| 4     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                  |                    |               |       |                                      |
|-------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------|--------------------|---------------|-------|--------------------------------------|
| (SC)  | 2        | ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3    |                  |                    |               |       | D                                    |
| 15.   |          | lumn of water within xylem vessels of tall trees not break under its weight because of:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22.  |                  | ich of the         | e fol         | llow  | ing joints would allow no            |
|       | (1)      | Tensile strength of water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | (1) ·            | Cartila            | gino          | us je | oint                                 |
|       | (2)      | Lignification of xylem vessels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | (2)              | Synovi             | ial joi       | int   |                                      |
|       | (a)      | Positive root pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | (3)              | , Ball an          | d So          | cket  | joint                                |
|       | (4)      | Dissolved sugars in water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | (4)              | Fibrou             | s joir        | nt    | •                                    |
| سبقال |          | imperfect fungi which are decomposers of litter<br>help in mineral cycling belong to :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23.  |                  | ch the fo          | ollow         | ving  | list of microbes and their           |
|       | (1)      | Basidiomycetes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | Sacha            | romyces            | $\overline{}$ | 40    | Production of                        |
|       | (2)      | Phycomycetes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (a)  | cerevi:          | <i>^</i>           | ノト            | (i)   | immunosuppressive agents             |
|       | (3)      | Ascomycetes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (b)  | Mona             | \ (                |               | (ii)  | Ripening of Swiss cheese             |
|       | (4)      | Deuteromycetes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | purpu            | reus 🔪             |               |       |                                      |
| _17/  |          | structures that help some bacteria to attach to s and/or host tissues are:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (c)  | į.               | oderma<br>vorum (I | )             | (iii) | Commercial production of ethanol     |
|       | (1)      | Fimbriae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (d)  | Propie           | onibacteriu        | m             | /i\   | Production of blood-                 |
|       | (2)      | Mesosomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (u)  | sharm            | anii 👔             | ) '           | (iv)  | cholesterol lowering agents          |
|       | (3)      | Holdfast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                  | (a) (              | (b)           | (c)   | (d)                                  |
|       |          | Rhizoids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | (1)              |                    | (iii)         | (ii)  |                                      |
|       | (4)      | Kilizoids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | (2)              | *                  | (ii)          | (i)   | • •                                  |
| 18,/  | The !    | DNA molecule to which the gene of interest is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | (3)              |                    | (i)           | (iv   |                                      |
|       | integ    | rated for cloning is called :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | (4)              |                    | (iv)          | (i)   | (ii)                                 |
| •     | سرللك    | Vector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -    | 0                | . ,                | •             |       |                                      |
|       | (2)      | Template (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24.  | ) The            | vear 2012          | renc          | e of  | Parties on climate change in         |
|       | (3)      | Carrier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | (1)              | Doha               | was           | пец   | aa.                                  |
|       | (4)      | Transformer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,    | .≔(±)<br>(2)     | Lima               |               |       |                                      |
| 10 /  | Diale    | and the second s |      | (3)              | Warsay             | 147           |       |                                      |
| 13/   |          | up the wrong statement:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | ( <del>4</del> ) | Durbar             |               |       |                                      |
|       | (1)      | Protista have photosynthetic and heterotrophic modes of nutrition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25,/ | _                |                    |               | ior d | deficiency of <u>antibodies in a</u> |
|       | (2)      | Some fungi are edible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -3   | pers             | on, to wh          | ich c         | of th | e following would you look           |
| ~     | _(3)     | Nuclear membrane is present in Monera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                  | onfirmato          |               |       |                                      |
|       | (4)      | Cell wall is absent in Animalia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | (1)              | Serum              | albuı         | min   | s                                    |
| . 20. | Meta     | genesis refers to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | (2)              | Haemo              | cytes         | S     |                                      |
| 1     | (1)      | Alternation of generation between asexual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ı    | (1)<br>(1)       | Serum              | _             |       |                                      |
| `     | <u> </u> | and sexual phases of an organism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | (4)              | Fibrino            | ւգույ լ       | n pi  | asind .                              |
|       | (2)      | Occurrence of a drastic change in form during post-embryonic development                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 26/  | Chro<br>(1)      | matopho<br>Growth  |               | ake   | part in :                            |
|       | (3)      | Presence of a segmented body and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -    | (2)              | Movem              |               |       |                                      |
|       |          | parthenogenetic mode of reproduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | (3)              | Respira            |               |       |                                      |
|       | (4)      | Presence of different morphic forms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | ·W               | Photosy            |               |       |                                      |

Acid rain is caused by increase in the atmospheric

concentration of:

 $SO_3$  and CO

CO<sub>2</sub> and CO

O<sub>3</sub> and dust

SO<sub>2</sub> and NO<sub>2</sub>

Which of the following events is not associated with ovulation in human female?

Full development of Graafian follicle

Release of secondary oocyte .

LH surge

Decrease in estradiol

4

- 28. During ecological succession:
  - (1) the establishment of a new biotic community is very fast in its primary phase.
  - (2) the numbers and types of animals remain constant.
  - the changes lead to a community that is in near equilibrium with the environment and is called coneer community
  - the gradual and predictable change in species composition occurs in a given area.
- 29. The oxygen evolved during photosynthesis comes from water molecules. Which one of the following pairs of elements is involved in this reaction?
  - (1) Manganese and Potassium
  - (2) Magnesium and Molybdenum
  - (3) Magnesium and Chlorine
  - (4) Manganese and Chlorine
- 30. Which of the following pairs is **not** correctly matched?

## Mode of reproduction (1) Rhizome Banana (2) Binary fission (3) Conidia Penicillium (4) Offset Water hyacinth

31. In the following human pedigree, the filled symbols represent the affected individuals. Identify the type of given pedigree.



