

JIPMER MBBS ENTRANCE TEST 2018

EXAMINATION PAPER

(BASED ON MEMORY RETENTION)

Date : 03-06-2018 (Sunday) | Time : 03.00 pm - 05.30 pm | Evening Session

NOTE:-

- 1. Questions are collected from the appeared students.
- 2. The solutions are prepared by the expert faculty team of Resonance Pre-Medical division, Kota.
- 3. Questions may not be in the order or sequence as asked in the actual examination paper.
- 4. The questions collected may not have all the options similar to the actual paper. Students are advised to see the question and answer / solutions.
- **5.** Actual JIPMER Paper has 200 questions but we have included only those many questions which have been collected from the students as per following table :-

Subject	No. of Question in Actual JIPMER Paper	No. of Question in this Paper
Chemistry	60	37
Physics	60	40
Biology	60	21
English & Comprehension + Logical & Quantitative Reasoning	20	00
Total	200	98

Pre-Medical Division Campus:

PART - A (CHEMISTRY)

1.	If osmotic pressure of 5% (w/v) solution of sucrose is same as 3%(w/v) solution of 'X' find molecul mass of X.				
	(1) 570	(2) 205.2	(3) 342	(4) None	
Ans.	(2)				
Sol.	$i_1c_1 = i_2c_2$				
	$\frac{5 \times 1000}{342 \times 100} = \frac{3}{M} \times \frac{1000}{100}$				
	$M = \frac{3}{5} \times 342 = 205.2$				
2.	Which of following is zw	vitter ion			
	(1) Glycinehydrochlorid	e	(2) Nylon 6,6		
	(3) Alanine		(4) None		
Ans.	(3)				
Sol.	Alanine				
	CH ₃ —CH—COOH —	\rightarrow CH ₃ —CH—COO			
	NH ₂	NH ₃			
		Zwitter Ion			
_					
3.	Find pH of 0.1 M NaOH	I solution	(0) (0)	(4) 47	
۸ne	(1) 1	(2) 2	(3) 13	(4) 17	
Sol.	(3) 0.1 M NaOH give 0.1 M	I OH⁻			
•••	pOH = 1 pH = 13	3			
4.	Find out products of hy-	drolysis of NaCI solution	on cathode and anode		
	(1) H ₂ , Cl ₂	(2) Cl ₂ , H ₂	(3) Na, Cl ₂	(4) Na, O ₂	
Ans.	(1)				
Sol.	$C: H_2O \longrightarrow H_2 + 2OH$	7			
	$A: 2CI^{-} \longrightarrow CI_2 + 2e^{-}$				
5	Which pair can not act	as buffer			
J.	(1) $CH_2COOH + CH_2COOH$	DONa	(2) Borax + H ₂ BO ₂		
	(3) HCI + NH₄OH		(4) NH₄CI + HCI		
Ans.	(4)				
Sol.	NH₄CI and HCI can not	behave as buffer			
6.	Which of the following is	s correct displacement re	eaction		
	(1) AgNO ₃ + Cu \rightarrow C	$u(NO_3)_2 + Ag$	(2) $Pb(NO_3)_2 + Cu \longrightarrow$	$Cu(NO_3)_2 + Pb$	
A ma	(3) $H_2 + 2nCl_2 \longrightarrow Zn$	+ 2HCI	$(4) \operatorname{Cu} + 2\operatorname{HCl} \longrightarrow \operatorname{Cu}($	₂ + H ₂	
Ans.	() According to $FCS \Delta a^{+}$	can displace by Cu			
501.		our displace by Ou			

7.	$XeF_6 + xH_2O \longrightarrow prode$	ucts find x				
	(1) 2	(2) 3	(3) 4	(4) 6		
Ans.	(2)					
Sol.	$XeF_6 + 3H_2O \longrightarrow XeO_3$	₃+6HF				
8.	What is bond dissociate	energy of HCI, ∆H _f (HCI)) = –93, B.E. (H ₂) = 434,	B.E. (Cl ₂) = 242 (in KJ/mol)		
	(1) 532 KJ/mol	(2) 431 KJ/mol	(3) 332 KJ/mol	(4) 232 KJ/mol		
Ans.	(2)					
Sol.	$\frac{1}{2}H_2 + \frac{1}{2}CI_2 \longrightarrow HCI$	$\Delta H_{\rm f}$				
	$\Delta H_{\rm f} = {\sf B}.{\sf E}.{\sf H}_2 \times \frac{1}{2} + {\sf B}.{\sf E}$	$E.Cl_2 \times \frac{1}{2}$ -B.E. HCl				
9.	If activation energy of a at 300 K	reaction is zero and val	lue of rate constant at 28	30 K is 1.6×10^5 . Find its value		
	(1) 1.6 × 10 ⁵	(2) 3.2 × 10 ⁵	(3) 0.8 × 10 ⁵	(4) can not determine		
Ans.	(1)					
Sol.	If $E_a = 0$ then K is const	ant				
10.	Which of the following is	s invert sugar	rosa	(1) Starch		
Ans	(3)	(0) 840	1000			
Sol.	Sucrose is a disaccharie	de made by glucose and	Fructose.			
11.	Find relation b/w CH_2 -OH and CH_3					
	(1) Functional Isomer	(2) Tautomers	(3) Chain Isomer	(4) Metamers		
Ans.	(1)					
	This i	s a alcohol				
Sol.						
	OH This	is a enol				
	✓ ►CH ₃					
	Both have different cher	mical properties.				
12.	Which is suitable reage	nt for wurtz reaction :				
_	(1) Na/ether	(2) Na/alcohol	(3) Zn/ether	(4) Zn/alcohol		
Ans.	(1)					
Sol.	$R \xrightarrow{Na} R \xrightarrow{R} R$	(Wurtz reaction)				
13.	Which of the following p	pair behaves strong and	weak base hydride NH ₃ ,	PH ₃ , AsH ₃ , SbH ₃ , BiH ₃		
	(1) NH ₃ , PH ₃	(2) NH ₃ , BiH ₃	(3) PH ₃ , BiH ₃	(4) BiH ₃ , AsH ₃		
Ans.	(2)					
Sol.	Basic nature : $NH_3 > PH$	$H_3 > AsH_3 > SbH_3 > BiH_3$				

