JIPMER MBBS Entrance Test 2018
 Examination Paper

(BASED ON MEMORY RETENTION)
Date : 03-06-2018 (Sunday) | Time : $03.00 \mathrm{pm}-05.30 \mathrm{pm} \mid$ Evening Session

NOTE:-

1. Questions are collected from the appeared students.
2. The solutions are prepared by the expert faculty team of Resonance Pre-Medical division, Kota.
3. Questions may not be in the order or sequence as asked in the actual examination paper.
4. The questions collected may not have all the options similar to the actual paper. Students are advised to see the question and answer / solutions.
5. Actual JIPMER Paper has 200 questions but we have included only those many questions which have been collected from the students as per following table :-

Subject	No. of Question in Actual JIPMER Paper	No. of Question in this Paper
Chemistry	60	37
Physics	60	40
Biology	60	21
 Comprehension + Quantitative Reasoning	20	00
Total	200	98

Pre-Medical Division Campus:

PART - A (CHEMISTRY)

1. If osmotic pressure of $5 \%(\mathrm{w} / \mathrm{v})$ solution of sucrose is same as $3 \%(\mathrm{w} / \mathrm{v})$ solution of ' X ' find molecular mass of X.
(1) 570
(2) 205.2
(3) 342
(4) None

Ans. (2)
Sol. $\quad i_{1} \mathrm{C}_{1}=\mathrm{i}_{2} \mathrm{C}_{2}$
$\frac{5 \times 1000}{342 \times 100}=\frac{3}{M} \times \frac{1000}{100}$
$M=\frac{3}{5} \times 342=205.2$
2. Which of following is zwitter ion
(1) Glycinehydrochloride
(2) Nylon 6,6
(3) Alanine
(4) None

Ans. (3)
Sol. Alanine

Zwitter Ion
3. Find pH of 0.1 M NaOH solution
(1) 1
(2) 2
(3) 13
(4) 17

Ans. (3)
Sol. $\quad 0.1 \mathrm{M} \mathrm{NaOH}$ give $0.1 \mathrm{M} \mathrm{OH}^{-}$
$\mathrm{pOH}=1 \quad \mathrm{pH}=13$
4. Find out products of hydrolysis of NaCl solution on cathode and anode
(1) $\mathrm{H}_{2}, \mathrm{Cl}_{2}$
(2) $\mathrm{Cl}_{2}, \mathrm{H}_{2}$
(3) $\mathrm{Na}, \mathrm{Cl}_{2}$
(4) $\mathrm{Na}, \mathrm{O}_{2}$

Ans. (1)
Sol. $\mathrm{C}: \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2}+2 \mathrm{OH}^{-}$
A : $2 \mathrm{Cl}^{-} \longrightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{-}$
5. Which pair can not act as buffer
(1) $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{COONa}$
(2) Borax $+\mathrm{H}_{3} \mathrm{BO}_{3}$
(3) $\mathrm{HCl}+\mathrm{NH}_{4} \mathrm{OH}$
(4) $\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{HCl}$

Ans. (4)
Sol. $\quad \mathrm{NH}_{4} \mathrm{Cl}$ and HCl can not behave as buffer
6. Which of the following is correct displacement reaction
(1) $\mathrm{AgNO}_{3}+\mathrm{Cu} \longrightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{Ag}$
(2) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{Cu} \longrightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{Pb}$
(3) $\mathrm{H}_{2}+\mathrm{ZnCl}_{2} \longrightarrow \mathrm{Zn}+2 \mathrm{HCl}$
(4) $\mathrm{Cu}+2 \mathrm{HCl} \longrightarrow \mathrm{CuCl}_{2}+\mathrm{H}_{2}$

Ans. (1)
Sol. According to ECS Ag^{+}can displace by Cu

Pre-Medical Division Campus:

7. $\mathrm{XeF}_{6}+\mathrm{xH}_{2} \mathrm{O} \longrightarrow$ products find x
(1) 2
(2) 3
(3) 4
(4) 6

Ans. (2)
Sol. $\mathrm{XeF}_{6}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{XeO}_{3}+6 \mathrm{HF}$
8. What is bond dissociate energy of $\mathrm{HCl}, \Delta \mathrm{H}_{\mathrm{f}}(\mathrm{HCl})=-93$, B.E. $\left(\mathrm{H}_{2}\right)=434$, B.E. $\left(\mathrm{Cl}_{2}\right)=242$ (in KJ/mol)
(1) $532 \mathrm{KJ} / \mathrm{mol}$
(2) $431 \mathrm{KJ} / \mathrm{mol}$
(3) $332 \mathrm{KJ} / \mathrm{mol}$
(4) $232 \mathrm{KJ} / \mathrm{mol}$

Ans. (2)
Sol. $\frac{1}{2} \mathrm{H}_{2}+\frac{1}{2} \mathrm{Cl}_{2} \longrightarrow \mathrm{HCl} \quad \Delta \mathrm{H}_{\mathrm{f}}$
$\Delta H_{f}=$ B.E. $H_{2} \times \frac{1}{2}+$ B.E. $\mathrm{Cl}_{2} \times \frac{1}{2}-$ B.E. HCl
9. If activation energy of a reaction is zero and value of rate constant at 280 K is 1.6×10^{5}. Find its value at 300 K
(1) 1.6×10^{5}
(2) 3.2×10^{5}
(3) 0.8×10^{5}
(4) can not determine

Ans. (1)
Sol. If $\mathrm{E}_{\mathrm{a}}=0$ then K is constant
10. Which of the following is invert sugar
(1) Glucose
(2) Fructose
(3) Sucrose
(4) Starch

Ans. (3)
Sol. Sucrose is a disaccharide made by glucose and Fructose.
11. Find relation b / w

(1) Functional Isomer
(2) Tautomers
(3) Chain Isomer
(4) Metamers

Ans. (1)

Sol.