X-linked recessive

(2) Autosomal recessive

X-linked dominant

Autosomal dominant

Which one of the following animals has two separate circulatory pathways?

(1) Lizard

Whale Man.

(3) Shark Frog 33. Flowers are unisexual in:

Cucumber

- (2) China rose
- (3) Onion
- (4) Pea
- 34. Which one of the following fruits is parthenocarpic?
  - (1) Apple
  - (2) Jackfruit
  - \_(<del>3)</del> Banana
  - (4) Brinjal
- 35. A pleiotropic gene:
  - (1) is a gene evolved during Pliocene.
  - (2) controls a trait only in combination with another gene
  - controls multiple traits in an individual.
  - (4) is expressed only in primitive plants.
- 36. Which of the following is not a function of the skeletal system?
  - (1) Storage of minerals 🖊
  - (2) Production of body heat
    - (3) Locomotion
    - (4) Production of erythrocytes
- A jawless fish, which lays eggs in fresh water and whose ammocoetes larvae after metamorphosis return to the ocean is:

Myxine

(2) Neomyxine

(2) Petromyzon

(4) Eptatretus

- 38 Filiform apparatus is characteristic feature of:
  - (1) Nucellar embryo
  - (2) Aleurone cell
  - (3) Synergids
  - (4) Generative cell
- Read the different components from (a) to (d) in the list given below and tell the correct order of the components with reference to their arrangement from outer side to inner side in a woody dicot stem.
  - (a) Secondary cortex
  - (b) Wood
  - (c) Secondary phloem
  - (d) Phellem

The correct order is:

- (a), (b), (d), (c)
- (d), (a), (c), (b)
- (3) (d), (c), (a), (b)
- (c), (d), (b), (a)

| •                                              |                                                                             |  |  |  |  |  |  |  |
|------------------------------------------------|-----------------------------------------------------------------------------|--|--|--|--|--|--|--|
| SCO                                            |                                                                             |  |  |  |  |  |  |  |
| 40. Which one of the following hormones is not |                                                                             |  |  |  |  |  |  |  |
|                                                | ved in sugar metabolism?                                                    |  |  |  |  |  |  |  |
| ay T                                           | Aldosterone/loug (                                                          |  |  |  |  |  |  |  |
| (2)                                            | Insulin                                                                     |  |  |  |  |  |  |  |
| (3)                                            | Glucagon                                                                    |  |  |  |  |  |  |  |
| (A)                                            | Cortisone                                                                   |  |  |  |  |  |  |  |
| 457                                            |                                                                             |  |  |  |  |  |  |  |
| <b>41.</b> Gold                                | en rice is a genetically modified crop plant                                |  |  |  |  |  |  |  |
| whe                                            | re the incorporated gene is meant for                                       |  |  |  |  |  |  |  |
| -                                              | vnthesis of :                                                               |  |  |  |  |  |  |  |
| (1)                                            | Vitamin C                                                                   |  |  |  |  |  |  |  |
| (2)                                            | Omega 3                                                                     |  |  |  |  |  |  |  |
| (B)                                            | Vitamin A                                                                   |  |  |  |  |  |  |  |
| (4)                                            | Vitamin B                                                                   |  |  |  |  |  |  |  |
| 42. Quth                                       | preeding is an important strategy of animal                                 |  |  |  |  |  |  |  |
|                                                | andry because it:                                                           |  |  |  |  |  |  |  |
| (1)                                            | is useful in producing purelines of animals.                                |  |  |  |  |  |  |  |
| (3)                                            | is useful in overcoming inbreeding                                          |  |  |  |  |  |  |  |
| (2)                                            | depression.                                                                 |  |  |  |  |  |  |  |
| (3)                                            | exposes harmful recessive genes that are eliminated by selection.           |  |  |  |  |  |  |  |
| V49                                            | helps in accumulation of superior genes.                                    |  |  |  |  |  |  |  |
| _                                              | na shawing and aminance has                                                 |  |  |  |  |  |  |  |
| -                                              | ne showing codominance has :  alleles tightly linked on the same chromosome |  |  |  |  |  |  |  |
|                                                | alleles that are recessive to each other                                    |  |  |  |  |  |  |  |
| (2)/                                           | both alleles independently expressed in the                                 |  |  |  |  |  |  |  |
| L BAY                                          | heterozygote                                                                |  |  |  |  |  |  |  |
| (4)                                            | one allele dominant on the other                                            |  |  |  |  |  |  |  |
| 44. Whi                                        | ch one of the following hormones though                                     |  |  |  |  |  |  |  |
| <u>, , , , , , , , , , , , , , , , , , ,</u>   | nesised elsewhere, is stored and released by the                            |  |  |  |  |  |  |  |
|                                                | er gland?                                                                   |  |  |  |  |  |  |  |
| (4)                                            | Luteinizing hormone                                                         |  |  |  |  |  |  |  |
| (2)                                            | Prolactin >                                                                 |  |  |  |  |  |  |  |
| (3)                                            | Melanocyte stimulating hormone 🏲                                            |  |  |  |  |  |  |  |
| (4)                                            | Antidiuretic hormone 💋                                                      |  |  |  |  |  |  |  |
| 45. Incr                                       | ease in concentration of the toxicant at                                    |  |  |  |  |  |  |  |
| succ                                           | essive trophic levels is known as:                                          |  |  |  |  |  |  |  |
| (1)                                            | Biodeterioration                                                            |  |  |  |  |  |  |  |
| (2)                                            | Biotransformation                                                           |  |  |  |  |  |  |  |
| (3)                                            | Biogeochemical cycling                                                      |  |  |  |  |  |  |  |
| (4)                                            | Biomagnification                                                            |  |  |  |  |  |  |  |
| <b>46</b> . Indu                               | strial melanism is an example of :                                          |  |  |  |  |  |  |  |
| 1 ar                                           | Natural selection                                                           |  |  |  |  |  |  |  |
| (2)                                            | Mutation                                                                    |  |  |  |  |  |  |  |
| (3)                                            | Neo Lamarckism                                                              |  |  |  |  |  |  |  |
| (4)                                            | Neo Darwinism                                                               |  |  |  |  |  |  |  |