14.	4. In an adiabatic expansion of gas from 1 atm, 300 K to 8 atm & "T" K. Find T if (γ :			
	(1) 350 K	(2) 150 K	(3) 600 K	(4) 400 K
Ans.	(3)			
Sol.	$P_1^{1-y}T_1^y = P_2^{1-y}T_2^y$			
	$\left(\frac{1}{8}\right)^{1-\frac{3}{2}} = \left(\frac{T_2}{300}\right)^{3/2}$			
	$\left(\frac{1}{8}\right)^{\frac{1}{2}\times\frac{2}{3}} = \frac{T_2}{300}$			
	2 × 300 = T ₂ 600 K			
15.	Which of the following	becomes paramagnetic o	on heating	
	(1) MnO	(2) Fe ₃ O ₄	(3) ZnFe ₂ O ₄	(4) (2) & (3) both
Ans.	(4)			
Sol.	Ferrimagnetic change t eg. Fe ₃ O ₄ , ZnFe ₂ O ₄ , M	their nature on heating an gFe ₂ O ₄	nd become magnetic	
16.	Assertion : Catalyst in Reason : Catalyst dec (1) If both assertion and (2) If both assertion and (3) If assertion is true b (4) If both assertion and	crease rate of reaction warease E_a but photosensiting the reason are true and read reason are true but read the reason is false.	while photosensitizer initia izer act as energy carrier ason is the correct explar son is not the correct exp	ate a reaction. Nation of assertion. Internation of assertion.
Ans Sol.	(1) Both are correct and re	eason explain the assertion	on	
17.	Which is refining proce	ss for copper		
	(1) Bessimerization	(2) Polling	(3) Roasting	(4) Smelting
Ans.	(2)			
Sol.	Bessimerization \rightarrow Sel Polling \rightarrow refining proc	f reduction in copper ess		
18.	What is the formula of	Marshalls acid		
	(1) $H_2S_2O_8$	(2) H ₂ SO ₄	(3) $H_2S_2O_6$	(2) H_2SO_5
Ans.	(1)			
Sol.	It is actually $H_2S_2O_8$			
19.	What is the structure of	f Thiosulphuric acid		
				(4) None
_	HP. Q OH	S″ `O–O–H	HU' Š OH	
Ans.	(3)			

20.	Which of the following is diamagnetic O_2 , S_2 , N_2 , C_2					
	(1) O ₂ , N ₂	(2) O ₂ , S ₂	(3) N ₂ , C ₂	(4) S ₂ , C ₂		
Ans.	(3)					
Sol.	O_2 and S_2 are paramagnetic according to MOT					
21.	Thiosulphuric acid is					
	(1) $H_2S_2O_3$	(2) H ₂ SO ₄	(3) H ₂ S ₂ O ₇	(4) H_2SO_5		
Ans.	(1)					
Sol.	Thiosulphuric acid : H ₂ S	S ₂ O ₃				
22.	A 5 % solution of sucro	se is isotonic with 3% so	lution of a solute find mo	lecular weight of that solute?		
	(1) 54 g	(2) 108 g	(3) 216 g	(4) 65 g		
Ans.	(2)					
Sol.	5% Glucose solution is	isotonic with 3% of unkn	own solute			
	\therefore conc. of glucose = co	onc. of solute				
	$\frac{5}{180} = \frac{3}{M}$					
	$M = \frac{3 \times 180}{5} \ 108 \ g$					
າາ	What is Marshall's asid	2				
23.		()) C O	(2) 11 80			
A := a	(1) $\Pi_2 S_2 O_3$	(2) $\Pi_2 S_2 O_7$	(3) ⊓ ₂ 30 ₄	(4) $H_2S_2O_8$		
Ans.	(4) Marshall a sid is 11.0.0					
501.	Marshall acid is H ₂ O ₂ O	8				
24	Which of the following i	a most poromognatio	\cdot $\sqrt{3^{+}} = c^{2+} \sqrt{4^{+}}$	r :2+		
24.	$\sqrt{1}$	$(2) \ \nabla^{2+}$. V, FE, V,	$(4) = \pm 2^{2+}$		
A := a	(1) v	(Z) Fe	(3) V	(4) 11		
Ans.	(Z)					
501.	Valence configuration V^{3+} , $2d^2$ as of uppoints					
	$\nabla = 30$ no or unpaired	1e = 2				
	Fe : 3d no of unpaire	ea = 4				
	v : 3d no of unpaired					
		de = 2				
	∴ Fe ² ' has maximum u	inpaired electrons				
25.	Element A & B have ele	ectronegativeties 3 & 1.2	respectively? Bond b/w	them ?		
	(1) Purely covalent	(2)Purely ionic	(3) Polar covalent	(4) None of these		
Ans.	(3)					
Sol.	$\Delta EN = 3.0 - 1.2 = 1.8;$	Bond will polar covalent	bond			
26.	Which of the following a	are isomer :				
	(1) Acetone & Propano	l	(2) Acetone & Propano	ic acid		
	(3) Acetone & Propana	l	(4) Acetone & Cyclopro	panone		
Ans.	(1)					
Sol.	Acetone & Propanal have same molecular formula and different functional group.					