Both have different chemical properties.
12. Which is suitable reagent for wurtz reaction :
(1) Na /ether
(2) Na /alcohol
(3) Zn/ether
(4) Zn/alcohol

Ans. (1)
Sol. $\quad R-X \xrightarrow[\text { ether }]{\mathrm{Na}} R — R \quad$ (Wurtz reaction)
13. Which of the following pair behaves strong and weak base hydride $\mathrm{NH}_{3}, \mathrm{PH}_{3}, \mathrm{AsH}_{3}, \mathrm{SbH}_{3}, \mathrm{BiH}_{3}$
(1) $\mathrm{NH}_{3}, \mathrm{PH}_{3}$
(2) $\mathrm{NH}_{3}, \mathrm{BiH}_{3}$
(3) $\mathrm{PH}_{3}, \mathrm{BiH}_{3}$
(4) $\mathrm{BiH}_{3}, \mathrm{AsH}_{3}$

Ans. (2)
Sol. Basic nature : $\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{AsH}_{3}>\mathrm{SbH}_{3}>\mathrm{BiH}_{3}$

Pre-Medical Division Campus:

14. In an adiabatic expansion of gas from $1 \mathrm{~atm}, 300 \mathrm{~K}$ to $8 \mathrm{~atm} \&$ "T" K. Find T if $(\gamma=3 / 2)$
(1) 350 K
(2) 150 K
(3) 600 K
(4) 400 K

Ans. (3)
Sol. $\quad P_{1}^{1-y} T_{1}^{y}=P_{2}^{1-y} T_{2}^{y}$

$$
\begin{aligned}
& \left(\frac{1}{8}\right)^{1-\frac{3}{2}}=\left(\frac{\mathrm{T}_{2}}{300}\right)^{3 / 2} \\
& \left(\frac{1}{8}\right)^{\frac{1}{2} \times \frac{2}{3}}=\frac{\mathrm{T}_{2}}{300} \\
& 2 \times 300=\mathrm{T}_{2} \\
& 600 \mathrm{~K}
\end{aligned}
$$

15. Which of the following becomes paramagnetic on heating
(1) MnO
(2) $\mathrm{Fe}_{3} \mathrm{O}_{4}$
(3) $\mathrm{ZnFe}_{2} \mathrm{O}_{4}$
(4) (2) \& (3) both

Ans. (4)
Sol. Ferrimagnetic change their nature on heating and become magnetic eg. $\mathrm{Fe}_{3} \mathrm{O}_{4}, \mathrm{ZnFe}_{2} \mathrm{O}_{4}, \mathrm{MgFe}_{2} \mathrm{O}_{4}$
16. Assertion : Catalyst increase rate of reaction while photosensitizer initiate a reaction.

Reason: Catalyst decrease E_{a} but photosensitizer act as energy carrier
(1) If both assertion and reason are true and reason is the correct explanation of assertion.
(2) If both assertion and reason are true but reason is not the correct explanation of assertion.
(3) If assertion is true but reason is false.
(4) If both assertion and reason are false.

Ans (1)
Sol. Both are correct and reason explain the assertion
17. Which is refining process for copper
(1) Bessimerization
(2) Polling
(3) Roasting
(4) Smelting

Ans. (2)
Sol. Bessimerization \rightarrow Self reduction in copper
Polling \rightarrow refining process
18. What is the formula of Marshalls acid
(1) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$
(2) $\mathrm{H}_{2} \mathrm{SO}_{4}$
(3) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{6}$
(2) $\mathrm{H}_{2} \mathrm{SO}_{5}$

Ans. (1)
Sol. It is actually $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$
19. What is the structure of Thiosulphuric acid
(1)

(2)

(3)

(4) None

Ans. (3)

Pre-Medical Division Campus:

20. Which of the following is diamagnetic $\mathrm{O}_{2}, \mathrm{~S}_{2}, \mathrm{~N}_{2}, \mathrm{C}_{2}$
(1) $\mathrm{O}_{2}, \mathrm{~N}_{2}$
(2) $\mathrm{O}_{2}, \mathrm{~S}_{2}$
(3) $\mathrm{N}_{2}, \mathrm{C}_{2}$
(4) S_{2}, C_{2}

Ans. (3)
Sol. O_{2} and S_{2} are paramagnetic according to MOT
21. Thiosulphuric acid is
(1) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
(2) $\mathrm{H}_{2} \mathrm{SO}_{4}$
(3) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$
(4) $\mathrm{H}_{2} \mathrm{SO}_{5}$

Ans. (1)
Sol. Thiosulphuric acid: $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
22. A 5% solution of sucrose is isotonic with 3% solution of a solute find molecular weight of that solute ?
(1) 54 g
(2) 108 g
(3) 216 g
(4) 65 g

Ans. (2)
Sol. 5\% Glucose solution is isotonic with 3% of unknown solute
\therefore conc. of glucose $=$ conc. of solute
$\frac{5}{180}=\frac{3}{M}$
$M=\frac{3 \times 180}{5} 108 \mathrm{~g}$
23. What is Marshall's acid ?
(1) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
(2) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$
(3) $\mathrm{H}_{2} \mathrm{SO}_{4}$
(4) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$

Ans. (4)
Sol. Marshall acid is $\mathrm{H}_{2} \mathrm{O}_{2} \mathrm{O}_{8}$
24. Which of the following is most paramagnetic

$$
\mathrm{V}^{3+}, \mathrm{Fe}^{2+}, \mathrm{V}^{4+}, \mathrm{Ti}^{2+}
$$

(1) V^{3+}
(2) Fe^{2+}
(3) V^{4+}
(4) Ti^{2+}

Ans. (2)
Sol. Valence configuration
$\mathrm{V}^{3+}: 3 \mathrm{~d}^{2}$ no of unpaired $\mathrm{e}^{-}=2$
$\mathrm{Fe}^{2+}: 3 \mathrm{~d}^{6}$ no of unpaired $\mathrm{e}^{-}=4$
$V^{4+}: 3 d^{1}$ no of unpaired $e^{-}=1$
$\mathrm{Ti}^{2+}: 3 \mathrm{~d}^{2}$ no of unpaired $\mathrm{e}^{-}=2$
$\therefore \mathrm{Fe}^{2+}$ has maximum unpaired electrons
25. Element A \& B have electronegativeties $3 \& 1.2$ respectively? Bond b / w them ?
(1) Purely covalent
(2)Purely ionic
(3) Polar covalent
(4) None of these

Ans. (3)
Sol. $\quad \Delta \mathrm{EN}=3.0-1.2=1.8$; Bond will polar covalent bond
26. Which of the following are isomer :
(1) Acetone \& Propanol
(2) Acetone \& Propanoic acid
(3) Acetone \& Propanal
(4) Acetone \& Cyclopropanone

Ans. (1)
Sol. Acetone \& Propanal have same molecular formula and different functional group.