| 5           |              |                | D                                                                                |
|-------------|--------------|----------------|----------------------------------------------------------------------------------|
|             | 47.          | perm           | orimary dentition in human differs from anent dentition in not having one of the |
| ł           |              |                | ving type of teeth :<br>Premolars                                                |
|             |              | (1)            |                                                                                  |
| Ì           | `            | J2Y (2)        | Molars                                                                           |
|             |              | (3)            | Incisors                                                                         |
|             |              | (4)            | Canine                                                                           |
|             | 48.          | shield         | wheat grain has an embryo with one large,<br>d-shaped cotyledon known as:        |
| į           |              | (1)            | Coleorrhiza                                                                      |
|             |              | ( <b>2</b> )   | Scutellum                                                                        |
|             |              | (3)            | Coleoptile                                                                       |
|             |              | (4)            | Epiblast                                                                         |
|             | 49.          | The            | body cells in cockroach discharge their                                          |
|             |              | nitrog         | genous waste in the haemolymph mainly in                                         |
|             |              | the fo         | rm of:                                                                           |
|             | L            | (H)            | Potassium urate                                                                  |
|             |              | (2)            | Urea                                                                             |
|             |              | (3)            | Calcium carbonate                                                                |
|             |              | (4)            | Ammonia                                                                          |
|             | 50.          |                | h of the following biomolecules does have a phodiester bond?                     |
|             |              | (1)            | Monosaccharides in a polysaccharide                                              |
|             |              | (2)            | Amino acids in a polypeptide                                                     |
|             |              | _(3)           | Nucleic acids in a nucleotide                                                    |
|             | , ,          | (4)            | Fatty acids in a diglyceride                                                     |
|             | <b>(51.)</b> | The to         | erm "linkage" was coined by :                                                    |
|             |              | (1)            | T. Boveri                                                                        |
| <u>.</u> [. |              | (2)            | G. Mendel                                                                        |
| ,           |              | <b>3</b>       | W. Sutton                                                                        |
|             |              | (4)            | T.H. Morgan                                                                      |
| /           | 52.)         | Whic           | h one is a wrong statement?                                                      |
| ĺ           | 7,           | مرابا <i>ب</i> | Mucor has biflagellate zoospores My.                                             |
|             |              | (2)            | Haploid endosperm is typical feature of                                          |
|             |              | (3)            | Brown algae have chlorophyll a and c, and fucoxanthin                            |
|             |              | (4)            | Archegonia are found in Bryophyta, Pteridophyta and Gymnosperms                  |
|             | 53.          | Ector          | pic pregnancies are referred to as :                                             |
|             | ~            | (I)            | Implantation of embryo at site other than uterus.                                |
|             |              | (2)            | Implantation of defective embryo in the uterus                                   |

Pregnancies terminated due to hormonal imbalance.

Pregnancies with genetic abnormality.

(3)

(4)

material from largest to smallest:

Genome, chromosome, nucleotide, gene

Genome, chromosome, gene, nucleotide

Chromosome, genome, nucleotide, gene

Chromosome, gene, genome, nucleotide

A colour blind man marries a woman with normal

sight who has no history of colour blindness in he family. What is the probability of their grandsor

In photosynthesis, the light-independent reactions

(1)

**V**(4)

being colour blind?

take place at:

Photosystem I

Photosystem II

Stromal matrix

Thylakoid lumen

(1)

(2)

(4)

58.

59.

| 60. | In which of the follow combination? | ring both pairs have correct |
|-----|-------------------------------------|------------------------------|
| 130 | Gaseous nutrient cycle              | Carbon and sulphur           |
|     | Sedimentary nutrient cycle          | Mitroger and Phosphorus      |
|     | Gaseous nutrient cycle              | Nitrogen and sulphur         |
|     | Sedimentary nutrient cycle          | Carbon and Phosphorus        |
|     | Gaseous nutrient cycle              | Sulphur and Phosphorus       |
|     | Sedimentary nutrient cycle          | Carbon and Nitrogen          |

The introduction of t-DNA into plants involves: 61.

Caseous nutrient cycle

Sedimentary nutrient cycle

(1) Altering the pH of the soil, then heat-shocking the plants

Carbon and Nitrogen

Carbon and Nitrogen

Sulphur and Phosphorus

- (2)Exposing the plants to cold for a brief period
- Allowing the plant roots to stand in water (3)
- Infection of the plant by Agrobacterium tumefaciens

The wings of a bird and the wings of an insect are: 62.

analogous structures and represent convergent evolution

(2)phylogenetic structures and represent divergent evolution

(3) homologous structures and represent convergent evolution

homologous structures and represent divergent evolution

63. Root pressure develops due to:

- (1) Low osmotic potential in soil
- (2)
- Passive absorption

(4)

64

- (2) Increase in transpiration
  - Active absorption

Human urine is usually acidic because

- excreted plasma proteins are acidic (1)
- potassium and sodium exchange generates (2)acidity

hydrogen ions are actively secreted into the filtrate.

the sodium transporter exchanges one hydrogen ion for each sodium ion, in peritubular capillaries.