	$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$			
	$\frac{1 \times 24.6}{300} = \frac{10 \times V}{646}$			
	V = 5.2 L			
32.	Arrange order wi	th respect to oxidation no. : S	SO ₄ ²⁻ , S ₂ O ₄ ²⁻	
	(1) $SO_4^{2-} < S_2O_4^2$	(2) $S_2O_4^{2-} = SO_4^{2-}$	(3) $SO_4^{2-} > S_2O_4^{2-}$	(4) None of these
Ans.	(3)			
Sol.	Oxidation numbe	er os S in		
	SO ₄ ^{2–} is =6			
	S ₂ O ₄ ²⁻ is +3			
	$SO_4^{2-} > S_2O_4^{2-}$ in	creasing order		
33.	Which can give s	strongest conjugate base		
	(i) HClO	(ii) HCN	(iii) HNO ₂	
	(1) HOCI	(2) HCN	(3) HNO ₂	(4) HNO ₃
Ans.	(2)	aaid hanaa ita aaniwaata haa	o CN⊏ io otrongoot	
501.	TICINIS WEakest	aciu, fience its conjugate bac	e chi is stiongest	
34.	Solution with sim	ilar osmotic pressure are call	ed ?	
	(i) Isotonic	(ii) Azestrops	(iii) Hypotonic	
	(1) Isotonic	(2) Azeotrope	(3) Hyptotonic	(4) Hypertonic
Ans.	(1) Calutian with any		- directoria	
501.	Solution with san	ne osmotic pressures are call	ed isotonic	
35.	Which of followin	ig can act as both oxidizing ar	nd reducing agent	
	(i) SO ₂ ((ii) HNO_3 (iii) H	NO ₂	
	(1) SO ₂ , HNO ₂	(2) HNO ₃ , HNO ₂	(3) HNO ₂ , HClO ₄	(4) HClO ₄ , SO ₂
Ans.	(1)			
Sol.	Oxidation numbe	er of		
	(i) S in $SO_2 = +4$			
	(ii) N in HNO ₃ = 5	5 (max. value)		
	(III) N IN HNO ₂ = SO_{12} and HNO c	+3 on act as oxidizing and roduc	ing agonts	
	50_2 and 1100_2 C	an act as onuizing and reduc	ayents	

CG Tower -2, IA-51 (A)], IPIA, Behind City Mall, Jhalawar Road, Kota (Raj.)-05 | Contact: 08505099972, 08505099973 To know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in | Toll Free: 1800 258 5555

36. 300 gm of 25% w/w solution of solute A is mixed with 400 gm of 40%(w/w) solution of another solute B. What is the w/w percentage of new mixture.

- (1) 10.71 % in A (2) 35% in B (3) 25 % in A (4) 40 % in B Ans. (1) Sol. A: 300 g of 25% w/w B: 400 g of 40% w/w w/w % of A = $\frac{25\% \text{ of } 300}{300 + 400} = \frac{75}{700} \times 100 = 10.71\%$ w/w % of B = $\frac{40\% \text{ of } 400}{300 + 400} \times 100 = 22.85\%$
- 37. The potential difference b/w the fixed layer and the diffused layer of opposite charges in a collidol solution is called.

(1) Zeta potential (2) Avalanche voltage (3) Retarding potential (4) None of these (1)

- Ans.
- Sol. Electrokinetic potential /Zeta potential

Pre-Medical Division Campus:

PART - B (PHYSICS)

38. A current i is flowing through the wire of diameter d having drift velocity of electrons v_d in it. What will be new drift velocity when diameter of wire is made d/4?