Pre-Medical Division Campus:

27.

Final product will be :
(1)

(2)

(3)

(4)

Ans. (4)

Sol.

28. The amount of charge required in Faraday to get 40 g Al from almuna by electrolysis
(1) $\frac{50}{3} \mathrm{~F}$
(2) $\frac{40}{3} \mathrm{~F}$
(3) $\frac{40}{9} \mathrm{~F}$
(4) $\frac{50}{9} \mathrm{~F}$

Ans. (3)
Sol. $\quad \mathrm{Al}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}$
$\frac{n_{e}}{3}=n_{a l}$
$\frac{Q}{3 F}=\frac{40}{27} \Rightarrow Q=\frac{40 F}{9}=4.44 \mathrm{~F}$
29. Oxidation number of Cr in $\left[\mathrm{Cr}\left[\mathrm{NH}_{3}\right]_{4} \mathrm{Cl}_{2}\right]^{+}$
(1) +4
(2) +2
(3) +3
(4) +6

Ans. (3)
Sol. Oxidation number of Cr in $\left[\mathrm{Cr}\left[\mathrm{NH}_{3}\right]_{4} \mathrm{Cl}_{2}\right]^{+}$is +3
$x+(4 \times 0)+(-1 \times 2)=+1$
$x-2=+1$
$x=+3$
30. What is standard gibbs free energy of $r x n$
$\mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+} \longrightarrow \mathrm{Zn}^{2+}+\mathrm{Cu}(\mathrm{s})$
Given $\mathrm{E}^{\circ} \mathrm{Zn}^{2+} / \mathrm{Zn}=-0.74 \& \mathrm{E}^{\circ} \mathrm{Cu}^{2+} / \mathrm{Cu}=0.36$
(1) 300 kJ
(2) 212.3 kJ
(3) 200 kJ
(4) 515 kJ

Ans. (2)
Sol. $\quad E_{\text {cell }}^{\circ}=E_{\text {red }}^{\circ}=E_{\text {oxid }}^{\circ}$
$=0.36+0.74=1.10 \mathrm{~V}$
$\Delta G^{\circ}=-n F E^{\circ}$
$=-2 \times 96500 \times 1.10 \mathrm{~J}=221.30 \mathrm{~kJ}$
31. A gas acquires 24.6 I at 1 atm and $27^{\circ} \mathrm{C}$ temperature. What volume it will occupy at $10 \mathrm{~atm} \& 373^{\circ} \mathrm{C}$?
(1) 7.5 L
(2) 10.2 L
(3) 5.3 L
(4) 15 L

Ans. (3)
Sol. Combined Gas Law :

Pre-Medical Division Campus:

CG Tower -2, [A-51 (A)], IPIA, Behind City Mall, Jhalawar Road, Kota (Raj.)-05 | Contact: 08505099972, 08505099973
To know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in | Toll Free: 18002585555
$\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$
$\frac{1 \times 24.6}{300}=\frac{10 \times V}{646}$
$\mathrm{V}=5.2 \mathrm{~L}$
32. Arrange order with respect to oxidation no. : $\mathrm{SO}_{4}^{2-}, \mathrm{S}_{2} \mathrm{O}_{4}^{2-}$
(1) $\mathrm{SO}_{4}^{2-}<\mathrm{S}_{2} \mathrm{O}_{4}^{2-}$
(2) $\mathrm{S}_{2} \mathrm{O}_{4}^{2-}=\mathrm{SO}_{4}^{2-}$
(3) $\mathrm{SO}_{4}^{2-}>\mathrm{S}_{2} \mathrm{O}_{4}^{2-}$
(4) None of these

Ans. (3)
Sol. Oxidation number os S in
SO_{4}^{2-} is $=6$
$\mathrm{S}_{2} \mathrm{O}_{4}^{2-}$ is +3
$\mathrm{SO}_{4}^{2-}>\mathrm{S}_{2} \mathrm{O}_{4}^{2-}$ increasing order
33. Which can give strongest conjugate base
(i) HClO
(ii) HCN
(iii) HNO_{2}
(1) HOCl
(2) HCN
(3) HNO_{2}
(4) HNO_{3}

Ans. (2)
Sol. HCN is weakest acid, hence its conjugate bace CN^{-}is strongest
34. Solution with similar osmotic pressure are called?
(i) Isotonic
(ii) Azestrops
(iii) Hypotonic
(1) Isotonic
(2) Azeotrope
(3) Hyptotonic
(4) Hypertonic

Ans. (1)
Sol. Solution with same osmotic pressures are called isotonic
35. Which of following can act as both oxidizing and reducing agent
(i) SO_{2}
(ii) HNO_{3}
(iii) HNO_{2}
(1) $\mathrm{SO}_{2}, \mathrm{HNO}_{2}$
(2) $\mathrm{HNO}_{3}, \mathrm{HNO}_{2}$
(3) $\mathrm{HNO}_{2}, \mathrm{HClO}_{4}$
(4) $\mathrm{HClO}_{4}, \mathrm{SO}_{2}$

Ans. (1)
Sol. Oxidation number of
(i) S in $\mathrm{SO}_{2}=+4$
(ii) N in $\mathrm{HNO}_{3}=5$ (max. value)
(iii) N in $\mathrm{HNO}_{2}=+3$
SO_{2} and HNO_{2} can act as oxidizing and reducing agents
36. 300 gm of $25 \% \mathrm{w} / \mathrm{w}$ solution of solute A is mixed with 400 gm of $40 \%(\mathrm{w} / \mathrm{w})$ solution of another solute B. What is the w / w percentage of new mixture.
(1) 10.71% in A
(2) 35% in B
(3) 25% in A
(4) 40% in B