Roots play insignificant role in absorption of water

82.

in:

(2)

(3)

(4)

Pistia

Wheat

Sunflower

Pea

SCO 83. Which of the following are most suitable indicators of SO<sub>2</sub> pollution in the environment? (1) Conifers (2)Algae (3)Fungi Lichens Grafted kidney may be rejected in a patient due to: 84. Cell-mediated immune response (2)Passive immune response Innate immune response (3)(4)Humoral immune response 85. Body having meshwork of cells, internal cavities lined with food filtering flagellated cells and indirect development are the characteristics of phylum: Porifera Mollusca (2)(3)Protozoa (4)Coelenterata 86. In which group of organisms the cell walls form two thin overlapping shells which fit together? (1) Euglenoids Dinoflagellates (2)(3)Slime moulds Chrysophytes 87. Choose the wrong statement: (1)Neurospora is used in the study of biochemical genetics Morels and truffles are poisonous mushrooms (3)Yeast is unicellular and useful in fermentation Penicillium is multicellular and produces (4)antibiotics 88. In human females, meiosis-II is not completed until? CU **Tertilization** 

(2)

(3)

(4)

birth

puberty

uterine implantation

| sco      | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | O*               | 14                | ,                                                           | D                                                |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|-------------------------------------------------------------|--------------------------------------------------|
| 89.      | Eutrophication of water bodies leading to killing of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 95. (            | The fo            | rmation of the oxide ion, O                                 | 2 (g), from oxygen                               |
| •        | fishes is mainly due to non-availability of:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <i>P</i> B       | \ atom            | requires first an exother<br>hermic step as shown belo      | w:                                               |
|          | (1) light                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | //               |                   |                                                             |                                                  |
|          | (2) essential minerals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (                | O(g)-             | $+ e^- \rightarrow O^-(g)$ ; $\Delta_f H^{\odot} = -$       | 141 kJ mol                                       |
| ·        | (1) light (2) essential minerals (3) oxygen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M                | O_ (8             | $)+e^{-}\rightarrow O^{2-}(g); \Delta_{f}H^{\odot}=$        | = + 780 kJ mol <sup>-1</sup>                     |
|          | (4) food                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                | 1                 |                                                             |                                                  |
| 00       | The enzyme that is not present in succusentericus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                | wiinfay           | process of formation of Courable even though O <sup>2</sup> | s isoelectronic with                             |
| 90.      | is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                   | It is due to the fact that.                                 |                                                  |
|          | (1) nucleases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n,               | ar                | electron repulsion outw                                     | eighs the stability                              |
|          | nucleosidase 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 ~              | <b>A</b> 1)       | gained by achieving nobl                                    | e gas configuration,                             |
|          | (3) lipase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | الم              | 7/2/2             | O <sup>-</sup> ion has comparative                          | ly smaller size than                             |
|          | (4) maltase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ヤシ               | KEN S             | oxygen atom.                                                | y officially office within                       |
|          | The state of the s | <i> </i>         | 9                 |                                                             | rativa                                           |
| 91       | Reaction of phenol with chloroform in presence of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 /              | 1243              | oxygen is more electrone                                    |                                                  |
|          | dilute sodium hydroxide finally introduces which one of the following functional group?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | (4)               | addition of electron in oxy                                 | gen results in larger                            |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                   | size of the ion.                                            |                                                  |
|          | (1) $-CH_2CI$<br>(2) $-COOH$<br>(3) $-CHCI_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | YOH              | •                 |                                                             |                                                  |
|          | (2) -COOH (6) + CM (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96.              | Wha               | t is the mole fraction of th                                | <u>e solute in a 1.00</u> m                      |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Paque             | ous solution?                                               | 5. 31 ( D                                        |
| ŧ        | _CHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.               | 900               | 0.177                                                       |                                                  |
| 92/      | If the equilibrium constant for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 ^              | 1.6               | 1.770                                                       | T 2/6                                            |
| <i>I</i> | $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$ is K, the equilibrium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11               |                   | 0.0054                                                      | K= BXID                                          |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14               | (3)               | 0.0354                                                      | V - BXID                                         |
|          | constant for $\frac{1}{2}$ N <sub>2</sub> (g) + $\frac{1}{2}$ O <sub>2</sub> (g) = NO(g) will be:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                | (4)               | 0.0177                                                      | F = D/MO                                         |
| •        | AT K1/2 . Y2 & 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14               | ×                 | <b>9</b>                                                    | >                                                |
|          | 1 K W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 197.             | . ) T <u>he</u> : | rate constant of the reaction                               | $A \rightarrow B \text{ is } 0.6 \times 10^{-3}$ |
|          | $(2)  \frac{1}{2}K$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IP               | mole              | per second. If the concer                                   | ntration of A is 5 M,                            |
|          | (3) K OY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [                | then              | concentration of B after 20                                 | minutes is:                                      |
|          | $(4)  K^2 \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | W                 | 1.08 M                                                      | deal de                                          |
| 93.      | 20.0 g of a magnesium carbonate sample decomposes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | <b>v20</b> )      | ى و · 3.60 M                                                | at at                                            |
| 23.      | on heating to give carbon dioxide and 8.0 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | (3)               | 2204                                                        | - U -                                            |
|          | magnesium oxide. What will be the percentage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | (3)               | 0.36 M                                                      | 6x10 x 5x20                                      |
|          | purity of magnesium carbonate in the sample?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | (4)               | 0.72 M                                                      |                                                  |
|          | (1) 75 Maco <sub>2</sub> $\longrightarrow$ Co, $\uparrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                | - ^ <b>\</b>      |                                                             | 16 12 15                                         |
|          | (2) 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 98               | . Dec             | reasing order of stability                                  | of $O_2$ , $O_2$ , $O_2^+$ and                   |
|          | (3)  60  (3)  (7)  (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                |                   | is:                                                         | (S)                                              |
|          | (4) 84 By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>י</sup> ן י | 18                | >0                                                          | G (3) 2                                          |
|          | (At. Wt.: Mg = 24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 42               | _ W               | $O_2^+ > O_2^- > O_2^- > O_2^{2-}$                          | 一分                                               |
| 94.      | The number of water molecules is maximum in:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | (2)               | 02- 0- 0 0+                                                 | 100 (m)                                          |
| 74.      | 18 molecules of water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 野                | (2)<br>• <b>1</b> | $O_2^{2-} > O_2^- > O_2 > O_2^+$                            | 203 (Jan                                         |
|          | X _ S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17               | ) (3)             | $O_2 > O_2^+ > O_2^{2-} > O_2^-$                            | V= 4.                                            |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | '                | 200               | $O_2 / O_2 / O_2 / O_2$                                     | F ~ horas                                        |
|          | (3) 18 gram of water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LX               | 104)              | $O_2^- > O_2^{2-} > O_2^+ > O_2$                            | 397. 1                                           |
|          | (4) 18 moles of water 19 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | \-7               |                                                             | 4 300                                            |
|          | BARABBE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A                | 4-A               | 10-7-12 6                                                   | K10 1/2010                                       |
|          | 1 V CHONDER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | (                 |                                                             |                                                  |