(1) 4 V_d (2)
$$\frac{V_d}{4}$$
 (3) 16 V_d (4) $\frac{V_d}{16}$
Ans. (3)
Sol. I = nAeV_d
Now 1 is constant
 $V_d \propto \frac{1}{A}$
If diameter of wire is $\frac{d}{4}$ than area is $\frac{1}{16}$ times so V_d new drift velocity = 16 V_d
39. How much intense is 80 dB sound in comparison to 40 dB?
(1) 10⁴ (2) 10² (3) 2 (4) $\frac{1}{2}$
Ans. (1)
Sol. B₁ = 10 log₁₀ $\left(\frac{I_1}{I_0}\right)$ and B₂ = 10 log₁₀ $\left(\frac{I_2}{I_0}\right)$
 $80 = 10 \log_{10} \left(\frac{I_1}{I_0}\right) \Rightarrow 40 = 10 \log_{10} \left(\frac{I_2}{I_0}\right)$
 $10^8 = \left(\frac{I_1}{I_0}\right) \Rightarrow 10^4 = \frac{I_2}{I_0}$ so $\frac{I_1}{I_2} = \frac{10^8}{10^4} = 10^4$
40. Due to γ decay, what is the effect on neutron and proton numbers?
(1) Both remains constant
(2) Proton number increases and neutron increases
(3) Proton number decreases and neutron increases
(4) None of these
Ans. (1)
Sol. due to γ -decay there will be no effect on neutron and proton numbers.
41. Find I
 $I_1 = \frac{30\Omega}{V_1}$
 $I_2 = \frac{10}{10} \text{ Map}$ (2) 0.2 Amp (3) 0.3 Amp (4) 0.4 Amp
Ans. (1)
Sol. I = $\frac{V}{R_{eq}} = \frac{2}{20} = \frac{1}{10} \text{ Amp} = 0.1 \text{ Amp}$

- **42.** Which of the following is incorrect
 - (1) n-p-n trasistor works as a diode
 - (2) The resistance of semiconductors decrease with \uparrow increase in temperature.
 - (3) A p-type semiconductor is formed by dopping with trivalent impurities.
 - (4) major charge carriers in a n-type semiconductor are holes

Ans. (4)

Sol. Major charge carriers in n-type semiconductor are electrons not holes.

CG Tower -2, [A-51 (A)], IPIA, Behind City Mall, Jhalawar Road, Kota (Raj.)-05 | Contact: 08505099972, 08505099973 To know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in | Toll Free: 1800 258 5555

43. Ans.	Pure silicon is (1) conductor (3)	(2) insulator	(3) semiconductors	(4) None of these	
301.	Pure silicon is semicond	JUCIOI			
44.	A force of 10 N acts or	n a body of mass 0.5 kg	for 0.25 sec starting fro	om rest. What is its momentum	
Ans.	(1) 2.5 N/sec (1)	(2) 0.25 N/sec	(3) 0.5 N/sec	(4) 0.75 N/sec	
501.	$Ft = mV_2 - mV_1 \Rightarrow$	$10 \times 0.25 = P_f - P_i, P_f =$	= 2.5		
45. Ans.	Which of the following is (1) Gama decay (2)	s fusion? (2) $_{1}^{2}H + _{1}^{2}H \longrightarrow _{2}^{4}He$	(3) Uranium decay	(4) None of these	
Sol.	$^{2}_{1}H + ^{2}_{1}H \rightarrow ^{4}_{2}He$ is fusion	n process			
46.	A ball of 0.5 kg collided The contact remained for	d with wall at 30° and bo or 1 sec. What is the forc	bunced back elastically. e applied by wall on ball	The speed of ball was 12 m/s.	
Δns	(1) 12√3N (2)	(2) 6√3N	(3) 3√3N	(4) √3N	
Sol.	$F = \frac{\Delta P}{\Delta t}$				
	$F = \frac{2mV\cos\theta}{\Delta t}$ $F = \frac{2 \times 0.5 \times 12 \times \sqrt{3}}{2 \times 1}$ $F = 6\sqrt{3} \text{ Newton}$				
47.	A electron with kinetic e and comes out with kinet (1) $K_1 > K_2 > K$	energy k enters a region etic energy k_1 and k_2 resp (2) $K_1 = K_2 > K$	(i) uniform magnetic field bectively. What is relation (3) $K_1 = K_2 = K$	d (ii) non-uniform magnetic field between k_1 , k_2 and k ? (4) $K_1 < K_2 < K$	
Sol.	(3) Any type of magnetic filed can not change kinetic energy of charged particle. So $K_1 = K_2 = K$				
48.	A e ⁻ when accelerated will the force experience	by V volts experiences a ed when it is accelerated	a force F when it enters by 2V volts.	a uniform magnetic field. What	
	(1) F	(2) 2F	(3) $\frac{F}{2}$	(4) √2 F	
Ans.	(4)				
Sol.	$\frac{1}{2}$ mv ² = qV so velocity	$V \propto \sqrt{V}$			
	and force $F = qvB$ so $F \propto \sqrt{V}$ so now force $F = \sqrt{2} F$				