Ans. (1)
Sol. A : 300 g of $25 \% \mathrm{w} / \mathrm{w}$
B : 400 g of $40 \% \mathrm{w} / \mathrm{w}$
$w / w \%$ of $A=\frac{25 \% \text { of } 300}{300+400}=\frac{75}{700} \times 100=10.71 \%$
$w / w \%$ of $B=\frac{40 \% \text { of } 400}{300+400} \times 100=22.85 \%$
37. The potential difference b / w the fixed layer and the diffused layer of opposite charges in a collidol solution is called.
(1) Zeta potential
(2) Avalanche voltage
(3) Retarding potential
(4) None of these

Ans. (1)
Sol. Electrokinetic potential /Zeta potential

Pre-Medical Division Campus:

PART - B (PHYSICS)

38. A current i is flowing through the wire of diameter d having drift velocity of electrons v_{d} in it. What will be new drift velocity when diameter of wire is made $\mathrm{d} / 4$?
(1) $4 \mathrm{~V}_{\mathrm{d}}$
(2) $\frac{V_{d}}{4}$
(3) $16 \mathrm{~V}_{\mathrm{d}}$
(4) $\frac{V_{d}}{16}$

Ans. (3)
Sol. $\quad I=n A e V_{d}$
Now I is constant
$\mathrm{V}_{\mathrm{d}} \propto \frac{1}{\mathrm{~A}}$
If diameter of wire is $\frac{d}{4}$ than area is $\frac{1}{16}$ times so V_{d} new drift velocity $=16 V_{d}$
39. How much intense is 80 dB sound in comparison to 40 dB ?
(1) 10^{4}
(2) 10^{2}
(3) 2
(4) $\frac{1}{2}$

Ans. (1)
Sol. $B_{1}=10 \log _{10}\left(\frac{I_{1}}{I_{0}}\right)$ and $B_{2}=10 \log _{10}\left(\frac{I_{2}}{I_{0}}\right)$

$$
\begin{array}{lll}
80=10 \log _{10}\left(\frac{I_{1}}{I_{0}}\right) & \Rightarrow & 40=10 \log _{10}\left(\frac{I_{2}}{I_{0}}\right) \\
10^{8}=\left(\frac{I_{1}}{I_{0}}\right) & \Rightarrow & 10^{4}=\frac{I_{2}}{I_{0}} \quad \text { so } \quad \frac{I_{1}}{I_{2}}=\frac{10^{8}}{10^{4}}=10^{4}
\end{array}
$$

40. Due to γ decay, what is the effect on neutron and proton numbers?
(1) Both remains constant
(2) Proton number increase but neutron number decreases
(3) Proton number decreases and neutron increases
(4) None of these

Ans. (1)
Sol. due to γ-decay there will be no effect on neutron and proton numbers.
41. Find I

(1) 0.1 Amp
(2) 0.2 Amp
(3) 0.3 Amp
(4) 0.4 Amp

Ans. (1)
Sol. $\mathrm{I}=\frac{\mathrm{V}}{\mathrm{R}_{\mathrm{eq}}}=\frac{2}{20}=\frac{1}{10} \mathrm{Amp}=0.1 \mathrm{Amp}$
42. Which of the following is incorrect
(1) n-p-n trasistor works as a diode
(2) The resistance of semiconductors decrease with \uparrow increase in temperature.
(3) A p-type semiconductor is formed by dopping with trivalent impurities.
(4) major charge carriers in a n-type semiconductor are holes

Ans. (4)
Sol. Major charge carriers in n-type semiconductor are electrons not holes.

Pre-Medical Division Campus:

43. Pure silicon is
(1) conductor
(2) insulator
(3) semiconductors
(4) None of these

Ans. (3)
Sol. Pure silicon is semiconductor
44. A force of 10 N acts on a body of mass 0.5 kg for 0.25 sec starting from rest. What is its momentum
now?
(1) $2.5 \mathrm{~N} / \mathrm{sec}$
(2) $0.25 \mathrm{~N} / \mathrm{sec}$
(3) $0.5 \mathrm{~N} / \mathrm{sec}$
(4) $0.75 \mathrm{~N} / \mathrm{sec}$

Ans. (1)
Sol. $\quad \mathrm{Ft}=\mathrm{mV}_{2}-\mathrm{mV} \mathrm{V}_{1} \Rightarrow \quad 10 \times 0.25=\mathrm{P}_{\mathrm{f}}-\mathrm{P}_{\mathrm{i}}, \mathrm{P}_{\mathrm{f}}=2.5$
45. Which of the following is fusion?
(1) Gama decay
(2) ${ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \longrightarrow{ }_{2}^{4} \mathrm{He}$
(3) Uranium decay
(4) None of these

Ans. (2)
Sol. ${ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}$ is fusion process
46. A ball of 0.5 kg collided with wall at 30° and bounced back elastically. The speed of ball was $12 \mathrm{~m} / \mathrm{s}$. The contact remained for 1 sec . What is the force applied by wall on ball.
(1) $12 \sqrt{3} \mathrm{~N}$
(2) $6 \sqrt{3} \mathrm{~N}$
(3) $3 \sqrt{3} \mathrm{~N}$
(4) $\sqrt{3} \mathrm{~N}$

Ans. (2)
Sol. $F=\frac{\Delta P}{\Delta t}$

$F=\frac{2 m V \cos \theta}{\Delta t}$
$F=\frac{2 \times 0.5 \times 12 \times \sqrt{3}}{2 \times 1}$
$F=6 \sqrt{3}$ Newton
47. A electron with kinetic energy k enters a region (i) uniform magnetic field (ii) non-uniform magnetic field and comes out with kinetic energy k_{1} and k_{2} respectively. What is relation between k_{1}, k_{2} and k ?
(1) $\mathrm{K}_{1}>\mathrm{K}_{2}>\mathrm{K}$
(2) $K_{1}=K_{2}>K$
(3) $\mathrm{K}_{1}=\mathrm{K}_{2}=\mathrm{K}$
(4) $\mathrm{K}_{1}<\mathrm{K}_{2}<\mathrm{K}$