Which one of the following esters gets hydrolysed most easily under alkaline conditions?



(2) 
$$H_3CO$$
 OCOCH<sub>3</sub>

100. On heating which of the following releases CO<sub>2</sub> most easily?



101. Which one of the following pairs of solution is not an acidic buffer?

HClO<sub>4</sub> and NaClO<sub>4</sub>

- (2) CH<sub>3</sub>COOH and CH<sub>3</sub>COONa ✓
- (3)  $H_2CO_3$  and  $Na_2CO_3$   $\checkmark$

102. The sum of coordination number and oxidation number of the metal M in the complex [M(en)<sub>2</sub> (C<sub>2</sub>O<sub>4</sub>)]Cl (where en is ethylenediamine) is:

- (2) 6
- (3) 7
- (4) 8

## 103. Which of the statements given below is incorrect?

- (1)  $Cl_2O_7$  is an anhydride of perchloric acid
- (2)  $O_3$  molecule is bent
- (3) ONF is isoelectronic with  $O_2N^{-1}$
- $\mathsf{OF}_2$  is an oxide of fluorine

104. In the reaction with HCl, an alkene reacts in accordance with the Markovnikov's rule, to give a product 1-chloro-1-methylcyclohexane. The possible alkene is:

(2) 
$$CH_3$$
 (B)

(3) (A) and (B)

(4) 
$$CH_3$$
  $C C$   $C$   $C$   $C$   $C$ 

2,3 - Dimethyl-2-butene can be prepared by heating which of the following compounds with a strong acid?

(1) 
$$(CH_3)_2CH - CH - CH = CH_2$$
  
 $CH_3$ 

(2) 
$$(CH_3)_3C - CH = CH_2$$
  
(3)  $(CH_3)_2C = CH - CH_2 - CH_3$   
(4)  $(CH_3)_2CH - CH_2 - CH = CH_2$ 

106. The following reaction



is known by the name:

- (Y) Friedel-Craft's reaction
- (2) Perkin's reaction
- (3) Acetylation reaction
  Schotten-Baumen reaction

107. In the extraction of copper from its sulphide ore, the metal is finally obtained by the reduction of cuprous

oxide with:

(1) iron(II) sulphide

- (2) carbon monoxide
- √(8) copper(I) sulphide
  - (4) sulphur dioxide

| •         |                | % <                                                                                                                         | <u></u> |
|-----------|----------------|-----------------------------------------------------------------------------------------------------------------------------|---------|
| sco       | *:             | . 1                                                                                                                         | 1       |
| 108.      | If Av<br>6.022 | ogadro number $N_A$ , is changed from $\times 10^{23}$ mol <sup>-1</sup> to $6.022 \times 10^{20}$ mol <sup>-1</sup> , this |         |
|           |                | I change :                                                                                                                  |         |
|           | (1)            | the definition of mass in units of grams.                                                                                   |         |
| <b>U</b>  | (2)            | the mass of one mole of carbon.                                                                                             |         |
|           | (3)            | the ratio of chemical species to each other in a balanced equation.                                                         |         |
|           | (4)            | the ratio of elements to each other in a compound.                                                                          |         |
| 109.      | halide         | ariation of the boiling points of the hydrogen es is in the order HF > HI > HBr > HCl.                                      |         |
|           | What<br>fluori | explains the higher boiling point of hydrogen de?                                                                           | (       |
| <b>b.</b> | (1)            | The electronegativity of fluorine is much higher than for other elements in the group.                                      |         |
| f         | (2)            | There is strong hydrogen bonding between HF molecules.                                                                      |         |
|           | (3)            | The bond energy of HF molecules is greater than in other hydrogen halides.                                                  | Í       |
| _         | (4)            | The effect of nuclear shielding is much reduced in fluorine which polarises the HF molecule.                                | _       |
| 110       |                | n of the following reaction(s) can be used for reparation of alkyl halides?                                                 |         |
|           | <b>(I)</b>     | $CH_3CH_2OH + HCl \xrightarrow{\text{anh. } ZnCl_2}$                                                                        |         |
|           | (H)            | CH <sub>3</sub> CH <sub>2</sub> OH+HCl                                                                                      |         |
|           | (III)          | (CH <sub>3</sub> ) <sub>3</sub> COH+HCl                                                                                     |         |
|           | (IV)           | (CH <sub>3</sub> ) <sub>2</sub> CHOH+HCl anh. ZnCl <sub>2</sub>                                                             |         |
|           | W              | (I), (III) and (IV) only                                                                                                    |         |
|           | KAP            | (I), (III) and (IV) only (I) and (II) only (IV) only                                                                        | /       |
|           | (3)            | $(IV)$ only $P^{\sim 3}$                                                                                                    |         |
|           | (4)            | (III) and (IV) only                                                                                                         |         |
| 111.      | Then           | ame of complex ion, $[Fe(CN)_6]^{3-}$ is:                                                                                   |         |
|           | VUP            | Hexacyanoiron (III) ion                                                                                                     |         |
|           | <b>P</b>       | Hexacyanitoferrate (III) ion                                                                                                |         |
|           | P              | Tricyanoferrate (III) ion                                                                                                   |         |
| ~ \       | (4)/           | Hexacyanidoferrate (III) ion                                                                                                |         |
| 112       | Assu           | ming complete ionization, same moles of of the following compounds will require the                                         |         |
| •         | least          | amount of acidified KMnO <sub>4</sub> for complete                                                                          |         |

oxidation?