CG Tower -2, [A-51 (A)], IPIA, Behind City Mall, Jhalawar Road, Kota (Raj.)-05 | Contact: 08505099972, 08505099973 To know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in | Toll Free: 1800 258 5555

49. Kinetic energy of a particle is increased by 4 times. What will be the relation between initial and final momentum.

		P_1			
	(1) $P_2 = 2P_1$	(2) $P_2 = \frac{1}{2}$	(3) $P_2 = P_1$	(4) $P_2 = 4P_1$	
Ans.	(1) $P = \sqrt{2mk}$				
501.	$- \frac{P_{1}}{K_{1}} = \frac{1}{1} $				
	So $\frac{1}{P_2} = \sqrt{\frac{1}{K_2}} = \sqrt{\frac{1}{4}} = \frac{1}{2}$	2			
	So $P_2 = 2P_1$				
	Momentum will be doub	bled			
50.	What proves that light is	s a transverse wave?			
Ans.	(1) polarization (1)	(2) reflection	(3) refraction	(4) Interrerence	
Sol.	only transverse wave ca	an show polarization. So	polarization proves that	light is transverse wave.	
51.	What is the maximum F	Reylonds number for lam	inar flow?		
Δns	(1) 500	(2) 4000	(3) 2000	(4) 8000	
Sol.	If $R < 2000$ than flow wi	II be laminar. So maximu	ım Reynolds number = 2	000	
52.	What is the range of a r	projectile thrown with velo	ocity 98 m/sec with angle	e 30° from horizontal?	
	(1) 490 $\sqrt{3}$ meter	(2) 980 $\sqrt{3}$ meter	(3) $245\sqrt{3}$ meter	(4) 100 meter	
Ans.	(1)				
Sol.	$R = \frac{u^2 \sin(2\theta)}{2} = \frac{98 \times 9}{2}$	$\frac{8 \times \sin(60)}{2} = 490\sqrt{3}$ met	er		
	g	9.0			
53.	A pendulum bob is tilted	d 10° right to the vertical.	Then comment on acce	leration (direction) and velocity.	
	(1) Velocity is zero and(2) Velocity and acceler	acceleration is along len ation both are zero	gth at string		
	(3) Velocity is zero and	acceleration is perpendic	cular to string		
Ans.	(4) velocity is along string and acceleration is perpendicular to string (3)				
Sol.	at extreme position velo	ocity is zero and accelera	tion will be tangential as	shown.	
	Δ				
	10°				
	i ▲ a				
54.	For maximum range, th	e angle of projection sho	uld be		
Ano	(1) 0°	(2) 45°	(3) 30°	(4) 60°	
AIIS.	$u^2 \sin(2\theta)$				
Sol.	$R = \frac{g}{g}$				
	For maximum range 20	= 90°			
	⊎ = 45°				
55.	If a object is thrown upv	vard with 16m/s. Find tim	e of flight?	(4) 1.2 sec	
Ans.	(3)	(2) 7.0 300	0, 0.2 350	(7) 1.2 360	
Sol.	Time of flight				
	$T = \frac{2u}{g} = \frac{2 \times 10}{10} = 3.2 \text{ set}$	9C			

If the efficiency of an engine is 50% and its work output is 500 J. Find input ? 56. (1) 500 J (2) 100 J (3) 1000 J (4) 250 J

- Ans. (3)
- $\eta = \frac{\text{work out put}}{1}$ Sol. heat input 500 1 $\frac{1}{2} = \frac{1}{1}$ Heat Input Heat Input = 1000
- 57. The efficiency of a heat engine is 1/6. Its efficiency double when the temperature of sink decreases by 62°C, its efficiency doubles. Then what is the temperature of source ?
- (1) 372 K (3) 542 K (4) 1042 K (2) 470 K Ans. (1) $\eta = 1 - \frac{T_2}{T}$ Sol. $\frac{1}{6} = 1 - \frac{T_2}{T_1} \qquad \text{so} \qquad \frac{T_2}{T_1} = \frac{5}{6} \qquad \text{so} \qquad T_2 = \frac{5T_1}{6}$ Now $\eta^1 = 1 - \frac{T_2^1}{T_1} \qquad \Rightarrow \qquad 2 \times \frac{1}{6} = 1 - \frac{(T_2 - 62)}{T_1} \qquad \Rightarrow \qquad \frac{T_2 - 62}{T_1} = \frac{2}{3}$ $3T_2 - 186 = 2T_1 \qquad \Rightarrow \qquad 3\left(\frac{5T_1}{6}\right) - 186 = 2T_1 \qquad \Rightarrow \qquad \frac{5}{2}T_1 - 2T_1 = 186$ \Rightarrow T₁ = 372 K $\frac{T_1}{2} = 186$ 58. The high and low points of a faulty thermometer are 95°C and 5°C. What is the actual temperature when that thermometer shows 62° C? (1) 62 C (2) 63.33 C (3) 42 C (4) 72.3 C Ans. (2) $\frac{62-5}{95-5} = \frac{C-0}{100} = \frac{57}{90} = \frac{C}{100} \implies C = \frac{570}{9} = 63.33C$ Sol.
- $5\sin\frac{\pi}{2}(100t-2x)$ what is time period? 59. (1) 0.02 sec (2) 0.04 sec (3) 0.06 sec (4) 0.01 sec Ans. (2) $Y = 5 \sin (50\pi t - \pi k)$ Sol. Now $w = 50\pi$ So $T = \frac{2\pi}{w} = \frac{2\pi}{50\pi} = 0.04 \sec^{-1}{100}$
- 60. Comment on the K.E. and momentum of a satellite revolving in a circular orbit? (1) Both constant (2) K.E. constant momentum is not constant (3) K.E. is not constant momentum is constant (4) Both are not constant
- Ans.