Ans. (3)
Sol. Any type of magnetic filed can not change kinetic energy of charged particle. So
$\mathrm{K}_{1}=\mathrm{K}_{2}=\mathrm{K}$
48. $\quad A e^{-}$when accelerated by V volts experiences a force F when it enters a uniform magnetic field. What will the force experienced when it is accelerated by 2 V volts.
(1) F
(2) 2 F
(3) $\frac{F}{2}$
(4) $\sqrt{2} \mathrm{~F}$

Ans. (4)
Sol. $\quad \frac{1}{2} m v^{2}=q V$ so velocity $v \propto \sqrt{V}$
and force $F=q v B$
so $F \propto \sqrt{V}$
so now force $F=\sqrt{2} F$
49. Kinetic energy of a particle is increased by 4 times. What will be the relation between initial and final momentum.
(1) $P_{2}=2 P_{1}$
(2) $P_{2}=\frac{P_{1}}{2}$
(3) $P_{2}=P_{1}$
(4) $P_{2}=4 P_{1}$

Ans. (1)
Sol. $\quad P=\sqrt{2 m K}$
So $\frac{P_{1}}{P_{2}}=\sqrt{\frac{K_{1}}{K_{2}}}=\sqrt{\frac{1}{4}}=\frac{1}{2}$
So $P_{2}=2 P_{1}$
Momentum will be doubled
50. What proves that light is a transverse wave?
(1) polarization
(2) reflection
(3) refraction
(4) Interference

Ans. (1)
Sol. only transverse wave can show polarization. So polarization proves that light is transverse wave.
51. What is the maximum Reylonds number for laminar flow?
(1) 500
(2) 4000
(3) 2000
(4) 8000

Ans. (3)
Sol. If $R<2000$ than flow will be laminar. So maximum Reynolds number $=2000$
52. What is the range of a projectile thrown with velocity $98 \mathrm{~m} / \mathrm{sec}$ with angle 30° from horizontal?
(1) $490 \sqrt{3}$ meter
(2) $980 \sqrt{3}$ meter
(3) $245 \sqrt{3}$ meter
(4) 100 meter

Ans. (1)
Sol. $\quad \mathrm{R}=\frac{\mathrm{u}^{2} \sin (2 \theta)}{\mathrm{g}}=\frac{98 \times 98 \times \sin (60)}{9.8}=490 \sqrt{3}$ meter
53. A pendulum bob is tilted 10° right to the vertical. Then comment on acceleration (direction) and velocity.
(1) Velocity is zero and acceleration is along length at string
(2) Velocity and acceleration both are zero
(3) Velocity is zero and acceleration is perpendicular to string
(4) Velocity is along string and acceleration is perpendicular to string

Ans. (3)
Sol. at extreme position velocity is zero and acceleration will be tangential as shown.

54. For maximum range, the angle of projection should be
(1) 0°
(2) 45°
(3) 30°
(4) 60°

Ans. (2)
Sol. $R=\frac{u^{2} \sin (2 \theta)}{g}$
For maximum range $2 \theta=90^{\circ}$
$\theta=45^{\circ}$
55. If a object is thrown upward with $16 \mathrm{~m} / \mathrm{s}$. Find time of flight?
(1) 1.6 sec
(2) 4.8 sec
(3) 3.2 sec
(4) 1.2 sec

Ans. (3)
Sol. Time of flight
$\mathrm{T}=\frac{2 \mathrm{u}}{\mathrm{g}}=\frac{2 \times 16}{10}=3.2 \mathrm{sec}$

Pre-Medical Division Campus:

56. If the efficiency of an engine is 50% and its work output is 500 J . Find input?
(1) 500 J
(2) 100 J
(3) 1000 J
(4) 250 J

Ans. (3)
Sol. $\eta=\frac{\text { work out put }}{\text { heat input }}$
$\frac{1}{2}=\frac{500}{\text { Heat } \ln p u t}$
Heat Input $=1000$
57. The efficiency of a heat engine is $1 / 6$. Its efficiency double when the temperature of sink decreases by $62^{\circ} \mathrm{C}$, its efficiency doubles. Then what is the temperature of source ?
(1) 372 K
(2) 470 K
(3) 542 K
(4) 1042 K

Ans. (1)
Sol. $\quad \eta=1-\frac{T_{2}}{T_{1}}$
$\frac{1}{6}=1-\frac{T_{2}}{T_{1}} \quad$ so $\quad \frac{T_{2}}{T_{1}}=\frac{5}{6} \quad$ so $\quad T_{2}=\frac{5 T_{1}}{6}$
Now $\quad \eta^{1}=1-\frac{T_{2}^{1}}{T_{1}} \quad \Rightarrow \quad 2 \times \frac{1}{6}=1-\frac{\left(T_{2}-62\right)}{T_{1}} \quad \Rightarrow \quad \frac{T_{2}-62}{T_{1}}=\frac{2}{3}$
$3 T_{2}-186=2 T_{1} \quad \Rightarrow \quad 3\left(\frac{5 T_{1}}{6}\right)-186=2 T_{1} \quad \Rightarrow \quad \frac{5}{2} T_{1}-2 T_{1}=186$
$\frac{T_{1}}{2}=186 \quad \Rightarrow \quad T_{1}=372 \mathrm{~K}$
58. The high and low points of a faulty thermometer are $95^{\circ} \mathrm{C}$ and $5^{\circ} \mathrm{C}$. What is the actual temperature when that thermometer shows $62^{\circ} \mathrm{C}$?
(1) 62 C
(2) 63.33 C
(3) 42 C
(4) 72.3 C

Ans. (2)
Sol. $\frac{62-5}{95-5}=\frac{C-0}{100}=\frac{57}{90}=\frac{C}{100} \Rightarrow C=\frac{570}{9}=63.33 \mathrm{C}$
59. $\quad 5 \sin \frac{\pi}{2}(100 t-2 x)$ what is time period?
(1) 0.02 sec
(2) 0.04 sec
(3) 0.06 sec
(4) 0.01 sec

Ans. (2)
Sol. $\quad \mathrm{Y}=5 \sin (50 \pi \mathrm{t}-\pi \mathrm{k})$
Now $w=50 \pi$
So $T=\frac{2 \pi}{w}=\frac{2 \pi}{50 \pi}=0.04 \mathrm{sec}$
60. Comment on the K.E. and momentum of a satellite revolving in a circular orbit?
(1) Both constant
(2) K.E. constant momentum is not constant
(3) K.E. is not constant momentum is constant
(4) Both are not constant

Ans. (2)
Sol. When a satellite devolving in circular orbit its speed remains constant but velocity changes. So K.E. will remain constant while momentum will change.
61. What is difference between laser and normal light?
(1) Both lights are polarized
(2) Normal light is polarized but laser light is not
(3) Both light are not polarized
(4) Normal light is unpublicized but laser is polarized

Ans. (4)
Sol. Laser light is polarized but normal light is not polarized.