(1)

(2) (3) FeSO<sub>4</sub>

FeSO<sub>3</sub>

FeC<sub>2</sub>O<sub>4</sub> Fe(NO<sub>2</sub>)<sub>2</sub> 1x5 = 1xx



| 119.                 | A gas such as carbon monoxide would be most likely to obey the ideal gas law at:        | 126.    | Which is the correct order of increasing energy of the listed orbitals in the atom of titanium?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------|-----------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      |                                                                                         | ļ       | (At. no. $Z = 22$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| İ                    | high temperatures and low pressures.                                                    | 1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                      | (2) low temperatures and high pressures.                                                |         | (1) 3s 4s 3p 3d (2) (3) 4s 3s 3r 3d (2) (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                      | (3) high temperatures and high pressures.                                               |         | (2) 4s 3s 3p 3d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                      | (4) low temperatures and low pressures.                                                 | ,       | (3) 3s 3p 3d 4s<br>(4) 3s 3p 4s 3d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 120.                 | The stability of +1 oxidation state among Al, Ga, In                                    | 127.    | In an S <sub>N</sub> 1 reaction on chipper centres, there is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      | and TI increases in the sequence :                                                      |         | (1) 100% racemization 15 7 P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | (1) Ga < In < Al < Tl B A   Ca I                                                        |         | ``                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| •                    | Al < Ga < In < Tl                                                                       |         | (2) inversion more than retention leading to partial racemization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | (3) T1 < In < Ga < A1                                                                   |         | (3) 100% retention C -C -C-W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | (4) 	 ln < Tl < Ga < Al                                                                 | `       | (4) 100% inversion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 121.                 |                                                                                         | 128.    | The vacant space in bcc lattice unit cell is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      | volumes of 0.1 M NaOH and 0.01 M HCl are                                                | 11 /    | // //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                      | mixed 2  12.65  0.1XV+ 0.01XV =                                                         | 2VX1    | J(1) 26% 0.45 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| \                    | 12.65                                                                                   |         | (2) 46% 04 X10<br>(3) 23% 5 X 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                      | (2) $(2)$ $(3)$ $(4)$ $(2)$ $(4)$ $(5)$ $(4)$ $(5)$ $(5)$ $(5)$ $(6)$ $(7)$ $(7)$ $(7)$ |         | 32% ESX 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                      | 13) /.0                                                                                 | 11-     | 0(1) //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      | (4) 1.04 Q TO                                                                           | 129.    | The heat of combustion of carbon to CO2 is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 122                  | Stropg reducing behaviour of H <sub>3</sub> PO <sub>2</sub> is due to:                  |         | - 393.5 kJ/mol. The heat released upon formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                      | Presence of one – OH group and two P – H                                                | g-log   | of 35,2 g of CO <sub>2</sub> from carbon and oxygen gas is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                      | bonds                                                                                   | 1- JUJ- | (a) -315 kJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6                    | High electron gain enthalpy of phosphorus                                               | ٠       | (3) $-630 \text{ kJ}$ $\sqrt{3} \text{ a} = 4 \text{ Y}$ $$ |
| •                    | High oxidation state of phosphorus                                                      |         | (3) -630 kJ 2 X47 Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      | (4) Presence of two – OH groups and one P – H                                           |         | (4) $-3.15 \mathrm{kJ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      | bond                                                                                    | 130.    | Aqueous solution of which of the following                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                      | · · · · · · · · · · · · · · · · · · ·                                                   |         | compounds is the best conductor of electric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 123.                 |                                                                                         |         | current?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                      | molecular formula C <sub>3</sub> H <sub>9</sub> N is:                                   |         | (1) Acetic acid, $C_2H_4O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 2                  | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -                                                 |         | (2) Hydrochloric acid, HCl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C3/4/                |                                                                                         |         | (3) Ammonia, NH <sub>3</sub> (4) Fructose, C. HapO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| To You               | 1 50 2 1 SI-C-C                                                                         | †       | (4) Fructose, $C_6H_{12}O_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| × 6                  | (A) 13 C-12                                                                             | 131.    | The oxidation of benzene by V <sub>2</sub> O <sub>5</sub> in the presence of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ٦ . <sub>124</sub> . | Which of the following statements is not correct for                                    |         | air produces:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| × 5 4                | a nucleophile 2.                                                                        | C       | (1) benzoic anhydride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 16                   | Nucleophile is a Lewis acid                                                             | ١       | (2) maleic anhydride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2                    | Ammonia is a nucleophile Ning                                                           |         | (3) benzoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (2)                  | (3) Nucleophiles attack low e - density sites                                           | 1       | (4) benzaldehyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| //                   | (4) Nucleophiles are not electron seeking                                               | 132.    | Reaction of a carbonyl compound with one of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| /                    |                                                                                         | 10      | following reagents involves nucleophilic addition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 125.                 | Number of possible isomers for the complex                                              | 1       | followed by elimination of water. The reagent is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | [Co(en) <sub>2</sub> Cl <sub>2</sub> ] Cl will be: (en = ethylenediamine)               | 1       | a Grignard reagent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                      | (1) 2 SURPLY 3:14                                                                       | ١,      | (2) hydrazine in presence of feebly acidic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                      | (2) $(1)$ $(2)$ $(3)$ $(4)$ $(4)$ $(4)$ $(4)$                                           | \       | solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                      | 3 3 +5 -242                                                                             |         | (3) hydrocyanic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                      | (4) 4 XXX 2/180                                                                         |         | (4) sodium hydrogen sulphite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | 811.00                                                                                  | ,<br>'  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                      | 3172                                                                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                      | 139                                                                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                      |                                                                                         |         | e e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      |                                                                                         |         | ·<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                      |                                                                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

133. Method by which Aniline cannot be prepared is:

hydrolysis of phenylisocyanide with acidic solution.