(2)

- When a satellite devolving in circular orbit its speed remains constant but velocity changes. So K.E. will Sol. remain constant while momentum will change.
- 61. What is difference between laser and normal light?
 - (1) Both lights are polarized
 - (2) Normal light is polarized but laser light is not
 - (3) Both light are not polarized
 - (4) Normal light is unpublicized but laser is polarized
- Ans. (4)
- Laser light is polarized but normal light is not polarized. Sol.

CG Tower -2, [A-51 (A)], IPIA, Behind City Mall, Jhalawar Road, Kota (Raj.)-05 | Contact: 08505099972, 08505099973 To know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in | Toll Free: 1800 258 5555

62. Pressure at A

(1)
$$P_0$$
 (2) $P_0 - \frac{2T}{R}$ (3) $P_0 + \frac{2T}{R}$ (4) $P_0 - \frac{4T}{R}$

Ans. (1)

- **Sol.** Pressure at A will be equal to atmospheric pressure P₀.
- **63.** Find density of ethanol.

64. A particle doing S.H.M. having amplitude 5 cm, mass 0.5 kg and angular frequency 5 is at 1 cm from mean position. Find potential energy and kinetic energy.

(1) K.E. =
$$150 \times 10^{-3}$$
J P.E. = 6.25×10^{-4} J
(3) K.E. = 6.25×10^{-4} J P.E. = 6.25×10^{-4} J

(2) K.E. =
$$6.25 \times 10^{-4}$$
 J P.E. = 150×10^{-3} J
(4) K E = 150×10^{-3} J P E = 150×10^{-4} J

Sol. Potential energy

$$u = \frac{1}{2}mw^{2}x^{2} = \frac{1}{2} \times 0.5 \times 25 \times (10^{-2})^{2}$$
$$= \frac{25}{4} \times 10^{-4} \text{ Joule} = 6.25 \times 10^{-4} \text{ Joule}$$

Kinetic energy

$$K = \frac{1}{2}mw^{2}(A^{2} - x^{2}) = \frac{1}{2}0.5 \times 25 [25 - 1] \times 10^{-4}$$

= 150 × 10⁻⁴ Joule

CG Tower -2, IA-51 (A)], IPIA, Behind City Mall, Jhalawar Road, Kota (Raj.)-05 | Contact: 08505099972, 08505099973 To know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in | Toll Free: 1800 258 5555

A organ pipe open on both ends in the nth harmonic is in resonance with a source of 1000 Hz. The 65. length of pipe is 16.6 cm and speed of sound in air is 332 m/sec. Find the value of n. (2) 2 (1) 1(3) 3(4) 4Ans. (1) $f = \frac{n.V}{2\ell}$ Sol. $1000 = \frac{n \times 332}{2 \times 16.6 \times 10^{-2}}$ $10 = \frac{n \times 332}{33.2}$ n = 1 $R = 65 \pm 1 \Omega$ 66. $\ell = 5 \pm 0.1 \text{ mm}$ $d = 10 \pm 0.5 \text{ mm}$ Find error in calculation of resistively (3) 16% (4) 41% (1) 13% (2) 21% Ans. (1) $R = \frac{\rho\ell}{\pi(d/2)^2} \implies R = \frac{4\rho\ell}{\pi d^2} \implies \rho = \frac{\pi R d^2}{4\ell}$ $\frac{\Delta\rho}{\rho} = \frac{\Delta R}{R} + \frac{2\Delta d}{d} + \frac{\Delta\ell}{\ell} \implies \frac{\Delta\rho}{\rho} = \frac{1}{65} + \frac{2.(0.5)}{10} + \frac{0.1}{5}$ $\frac{\Delta\rho}{\rho} = 0.015 + 0.1 + 0.02 \implies \frac{\Delta\rho}{\rho} \approx 0.13$ Sol. So it is 13% error. 67. Find ratio of radius of gyration of a disc and ring of same radii at their tangential axis in plane. (1) $\sqrt{\frac{5}{3}}$ (2) $\sqrt{\frac{5}{6}}$ (4) $\frac{2}{3}$ (3) 1 Ans. (2) For disc Sol. $MK_1^2 = \frac{5}{4}MR^2 \implies K_1 = \frac{\sqrt{5}}{2}R$ For Ring $MK_2^2 = \frac{3}{2}MR^2 \implies K_2 = \sqrt{\frac{3}{2}}R$ So $\frac{k_1}{k_2} = \frac{\sqrt{5} \times \sqrt{2}}{2 \times \sqrt{3}} = \sqrt{\frac{5}{6}}$

Pre-Medical Division Campus:

A disc of moment of inertia 2 kg m² revolving with 8 radian/sec. is placed on another disc of moment of 68. inertia 4 kg m² revolving 4 radian/sec. What is the angular frequency of composite disc?