Pre-Medical Division Campus:

62. Pressure at A
(1) P_{0}
(2) $P_{0}-\frac{2 T}{R}$
(3) $P_{0}+\frac{2 T}{R}$
(4) $P_{0}-\frac{4 T}{R}$

Ans. (1)

Sol. Pressure at A will be equal to atmospheric pressure P_{0}.
63. Find density of ethanol.

(1) $\frac{0.52 \mathrm{gm}}{\mathrm{cm}^{3}}$
(2) $\frac{0.83 \mathrm{gm}}{\mathrm{cm}^{3}}$
(3) $\frac{1.83 \mathrm{gm}}{\mathrm{cm}^{3}}$
(4) $\frac{0.72 \mathrm{gm}}{\mathrm{cm}^{3}}$

Ans. (2)
Sol. $\quad P_{0}+\rho_{w} g(10)=P_{0}+\rho_{a l} g(12)$
$\rho_{\mathrm{w}} 10=\rho_{\mathrm{al}}(10)$
$\rho_{\mathrm{al}}=\frac{1 \times 10}{12}=0.83 \mathrm{gm} / \mathrm{cm}^{3}$
64. A particle doing S.H.M. having amplitude 5 cm , mass 0.5 kg and angular frequency 5 is at 1 cm from mean position. Find potential energy and kinetic energy.
(1) K.E. $=150 \times 10^{-3} \mathrm{~J}$ P.E. $=6.25 \times 10^{-4} \mathrm{~J}$
(2) $K . E .=6.25 \times 10^{-4} \mathrm{~J}$ P.E. $=150 \times 10^{-3} \mathrm{~J}$
(3) $\mathrm{K} . \mathrm{E} .=6.25 \times 10^{-4} \mathrm{~J}$ P.E. $=6.25 \times 10^{-4} \mathrm{~J}$
(4) K.E. $=150 \times 10^{-3} \mathrm{~J}$ P.E. $=150 \times 10^{-4} \mathrm{~J}$

Ans. (1)
Sol. Potential energy
$u=\frac{1}{2} m w^{2} x^{2}=\frac{1}{2} \times 0.5 \times 25 \times\left(10^{-2}\right)^{2}$
$=\frac{25}{4} \times 10^{-4}$ Joule $=6.25 \times 10^{-4}$ Joule
Kinetic energy
$\mathrm{K}=\frac{1}{2} \mathrm{mw}^{2}\left(\mathrm{~A}^{2}-\mathrm{x}^{2}\right)=\frac{1}{2} 0.5 \times 25[25-1] \times 10^{-4}$
$=150 \times 10^{-4}$ Joule

Pre-Medical Division Campus:

65. A organ pipe open on both ends in the $n^{\text {th }}$ harmonic is in resonance with a source of 1000 Hz . The length of pipe is 16.6 cm and speed of sound in air is $332 \mathrm{~m} / \mathrm{sec}$. Find the value of n .
(1) 1
(2) 2
(3) 3
(4) 4

Ans. (1)
Sol. $\mathrm{f}=\frac{\mathrm{n} . \mathrm{V}}{2 \ell}$
$1000=\frac{\mathrm{n} \times 332}{2 \times 16.6 \times 10^{-2}}$
$10=\frac{\mathrm{n} \times 332}{33.2}$
$\mathrm{n}=1$
66. $R=65 \pm 1 \Omega$
$\ell=5 \pm 0.1 \mathrm{~mm}$
$\mathrm{d}=10 \pm 0.5 \mathrm{~mm}$
Find error in calculation of resistively
(1) 13%
(2) 21%
(3) 16%
(4) 41%

Ans. (1)
Sol. $R=\frac{\rho \ell}{\pi(d / 2)^{2}} \quad \Rightarrow \quad R=\frac{4 \rho \ell}{\pi d^{2}} \quad \Rightarrow \quad \rho=\frac{\pi R d^{2}}{4 \ell}$
$\frac{\Delta \rho}{\rho}=\frac{\Delta R}{R}+\frac{2 \Delta d}{d}+\frac{\Delta \ell}{\ell} \Rightarrow \frac{\Delta \rho}{\rho}=\frac{1}{65}+\frac{2 .(0.5)}{10}+\frac{0.1}{5}$
$\frac{\Delta \rho}{\rho}=0.015+0.1+0.02 \Rightarrow \frac{\Delta \rho}{\rho} \approx 0.13$
So it is 13% error.
67. Find ratio of radius of gyration of a disc and ring of same radii at their tangential axis in plane.
(1) $\sqrt{\frac{5}{3}}$
(2) $\sqrt{\frac{5}{6}}$
(3) 1
(4) $\frac{2}{3}$

Ans. (2)
Sol. For disc
$M_{1}^{2}=\frac{5}{4} M R^{2} \quad \Rightarrow \quad K_{1}=\frac{\sqrt{5}}{2} R$