- (2) degradation of benzamide with bromine in alkaline solution.
- (3) reduction of nitrobenzene with H<sub>2</sub>/Pd in ethanol.
- (4) poinssium salt of phthalimide treated with chlorobenzene followed by hydrolysis with aqueous NaOH solution.

134. Two possible stereo-structures of CH<sub>3</sub>CHOH.COOH, which are optically active, are called:

- (1) Diastereomers
- (2) Atropisomers
- (2) Enantiomers
- (4) Mesomers

d=M

135 The correct statement regarding defects in crystalline solids is:

- (1) Schottky defects have no effect on the density of crystalline solids.
- (2) Frenkel defects decrease the density of crystalline solids.
- Frenkel defect is a dislocation defect.
- (4) Frenkel defect is found in halides of alkaline metals.

The position vector of a particle R as a function of time is given by:

 $R = 4 \sin(2\pi t) \hat{i} + 4 \cos(2\pi t) \hat{j}$ Where R is in meters t is in secon

Where R is in meters, t is in seconds and  $\hat{i}$  and  $\hat{j}$  denote unit vectors along x-and y-directions, respectively. Which one of the following statements is wrong for the motion of particle?

- (1) Magnitude of acceleration vector is  $\frac{v}{R}$ , where v is the velocity of particle.
- (2) Magnitude of the velocity of particle is 8 meter/second
- Path of the particle is a circle of radius 4 meter.
  - (4) Acceleration vector is along  $-\overrightarrow{R}$ .

The energy of the em waves is of the order of 15 keV.
To which part of the spectrum does it belong?

- (1) Infra red rays
- (2) Ultraviolet rays
- (3) γ-rays
- (4) X rays

R= 16+16 8

= 4/2 ) = 1841 00

A beam of light consisting of red, green and blue colours is incident on a right angled prism. The refractive index of the material of the prism for the above red, green and blue wavelengths are 1.39, 1.44 and 1.47, respectively.



The prism will:

139.

140

- (1) separate all the three colours from one another
- (2) not separate the three colours at all
- (3) separate the red colour part from the green and blue colours

separate the blue colour part from the red and green colours

Two particles A and B, move with constant velocities  $\overrightarrow{v_1}$  and  $\overrightarrow{v_2}$ . At the initial moment their position vectors are  $\overrightarrow{r_1}$  and  $\overrightarrow{r_2}$  respectively. The condition for particles A and B for their collision is:

 $(1) \quad \overrightarrow{r_1} \cdot \overrightarrow{v_1} = \overrightarrow{r_2} \cdot \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_2} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_2} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_2} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_2} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_2} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_2} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_2} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_2} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_2} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_2} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_2} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_2} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_2} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_2} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_2} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_2} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_2} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_2} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_2} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_2} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_2} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_2} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_2} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_2} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_2} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_2} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_2} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_2} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_2} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_2} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_2} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_2} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_2} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_2} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_2} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_2} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_2} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_2} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_2} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_2} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_2} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_2} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_2} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_1} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_1} \times \overrightarrow{v_2} \qquad (1) \quad \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_1} \times \overrightarrow{v_1} = \overrightarrow{r_1} \times \overrightarrow{v_1}$ 

(3)  $\vec{r}_1 - \vec{r}_2 = \vec{v}_1 - \vec{v}_2$   $m \checkmark x \checkmark = m \checkmark \checkmark \checkmark$ 

 $(4) \qquad \frac{\overrightarrow{r_1} - \overrightarrow{r_2}}{\begin{vmatrix} \overrightarrow{r_1} - \overrightarrow{r_2} \end{vmatrix}} = \frac{\overrightarrow{v_2} - \overrightarrow{v_1}}{\begin{vmatrix} \overrightarrow{v_2} - \overrightarrow{v_1} \end{vmatrix}}$ 

At the first minimum adjacent to the central maximum of a single-slit diffraction pattern, the phase difference between the Huygen's wavelet from the edge of the slit and the wavelet from the midpoint of the slit is:

(1)  $\frac{\pi}{2}$  radian

(2) π radian

 $\pi$  (3)  $\pi$  radian

 $\frac{(3)}{8}$  radian

 $\frac{\pi}{4}$  radian



Test Booklet Code

## SCO

No.:

This Booklet contains 20 pages.

1238388

Do not open this Test Booklet until you are asked to do so.

## Important Instructions:

- 1. The Answer Sheet is inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars on side-1 and side-2 carefully with blue/black ball point pen only.
- 2. The test is of **3 hours** duration and Test Booklet contains **180** questions. Each question carries **4** marks. For each correct response, the candidate will get **4** marks. For each incorrect response, one mark will be deducted from the total scores. The maximum marks are **720**..
- 3. Use Blue/Black Ball Point Pen only for writing particulars on this page/marking responses.
- 4. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- 5. On completion of the test, the candidate must handover the Answer Sheet to the invigilator before leaving the Room/Hall. The candidates are allowed to take away this Test Booklet with them.
- 6. The CODE for this Booklet is **D**. Make sure that the CODE printed on **Side-2** of the Answer Sheet is the same as that on this Booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet.
- 7. The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your roll no. anywhere else except in the specified space in the Test Booklet/Answer Sheet.
- 8. Use of white fluid for correction is **NOT** permissible on the Answer Sheet.
- 9. Each candidate must show on demand his/her Admission Card to the Invigilator.
- 10. No candidate, without special permission of the Superintendent or Invigilator, would leave his/her seat.
- 11. The candidates should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and sign the Attendance Sheet twice. Cases where a candidate has not signed the Attendance Sheet second time will be deemed not to have handed over Answer Sheet and dealt with as an unfair means case.
- 12. Use of Electronic/Manual Calculator is prohibited.
- 13. The candidates are governed by all Rules and Regulations of the Board with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of the Board.
- 14. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- 15. The candidates will write the Correct Test Booklet Code as given in the Test Booklet/Answer Sheet in the Attendance Sheet.

