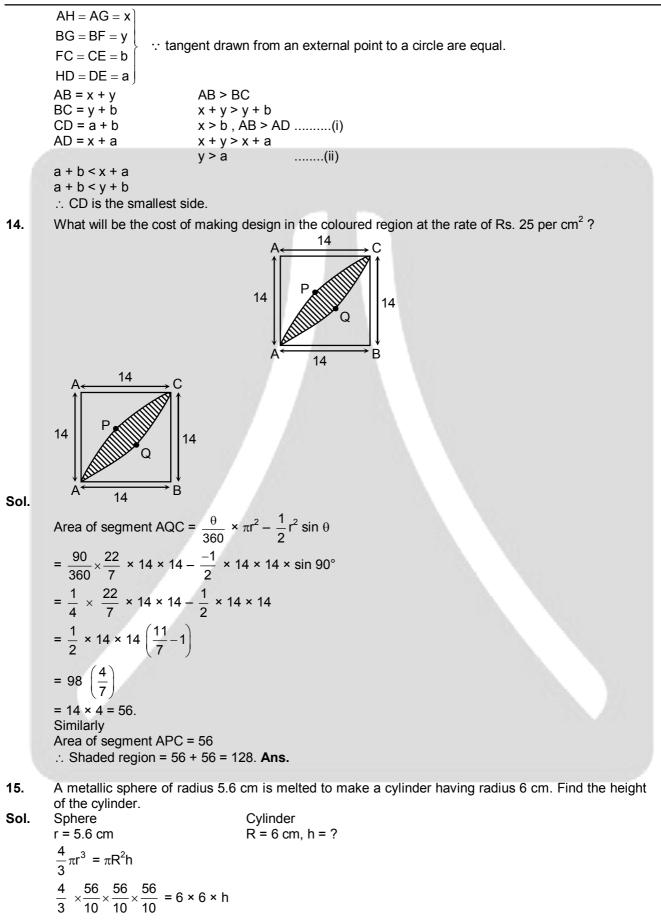
	(i) Yellow ?	(ii)	Not a black ?	(iii)	White ?
Sol.	8 black, 7 white, 6 yellow Total = 21 balls				

(i) $P(yellow) = \frac{6}{24}$


(ii) P(not black) =
$$\frac{13}{21}$$


(iii)
$$P(white) = \frac{7}{21}$$

SECTION - C


13. A circle touches all the sides of $\Box ABCD$. If \overline{AB} is the largest side then prove that \overline{CD} is the smallest side.

Sol. AB is the longest side

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower ;Contact : 91+0744-6635569, Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

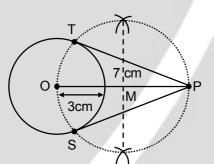
Resonance® Educating for better tomorrow

Gujarat_X Board Examination-2019

$56 \times 56 \times 56$ = h $30 \times 30 \times 30$ 175616 = h 27000 6.50 = h.

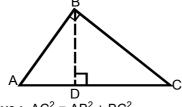
OR

A cylindrical tank with hemispherical ends having radius 0.42 m and total height 3.84m. Find total surface area of the closed tank.


Sol.

$$\begin{array}{c} \hline \\ T.S.A = 2\pi r^{2} + 2\pi r^{2} + 2\pi r h \\ \Rightarrow & 4\pi r^{2} + 2\pi r h \\ \Rightarrow & 2 \times \frac{22}{7} \times \frac{42}{100} \left(2 \times \frac{42}{100} + \frac{384}{100} \right) \\ \Rightarrow & \frac{264}{100} \left(\frac{468}{100} \right) \Rightarrow & 12.3552. \text{ Ans.} \end{array}$$

SECTION - D


Answer the following questions no. 16 to 17 [Each question carries 5 marks]

- Draw O (O, 3 cm). Construct a pair of tangents from point P at a distance of 7 cm from the centre O. 16. Also write points of constructions.
- Sol.

- Step-1 : Draw a circle of radius 3 cm with centre O.
- Step-2 : Mark a point P outside the circle at a distance 7 cm from the centre O.
- Step-3 : Find a mid point M of line segment OP by drawing perpendicular bisector of it.
- Step-4 : With centre M and radius OM draw a circle.
- Step-5 : Mark the intersection point of two circle as T and S and join PT and PS.
- ... PT and PS are our required tangents...
- 17. State and prove Pythagoras theorem.
- Sol. Statement : In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Given : A right triangle ABC, right angled at B.

To prove : $AC^2 = AB^2 + BC^2$ $\textbf{Construction}: \mathsf{BD} \perp \mathsf{AC}$

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower ;Contact : 91+0744-663556 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

Proof	: \triangle ADB & \triangle ABC	
	∠DAB = ∠CAB	[Common]
	∠BDA = ∠CBA	[90° each]
So,	$\Delta \text{ ADB} \sim \Delta \text{ ABC}$	[By AA similarity]
	$\frac{AD}{AB} = \frac{AB}{AC}$	[Sides are proportional]
or,	$AD \cdot AC = AB^2$	(i)
Simila	rily $\Delta BDC \sim \Delta ABC$	
So,	$\frac{CD}{BC} = \frac{BC}{AC}$	
or	$CD \cdot AC = BC^2$	(ii)
Adding	g (i) and (ii),	
	$AD \cdot AC + CD \cdot AC = AB^2 + BC$,2
or,	AC (AD + CD) = $AB^2 + BC^2$	
or,	AC. AC = $AB^2 + BC^2$	
or,	$AC^2 = AB^2 + BC^2$	Hence Proved.

OR

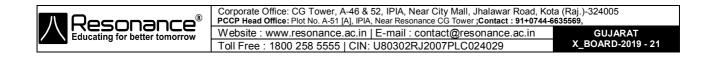
If a line parallel to one of the sides of a triangle intersects the other two sides in distinct points, then the segments of the other two sides in one half plane are proportional to the segments in the other half plane.

Sol. Given : A ABC in which a line parallel to side BC intersects other two sides AB and AC at D and E respectively.

 $\frac{AD}{DB} = \frac{AE}{EC}$ To Prove :

Construction : Join BE and CD and draw DM \perp AC and EN \perp AB. **Proof**: Area of \triangle ADE = $\frac{1}{2}$ (base × height) = $\frac{1}{2}$ AD × EN. Area of \triangle ADE is denoted as ar(ADE). and $ar(BDE) = \frac{1}{2} DB \times EN.$ So, ar(ADE) = $\frac{1}{2}$ AD × EN Therefore, $\frac{ar(ADE)}{ar(BDE)} = \frac{\frac{1}{2}AD \times EN}{\frac{1}{2}DB \times EN} = \frac{AD}{DB}$... (i) Similarly, $ar(ADE) = \frac{1}{2} AE \times DM$ and $ar(DEC) = \frac{1}{2} EC \times DM$. $\frac{ar(ADE)}{ar(DEC)} = \frac{\frac{1}{2}AE \times DM}{\frac{1}{2}EC \times DM} = \frac{AE}{EC}$ And ... (ii)

Note that \triangle BDE and \triangle DEC are on the same base DE and between the two parallel lines BC and DE. $S_0 = ar(BDE) = ar(DEC)$


DB

 $\Delta D = \Delta F$

FC

... (iii)

Hence Proved.