For Ring

$$
M K_{2}^{2}=\frac{3}{2} M R^{2} \Rightarrow K_{2}=\sqrt{\frac{3}{2}} R
$$

68. A disc of moment of inertia $2 \mathrm{~kg} \mathrm{~m}^{2}$ revolving with 8 radian/sec. is placed on another disc of moment of inertia $4 \mathrm{~kg} \mathrm{~m}^{2}$ revolving 4 radian $/ \mathrm{sec}$. What is the angular frequency of composite disc?
(1) $\frac{16}{3} \mathrm{Rad} / \mathrm{sec}$
(2) $\frac{16}{5} \mathrm{Rad} / \mathrm{sec}$
(3) $4 \mathrm{Rad} / \mathrm{sec}$
(4) $\frac{3}{16} \mathrm{Rad} / \mathrm{sec}$

Ans. (1)
Sol. From angular momentum conservation

$$
\begin{aligned}
& \mathrm{I}_{1} \mathrm{w}_{1}+\mathrm{I}_{2} \mathrm{w}_{2}=\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right) \mathrm{w} \\
& 2 \times 8+4 \times 4=6 \mathrm{w} \\
& 32=6 \mathrm{w} \\
& \mathrm{w}=\frac{32}{6}=\frac{16}{3} \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

69. What is the dimensional formula of dynamic viscosity?
(1) $\left[m^{1} L^{1} T^{-2}\right]$
(2) $\left[m^{1} L^{1} T^{-1}\right]$
(3) $\left[m^{1} L^{-1} T^{-1}\right]$
(4) $\left[m^{1} L^{1} T^{1}\right]$

Ans. (3)
Sol. Dynamic viscosity $\mu=\tau \cdot \frac{\mathrm{dy}}{\mathrm{dc}} \quad \tau=$ shearing stress $\quad \frac{\mathrm{dy}}{\mathrm{dc}}=$ velocity gradient $\mathrm{m}=\left[\mathrm{m}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-2}\right]\left[\mathrm{T}^{1}\right]=\left[\mathrm{m}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-1}\right]$ same coefficient of viscosity.
70. The force of attraction between two charges $8 \mu \mathrm{C}$ and $-4 \mu \mathrm{C}$ is 0.2 N . Find the distance of separation.
(1) 12 meter
(2) 1.2 meter
(3) 120 meter
(4) 0.12 meter

Ans. (2)
Sol. $F=\frac{K q_{1} q_{2}}{r^{2}}$
$0.2=\frac{9 \times 10^{9} \times 8 \times 10^{-6} \times 4 \times 10^{-6}}{\mathrm{r}^{2}}$
$r^{2}=\frac{9 \times 8 \times 4}{0.2} \times 10^{-3}$
$r^{2}=\frac{9 \times 8 \times 4}{2} \times 10^{-2}$
$r=12 \times 10^{-1}$ meter $=1.2 \mathrm{~m}$
71. A runner starts from O and goes to O following path OQRO In 1 hr . What is net displacement and average speed?

(1) $0,0 \mathrm{~km} / \mathrm{hr}$
(2) $0,3.57 \mathrm{~km} / \mathrm{hr}$
(3) $0,2.57 \mathrm{~km} / \mathrm{hr}$
(4) $0,1 \mathrm{~km} / \mathrm{hr}$

Ans. (2)
Sol. Net displacement is zero.
Average speed $=\frac{\text { Total distance }}{\text { Total time }}=\frac{1 \mathrm{~km}+\frac{\pi \mathrm{R}}{2}+1 \mathrm{~km}}{1 \mathrm{hr}}=3.57 \mathrm{~km} / \mathrm{hr}$

Pre-Medical Division Campus:

72. In a LC circuit. Angular frequency at resonance is w. What will be the new angular frequency when inductor's inductance is made 2 times and capacitance is made 4 times?
(1) $\frac{w}{\sqrt{2}}$
(2) $\frac{w}{2 \sqrt{2}}$
(3) 2 w
(4) $\frac{2 w}{\sqrt{2}}$

Ans. (2)
Sol. $w=\frac{1}{\sqrt{L C}}$
Now if $L^{1}=2 L \quad C^{1}=4 C$
$w^{1}=\frac{1}{\sqrt{2 \mathrm{~L} .4 \mathrm{C}}}$
$w^{1}=\frac{1}{2 \sqrt{2}} \cdot \frac{1}{\sqrt{L C}}=\frac{w}{2 \sqrt{2}}$
73. In a circuit $L=10^{-3} \mathrm{H}, \mathrm{C}=10^{-3} \mathrm{~F}$. Find angular frequency.
(1) $1000 \mathrm{rad} / \mathrm{sec}$
(2) $100 \mathrm{rad} / \mathrm{sec}$
(3) $10 \mathrm{rad} / \mathrm{sec}$
(4) $10^{-3} \mathrm{rad} / \mathrm{sec}$

Ans. (1)
Sol. $w=\frac{1}{\sqrt{L C}}$
$w=\frac{1}{\sqrt{10^{-3} \times 10^{-3}}}=1000 \mathrm{rad} / \mathrm{sec}$
74. If a boy of mass 50 kg is sitting on a car accelerating with acceleration 0.5 g on road. Then what is force applied by seat?
(1) 125 N
(2) 250 N
(3) 500 N
(4) 175 N

Ans. (2)
Sol. $\mathrm{F}=\mathrm{ma}$
$F=50 \times(0.5) \mathrm{g}$
$=25 \mathrm{~g}=250$ Newton.
75. e^{-}revolving with speed V is producing magnetic field B at centre. Find relation between radius of path, B \& V?
(1) $B \propto V \propto \frac{1}{r}$
(2) $B \propto V \propto \frac{1}{r^{2}}$
(3) $B \propto V^{2} \propto \frac{1}{r}$
(4) $B \propto V^{2} \propto \frac{1}{r^{2}}$

Sol. Magnetic field at center

$$
\begin{array}{ll}
B=\frac{\mu_{0} I}{2 r} & \text { where } I=\frac{e}{T}, I=\frac{e V}{2 \pi r} \\
B=\frac{\mu_{0}}{2 r} \cdot \frac{e V}{2 \pi r} & B=\frac{\mu_{0} e V}{4 \pi r^{2}}
\end{array}
$$

Pre-Medical Division Campus:

76. $\quad\left|Q_{B}\right|>\left|Q_{A}\right| r_{B}>r_{A} Q$-draw graph of rotational verses distance from centre to outside?