| Name of the Candid    | ate (in Capitals) : <u>ANAM</u>    | IKA WI    | IPTA   |           | · · · · · · · · · · · · · · · · · · · |        | J         |
|-----------------------|------------------------------------|-----------|--------|-----------|---------------------------------------|--------|-----------|
|                       | in figures 54300748                |           |        |           |                                       |        | •         |
| :                     | in words tive CYOYE                | forty the | u lakh | Beven     | hundr                                 | ed and | Postueigh |
|                       | on (in Capitals) : <u>KHWA 1</u> 4 |           |        | ALVID     |                                       | AJMER  | J         |
| Candidate's Signatur  | re: dnamile                        |           |        | nature :a |                                       | Bansal |           |
| Fascimile signature s | tamp of                            |           |        | -v        |                                       | 25     | 7         |
| Centre Superintender  | ntSurg                             |           |        |           |                                       | •      |           |
|                       |                                    | >         |        |           |                                       |        |           |
|                       | <b>J</b>                           |           |        |           |                                       |        |           |





163. A force  $\vec{F} = \alpha \hat{i} + 3 \hat{j} + 6 \hat{k}$  is acting at a point  $\vec{r} = 2\hat{i} - 6\hat{j} - 12\hat{k}$ . The value of  $\alpha$  for which angular momentum about origin is conserved is:

(2)zero

2

(1)

164. A potentiometer wire of length L and a resistance r Pare connected in series with a battery of e.m.f. E and a resistance r<sub>1</sub>. An unknown e.m.f. E is balanced at a length l of the potentiometer wire. The e.m.f. E will be given by:

(2)

4.0 g of a gas occupies 22.4 litres at NTP. The specific heat capacity of the gas at constant volume is 5.0 JK<sup>-1</sup> mol<sup>-1</sup>. If the speed of sound in this gas at NTP is 952 ms -1, then the heat capacity at constant pressure is

(Take gas constant  $R = 8.3 \text{ JK}^{-1} \text{ mol}^{-1}$ )

- $7.5 \, \text{JK}^{-1} \, \text{mol}^{-1}$
- 7.0 JK<sup>-1</sup> mol<sup>-1</sup>
- 8.5 JK 1 mol 1
- $8.0 \, \text{JK}^{-1} \, \text{mol}^{-1}$



Two stones of masses m and 2 m are whirled in

horizontal circles, the heavier one in a radius and the lighter one in radius r. The tangential speed of lighter stone is n times that of the value of heavier stone when they experience same centripetal forces, W The value of n is:

- (1)
- (2)

167.

A remote - sensing satellite of earth revolves in a circular orbit at a height of 0.25 × 106 m above the surface of earth. If earth's radius is 6.38 × 106 m and  $g = 9.8 \text{ ms}^{-2}$ , then the orbital speed of the satellite is:

- (1)  $8.56 \, km \, s^{-1}$
- 9.13 km s<sup>-1</sup>
- 6.67 km s<sup>-1</sup>

 $7.76 \, \text{km s}^{-1}$ 





If dimensions of critical velocity  $v_{
m c}$  of a liquid flowing through a tube are expressed as [nx py ra], where η, ρ and r are the coefficient of viscosity of liquid, density of liquid and radius of the tube respectively, then the values of x, y and z are given



-1, -1, -1





A photoelectric surface is illuminated successively

by monochromatic light of wavelength  $\lambda$  and  $\frac{\lambda}{2}$ . If the maximum kinetic energy of the emitted photoelectrons in the second case is 3 times that in the first case, the work function of the surface of the material is:

(h = Planck's constant, c = speed of light)

(1) 
$$\frac{hc}{\lambda}$$

(2) 
$$\frac{2 \text{ hc}}{\lambda}$$

(3) 
$$\frac{hc}{3 \lambda}$$

$$(4) \frac{\text{lic}}{2 \lambda}$$

The cylindrical tube of a spray pump has radius R, one end of which has n fine holes, each of radius r. If the speed of the liquid in the tube is V, the speed of the ejection of the liquid through the holes is:







(4)

(3)



19

179. If vectors  $\vec{A} = \cos \omega t \hat{i} + \sin \omega t \hat{j}$  and

> $\overrightarrow{B} = \cos \frac{\omega t}{2} \hat{i} + \sin \frac{\omega t}{2} \hat{j}$  are functions of time, then the value of t at which they are orthogonal to each other is:

(1) 
$$t = \frac{\pi}{2 \omega}$$

(2)

(3) 
$$t = 0$$

$$(4) t = \frac{\pi}{4 a}$$

180. A rectangular coil of length 0.12 m and width 0.1 m having 50 turns of wire is suspended vertically in a uniform magnetic field of strength 0.2 Weber/m<sup>2</sup>. The coil carries a current of 2 A. If the plane of the coil is inclined at an angle of 30° with the direction of the field, the torque required to keep the coil in stable equilibrium will be:

> (1)0.20 Nm

> 0.24 Nm

$$h=50$$
 $A = 12 \times 15^{3}$ 
 $B = 0-2$ 
 $C = 2$ 
 $C = 30$ 

$$76 = MB8in30^{3}$$

$$= 56 \times 2 \times 12 \times 10^{3} \times 0.2 \times 1$$

$$120 \times 10^{3}$$