(1)
$$\frac{16}{3}$$
 Rad/sec (2) $\frac{16}{5}$ Rad/sec (3) 4 Rad/sec (4) $\frac{3}{16}$ Rad/sec

Ans. (1)

From angular momentum conservation Sol. $I_1w_1 + I_2w_2 = (I_1 + I_2)w$ $2 \times 8 + 4 \times 4 = 6 \text{ w}$ 32 = 6w $w = \frac{32}{6} = \frac{16}{3} rad / sec$

69. What is the dimensional formula of dynamic viscosity? (3) $[m^{1}L^{-1}T^{-1}]$ (4) [m¹L¹T¹] (2) [m¹L¹T⁻¹] $(1) [m^{1}L^{1}T^{-2}]$ Ans. (3)

Dynamic viscosity $\mu = \tau \cdot \frac{dy}{dc}$ τ = shearing stress $\frac{dy}{dc}$ = velocity gradient Sol. $m = [m^{1}L^{-1}T^{-2}] [T^{1}] = [m^{1}L^{-1}T^{-1}]$ same coefficient of viscosity.

70. The force of attraction between two charges 8μ C and -4μ C is 0.2 N. Find the distance of separation. (2) 1.2 meter (3) 120 meter (4) 0.12 meter (1) 12 meter

Sol.

Ans.

$$F = \frac{K q_1 q_2}{r^2}$$

$$0.2 = \frac{9 \times 10^9 \times 8 \times 10^{-6} \times 4 \times 10^{-6}}{r^2}$$

$$r^2 = \frac{9 \times 8 \times 4}{0.2} \times 10^{-3}$$

$$r^2 = \frac{9 \times 8 \times 4}{2} \times 10^{-2}$$

$$r = 12 \times 10^{-1} \text{ meter} = 1.2 \text{ m}$$

71. A runner starts from O and goes to O following path OQRO In 1 hr. What is net displacement and average speed?

$$(1) 0, 0 \text{ km/hr} (2) 0, 3.57 \text{ km/hr} (3) 0, 2.57 \text{ km/hr} (4) 0, 1 \text{ km/hr}$$

(2)
Net displacement is zero.

Sol.

Average speed = $\frac{\text{Total distance}}{\text{Total time}} = \frac{1 \text{ km} + \frac{1 \text{ km}}{2} + 1 \text{ km}}{1 \text{ hr}} = 3.57 \text{ km/hr}$

Pre-Medical Division Campus:

72. In a LC circuit. Angular frequency at resonance is w. What will be the new angular frequency when inductor's inductance is made 2 times and capacitance is made 4 times?

(1)
$$\frac{w}{\sqrt{2}}$$
 (2) $\frac{w}{2\sqrt{2}}$ (3) 2w (4) $\frac{2w}{\sqrt{2}}$
Ans. (2)
Sol. $w = \frac{1}{\sqrt{LC}}$
Now if $L^1 = 2L$ $C^1 = 4C$
 $w^1 = \frac{1}{\sqrt{2L} \cdot 4C}$
 $w^1 = \frac{1}{2\sqrt{2}} \cdot \frac{1}{\sqrt{LC}} = \frac{w}{2\sqrt{2}}$

In a circuit L = 10^{-3} H, C = 10^{-3} F. Find angular frequency. 73. (1) 1000 rad/sec (2) 100 rad/sec (3) 10 rad/sec (1)

(4) 10^{-3} rad/sec

Sol.

$$w = \frac{1}{\sqrt{LC}}$$

w = $\frac{1}{\sqrt{10^{-3} \times 10^{-3}}} = 1000 \text{ rad / sec}$

(1)
$$125 \text{ N}$$
 (2) 250 N (3) 500 N (4) 175 N
Ans. (2)
Sol. $F = ma$
 $F = 50 \times (0.5) \text{ g}$
 $= 25 \text{ g} = 250 \text{ Newton.}$

e⁻ revolving with speed V is producing magnetic field B at centre. Find relation between radius of path, 75. B & V?

(1)
$$B \propto V \propto \frac{1}{r}$$
 (2) $B \propto V \propto \frac{1}{r^2}$ (3) $B \propto V^2 \propto \frac{1}{r}$ (4) $B \propto V^2 \propto \frac{1}{r^2}$
Sol. Magnetic field at center
 $B = \frac{\mu_0 I}{2r}$ where $I = \frac{e}{T}$, $I = \frac{eV}{2\pi r}$
 $B = \frac{\mu_0}{2r} \cdot \frac{eV}{2\pi r}$ $B = \frac{\mu_0 eV}{4\pi r^2}$

CG Tower -2, [A-51 (A)], IPIA, Behind City Mall, Jhalawar Road, Kota (Raj.)-05 | Contact: 08505099972, 08505099973 To know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in | Toll Free: 1800 258 5555

77. A regular hexagon of side a. A wire of length 24 a is coiled on that hexagon. If current in hexagon is I then find the magnetic moment.

Pre-Medical Division Campus:

PART – C : (BIOLOGY)

78.	Rouleaux Formation is	related to which of	the cell/tissue:	
	(1) RBC	(2) WBC	(3) Platelets	(4) Monocytes
Ans.	(1)			
79.	Which is the 21 st Aminc (1) Pyrrolysine	acid (2) Selenocysteir	ne (3) Cystine	(4) Histidine
Ans.	(1) i ynelyddio (2)			
80.				
	Above diagram represe	nts		
Ans.	(1) Metaphase-I (1)	(2) Anaphase-I	(3) Metaphase-I	I (4) Anaphase-II
81.	Heterotrichous thallus is	s shown by which	organism	
• • •	(1) Chlamydomonas	(2) Ectocarpus	(3) Spirogyra	(4) Volvax
Ans.	(2)			
82.	Where is sacculus rotur	ndus located?		
	(1) Between duodenum	& jejunum	(2) Between Ileu	ım & Caecum
	(3) Caecum and colon		(4) Colon and re	ectum
Ans.	(2)			
83.	Brunner's gland is locat	ed in		
	(1) Duodenum	(2) Jejunum	(3) lleum	(4) Stomach
Ans.	(1)			
84.	Fimbrae are associated	with which organ	?	
	(1) Fallopian tube	(2) Uterus	(3) Vagina	(4) Ovary
Ans.	(1)			
85.	What is common betwe	en a Eukaryotic &	Prokaryotic flagella?	
	(1) same structure	·	(2) Both are use	d for locomotion
	(3) Composed of same	proteins	(4) Both are exte	ension of cell membrane
Ans.	(2)			
86.	Which of the following is	s not a plant growt	th inhibitor	
	(1) Dormin	(2) IAA	(3) Ethylene	(4) ABA
Ans.	(2)			
87.	What is the R.Q. of glue (1) One (2) Les	cose? s than one (3) More than one	(4) Infinite
Ans.	(1)	· · · · · · · · · · · · · · · · · · ·		. <i>.</i>

Pre-Medical Division Campus:

88.	5 Glucose molecules aerobically respired and another 5 anaerobically. What will be the total no, of AT and CO ₂ evolved?			
A	(1) 180 and 10 respectively(3) 36 and 2 respectively		(2) 10 and 180 respectively(4) 2 and 36 respectively	
Ans.	(1)			
89. Ans.	What is the symmetry o (1) Bilateral (2)	f medusa (2) Radial	(3) Asymmetrical	(4) Biradial
90.	Perianth is found in whi	ch family :		
Ans.	(1) Cruciferae (3)	(2) Solonaceae	(3) Laliaceae	(4) Malvaceae
91.	To which of the followin	g repressor protein is att	ached	
Ans.	(1) operator (1)	(2) Inducer	(3) Promoter	(4) Structural gene
92.	Which of the following c	an be used to convert se	sDNA to dsDNA	
	(1) Terminal transferase	9	(2) Eco R I (4) Reverse Transcripts	926
Ans. Sol.	(1) Terminal transferase i	s template independen	t DNA polymerase	
93.	$XYY \rightarrow composition$ (1) Super female	(2) Hermaphrodite	(3) Male	(4) Supermale
Ans.	(4)	()		
94.	Which of the following	is involved in passive im	imunity	
Ans.	(1) lg A (1)	(2) lg E	(3) Ig M	(4) lg E
95.	Eye spot is seen in			
Ans.	(1) Chlamydomonas (1)	(2) Ulothrix	(3) Spirogyra	(4) Polysiphonia
96.	What is incorrect about	inhibin?		
	(1) It is a lipoprotein	botwoon 10k 20k Dolton	(2) Decreases FSH secretion	
Ans.	(1)	between Tuk-Suk Daiton	(4) Secreted by serior (cens
97.	Which of the following p	ituitary hormone works i	ndirectly?	
Ans.	(1) MSH (2)	(2) TSH	(3) GH	(4) Oxytocin
98.	Arrange the following in (1) Intracellular → Inters	descending order of vol titial → Plasma	ume: plasma, interstitial (2) Interstitial → Intracel	fluid, intracellular fluid. Ilular → Plasma
•	(3) Plasma → Interstitial	→ Intracellular	(4) Intracellular → Plasn	na → Interstitial
Ans. Sol.	(1) Volume of body fluids in 28 Liter, volume of inter	n a person of 70 kg weig stitial fluid will be 11 Lite	ght will be 42 liter, out o r and plasma volume wil	f which intracellular fluid will be I be 3 Liter.
			•	