(2)

(3)

(4)

Ans. (1)
Sol. Let is find the electric field at a distance r from the center.

(i) If $r<r_{A} ; E=0$
(ii) If $r_{A}<r<r_{B} ; E=\frac{k q_{A}}{r^{2}}$
(iii) If $r>r_{B} ; E=\frac{k\left(q_{A}-q_{B}\right)}{r^{2}}$

So

77. A regular hexagon of side a. A wire of length 24 a is coiled on that hexagon. If current in hexagon is I then find the magnetic moment.

(1) $3 \sqrt{3} \mathrm{Ia}^{2}$
(2) $6 \sqrt{3} \mathrm{Ia}^{2}$
(3) $\frac{3 \sqrt{3}}{2} \mathrm{Ia}^{2}$
(4) $6 \mathrm{Ia}^{2}$

Ans. (2)
Sol. Let number of turns $=\mathrm{n}$

Now magnetic moment $\mathrm{M}=$ nIA $=4$. I.A
Now Area of hexagon $\frac{1}{2} \mathrm{a}^{2} \sin (120)+\mathrm{a}$. $2 \mathrm{a} \sin 60+\frac{1}{2} \mathrm{a}^{2} \sin (120)$
$=\frac{\sqrt{3} a^{2}}{4}+\sqrt{3} a^{2}+\frac{\sqrt{3} a^{2}}{4}=\frac{6 \sqrt{3} a^{2}}{4}=\frac{3 \sqrt{3} a^{2}}{2}$
So magnetic moment $=4 . \mathrm{II}\left(\frac{3 \sqrt{3} \mathrm{a}^{2}}{2}\right)=6 \sqrt{3} \mathrm{Ia}^{2}$

Pre-Medical Division Campus:

PART - C : (BIOLOGY)

78. Rouleaux Formation is related to which of the cell/tissue:
(1) RBC
(2) WBC
(3) Platelets
(4) Monocytes

Ans. (1)
79. Which is the $21^{\text {st }}$ Amino acid
(1) Pyrrolysine
(2) Selenocysteine
(3) Cystine
(4) Histidine

Ans. (2)
80.

Above diagram represents
(1) Metaphase-I
(2) Anaphase-I
(3) Metaphase-II
(4) Anaphase-II

Ans. (1)
81. Heterotrichous thallus is shown by which organism
(1) Chlamydomonas
(2) Ectocarpus
(3) Spirogyra
(4) Volvax

Ans. (2)
82. Where is sacculus rotundus located?
(1) Between duodenum \& jejunum
(2) Between Ileum \& Caecum
(3) Caecum and colon
(4) Colon and rectum

Ans. (2)
83. Brunner's gland is located in
(1) Duodenum
(2) Jejunum
(3) Ileum
(4) Stomach

Ans. (1)
84. Fimbrae are associated with which organ?
(1) Fallopian tube
(2) Uterus
(3) Vagina
(4) Ovary

Ans. (1)
85. What is common between a Eukaryotic \& Prokaryotic flagella?
(1) same structure
(2) Both are used for locomotion
(3) Composed of same proteins
(4) Both are extension of cell membrane

Ans. (2)
86. Which of the following is not a plant growth inhibitor
(1) Dormin
(2) IAA
(3) Ethylene
(4) ABA

Ans. (2)
87. What is the R.Q. of glucose?
(1) One
(2) Less than one
(3) More than one
(4) Infinite

Ans. (1)

Pre-Medical Division Campus:

CG Tower -2, [A-51 (A)], IPIA, Behind City Mall, Jhalawar Road, Kota (Raj.)-05 | Contact: 08505099972,08505099973 To know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in | Toll Free: 18002585555
88. 5 Glucose molecules aerobically respired and another 5 anaerobically. What will be the total no, of ATP and CO_{2} evolved?
(1) 180 and 10 respectively
(2) 10 and 180 respectively
(3) 36 and 2 respectively
(4) 2 and 36 respectively

Ans. (1)

89. What is the symmetry of medusa
(1) Bilateral
(2) Radial
(3) Asymmetrical
(4) Biradial

Ans. (2)
90. Perianth is found in which family :
(1) Cruciferae
(2) Solonaceae
(3) Laliaceae
(4) Malvaceae

Ans. (3)
91. To which of the following repressor protein is attached
(1) operator
(2) Inducer
(3) Promoter
(4) Structural gene

Ans. (1)
92. Which of the following can be used to convert ssDNA to dsDNA
(1) Terminal transferase
(2) Eco R I
(3) Hind II
(4) Reverse Transcriptase

Ans. (1)
Sol. Terminal transferase is template independent DNA polymerase
93. $X Y Y \rightarrow$ composition
(1) Super female
(2) Hermaphrodite
(3) Male
(4) Supermale

Ans. (4)
94. Which of the following is involved in passive immunity
(1) $\lg A$
(2) $\lg E$
(3) $\lg M$
(4) $\lg E$

Ans. (1)
95. Eye spot is seen in
(1) Chlamydomonas
(2) Ulothrix
(3) Spirogyra
(4) Polysiphonia

Ans. (1)
96. What is incorrect about inhibin?
(1) It is a lipoprotein
(2) Decreases FSH secretion
(3) Molecular weight is between 10k-30k Dalton
(4) Secreted by sertoli cells

Ans. (1)
97. Which of the following pituitary hormone works indirectly?
(1) MSH
(2) TSH
(3) GH
(4) Oxytocin

Ans. (2)
98. Arrange the following in descending order of volume: plasma, interstitial fluid, intracellular fluid.
(1) Intracellular \rightarrow Interstitial \rightarrow Plasma
(2) Interstitial \rightarrow Intracellular \rightarrow Plasma
(3) Plasma \rightarrow Interstitial \rightarrow Intracellular
(4) Intracellular \rightarrow Plasma \rightarrow Interstitial

Ans. (1)
Sol. Volume of body fluids in a person of 70 kg weight will be 42 liter, out of which intracellular fluid will be 28 Liter, volume of interstitial fluid will be 11 Liter and plasma volume will be 3 Liter.

Pre-Medical Division Campus:

