CODE-C SUBJECT : PHYSICS \& GHEMISTRY

Date: 26 May, 2019 | Duration: 2 Hours | Max. Marks: 100

:: IMPORTANT INSTRUCTIONS ::

1. This question paper contains all objective questions divided into three categories. Each question has four answer options given.
2. Category-I : Carry 1 marks each and only one option is correct. In case of incorrect answer or any combination of more than one answer, $1 / 4$ marks will be deducted.
3. Category-II : Carry 2 marks each and only one option is correct. In case of incorrect answer or any combination of more than one answer, $1 / 2$ marks will be deducted.
4. Category-III : Carry 2 marks each and one or more option(s) is/are correct. If all correct answers are not marked and also no incorrect answer is marked then score $=2 \times$ number of correct answers marked \div actual number of correct answers. If any wrong option is marked or if any combination including a wrong option is marked, the answer will considered wrong but there is no negative marking for the same and zero marks will be awarded.
5. Questions must be answered on, OMR sheet by darkening the appropriate bubble marked (A), (B), (C) or (D).
6. Use only Black/Blue ball point pen to mark the answer by complete filing up of the respective bubbles.
7. Mark the answers only in the space provided. Do not make any stray mark on the OMR.
8. Write question booklet number and your roll number carefully in the specified locations of the OMR. Also fill appropriate bubbles.
9. Write your name (in block letter), name of the examination centre and put you full signature in appropriate boxes in the OMR.
10. The OMRs will be processed by electronic means. Hence it is liable to become invalid if there is any mistake in the question booklet number or roll number entered or if there is any mistake in filling corresponding bubbles. Also it may become invalid if there is any discrepancy in the name of the candidate, name of the examination center or signature of the candidate vis-à-vis what is given in the candidate's admit card. The OMR may also become invalid due to folding or putting stray marks on it or any damage to it. The consequence of such invalidation due to incorrect marking or careless handling by the candidate will be sole responsibility of candidate.
11. Candidates are not allowed to carry any written or printed material, calculator, pen, docu-pen, log table, wristwatch, any communication device like mobile phones etc. inside the examination hall. Any candidate found with such items will reported against \& his/her candidature will be summarily cancelled
12. Rough work must be done on the question paper itself. Additional blank pages are given in the question paper for rough work.
13. Hand over the OMR to the invigilator before leaving the Examination Hall.
14. This paper contains questions in both English and Bengali. Necessary care and precaution were taken while framing the Bengali version. However if any discrepancy(ies) is/are found between the two versions, the information provided in the English version will stand and will be treated as final.

Resonance Eduventures Ltd.

Registered \& Corporate Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Toll Free: 18002585555 | Fax: +91-022-39167222| 08003444888 Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029 Toll Free : 18002585555 © 08003444888 fffacebook.com/ResonanceEdu \quad twitter.com/ResonanceEdu wimw.youtube.com/resowatch blog.resonance.ac.in

HIGHEST number of CLASSROOM Students Qualified for JEE（Advanced） 2019 from any Institute of India＊

Top Category Ranks in JEE Main 2019

Students qualified for JEE Advanced 2019
students from Repeaters＇Batches
students from Freshers＇Batches

HIGHEST CLASSROOM GIRLS
Student Qualified for JEE（Advanced） 2019 from any Institute of India＊
1506

HIGHEST CLASSROOM HINDI MEDIUM
Students Qualified for JEE（Advanced） 2019 from any Institute of India＊
1450

For scholarship on the basis of JEE Main 2019，SMS RESO SCHO at 56677

ADMISSIONS

 OPENFOR 2019－20

Classes：V to XII \＆XII＋
Target：JEE（Main＋Advanced） JEE（Main）｜AllMS／NEET Pre－foundation｜Commerce \＆CLAT

ResoNET Dates $9^{\text {th }} \& \mathbf{1 6}^{\text {th }}$ June 2019

Resonance Eduventures Limited

Registered \＆Corporate Office：CG Tower，A－46 \＆52，IPIA，Near City Mall， Jhalawar Road，Kota（Rajasthan）－ 324005
Tel．No．：0744－2777777，2777700｜CIN：U80302RJ2007PLC024029

Toll Free：
18002585555
website：www．resonance．ac．in

COURSE：VIJAY（JR） FOR CLASS：XIII
 Target：JEE（Main＋Advanced） 2020
 Course Starts from
 10＂h JUNE 2019

CHEMISTRY

Category - I (Q. 41 to Q.70)

Carry 1 mark each and only one option is correct. In case of incorrect answer or nay combination of more than one answer, $1 / 4$ mark will be deducted.
41. The $\mathrm{H}-\mathrm{N}-\mathrm{H}$ angle in ammonia is 107.6°, while the $\mathrm{H}-\mathrm{P}-\mathrm{H}$ angle in phosphine is 93.5°. Relative to phosphine, the p-character of the lone pair on ammonia is expected to be
(A) Less
(B) More
(C) Same
(D) Cannot be predicted

Ans. (A)
Sol. s-character increases, Bond angle increases
p-character increases, Bond angel decreases
Hence, p-character order: $\mathrm{PH}_{3}>: \mathrm{NH}_{3}$
Bond angle order $\mathrm{PH}_{3}<: \mathrm{NH}_{3}$
42. The reactive species in chlorine bleach is
(A) $\mathrm{Cl}_{2} \mathrm{O}$
(B) OCl^{-}
(C) ClO_{2}
(D) HCl

Ans. (B)
Sol. Chlorine bleach is CaOCl_{2}
its composition is $\mathrm{Ca}^{2+}, \mathrm{Cl}^{-}, \mathrm{OCl}^{-}$
43. The conductivity measurement of a coordination compound of Cobalt (III) shows that it dissociates into 3 ions in solution. The compound is
(A) Hexaamminecobalt(III) chloride
(B) Pentaamminesulphatochbalt(III) chloride
(C) Pentaamminechloridochbalt(III) sulphate
(D) Pentaamminechloridochbalt(III) chloride

Ans. (D)
Sol. Pentaammine chloride cobalt (III) chloride
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2} \rightleftharpoons\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}^{-}\right]^{+2}+2 \mathrm{Cl}^{-}$
Gives 3 ions in aqueous solution
44. In the Bayer's process, the leaching of alumina is done by using
(A) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(B) NaOH
(C) SiO_{2}
(D) CaO

Ans. (B)
Sol. Bayer's process: Used for leaching of red bauxite :
$\mathrm{Al}_{2} \mathrm{O}_{3} .2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NaOH} \xrightarrow[8 \mathrm{~atm}]{190^{\circ} \mathrm{C}} \underset{\text { (Soluble) }}{2 \mathrm{NaAlO}_{2}}+3 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{NaAlO}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{NaOH}+\mathrm{Al}(\mathrm{OH})_{3} \downarrow$
$2 \mathrm{Al}(\mathrm{OH})_{3} \longrightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{O}$
45. Which atomic species cannot be used as a nuclear fuel ?
(A) ${ }_{92}^{233} \mathrm{U}$
(B) ${ }_{92}^{235} u$
(C) ${ }_{94}^{239} u$
(D) ${ }_{92}^{238} u$

Ans. (D)
Sol. ${ }_{92} \mathrm{U}^{238}$ isotope of uranimum not participate in nuclear chain reaction.

Resonance Eduventures Limited

REGISTERED \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph.No. : 0744-2777777, 0744-2777700 | Toll Free : 18002585555 |FAX No. : $+91-022-39167222$ | To Know more : sms RESO at 56677
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

46. The molecule/molecules that has/have delocalised lone pair(s) of electrons is/are
(I)

(III)

(II)

(IV) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{NHCH}_{3}$
(A) I, II and III
(B) I, II and IV
(C) I and III
(D) only III

Ans. (D)
Sol. In
 , the lone pair of oxygen get delocalised on the π bond located on the next carbon.
47. The conformations of n-butane, commonly known as eclipsed, gauche and anti-conformations can be interconverted by
(A) rotation around $\mathrm{C}-\mathrm{H}$ bond of a methyl group
(B) rotation around C-H bond of a methylene group
(C) rotation around C1-C2 linkage
(D) rotation around C2-C3 linkage

Ans. (D)

Sol.

48. The correct order of the addition reaction rates of halogen acids with ethylene is
(A) hydrogen chloride > hydrogen bromide > hydrogen iodide
(B) hydrogen iodide $>$ hydrogen bromide $>$ hydrogen chloride
(C) hydrogen bromide $>$ hydrogen chloride $>$ hydrogen iodide
(D) hydrogen iodide > hydrogen chloride > hydrogen bromide

Ans. (B)
Sol. Hydrogen iodide > hydrogen bromide > hydrogen chloride
49. One of the products of the following reactions \mathbf{P}.

Structure of \mathbf{P} is
(A)

(B)

(C)

(D)

Ans. (C)

Resonance Eduventures Limited

REGISTERED \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph.No. : 0744-2777777, 0744-2777700 | Toll Free : 18002585555 |FAX No. :+91-022-39167222 | To Know more : sms RESO at 56677

[^0]

Sol.

50. For the reaction below, the product is \mathbf{Q}.

(A)

(B)

(C)

(D)

Ans. (A)

Sol.
51. Cyclopentanol on reaction with NaH followed by CS_{2} and CH_{3} l produces a/an
(A) ketone
(B) alkene
(C) ether
(D) xanthate

Ans. (D)

Sol.

52. The compound, which evolves carbon dioxide on treatment with aqueous solution of sodium bicarbonate $25^{\circ} \mathrm{C}$, is
(A) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$
(B) $\mathrm{CH}_{3} \mathrm{COCl}$
(C) $\mathrm{CH}_{3} \mathrm{CONH}_{2}$
(D) $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$

Ans. (B)
Sol. This question has not a direct answer. In aqueous NaHCO_{3} solution some amount of OH^{-}is present, which hydrolyse the $\mathrm{CH}_{3} \mathrm{COCl}$ to $\mathrm{CH}_{3} \mathrm{COOH}$. The $\mathrm{CH}_{3} \mathrm{COOH}$ thus formed gives out CO_{2} gas with sodium bicarbonate.
Note: Only Nitro-phenols gives out CO_{2} with NaHCO_{3}, Not the phenol.
53. The indicated atom is not a nucleophilic site in
(A) $\mathrm{BH}_{4}{ }^{-}$
(B) $\mathrm{CH}_{3} \mathrm{MgI}$
(C) $\mathrm{CH}_{3} \mathrm{OH}$
(D) $\underset{\uparrow}{\mathrm{CH}_{3} \mathrm{NH}_{2}}$
(A) \uparrow

Ans. (A)

Sol. In BH_{4}^{-}, " B " is not nucleophilic site

Resonance Eduventures Limited

REGISTERED \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph.No. : 0744-2777777, 0744-2777700 | Toll Free : 18002585555 |FAX No. : +91-022-39167222 | To Know more : sms RESO at 56677

Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLCO24029

54. The charge carried by 1 millimole of $\mathrm{M}^{\mathrm{n}+}$ ions is 193 coulombs. The value of n is
(A) 1
(B) 2
(C) 3
(D) 4

Ans. (B)
Sol. Charge on 1 milimole M^{n+} ions $=193 \mathrm{cb}=\frac{\mathrm{n} \times 96500}{1000}$

$$
n=\frac{193 \times 1000}{96500}=2
$$

55. Which of the following mixtures will have the lowest pH at 298 K ?
(A) $10 \mathrm{ml} 0.05 \mathrm{NCH}_{3} \mathrm{COOH}+5 \mathrm{ml} 0.1 \mathrm{NNH}_{4} \mathrm{OH}$
(B) $5 \mathrm{ml}_{0.2} 2 \mathrm{NH}_{4} \mathrm{Cl}+5 \mathrm{ml} 0.2 \mathrm{~N} \mathrm{NH}_{4} \mathrm{OH}$
(C) $5 \mathrm{ml} 0.1 \mathrm{~N} \mathrm{CH}_{3} \mathrm{COOH}+10 \mathrm{ml} 0.05 \mathrm{~N} \mathrm{CH}_{3} \mathrm{COONa}$
(D) $5 \mathrm{ml} 0.1 \mathrm{~N} \mathrm{CH}_{3} \mathrm{COOH}+5 \mathrm{ml} 0.1 \mathrm{~N} \mathrm{NaOH}$

Ans. (C)
Sol. (C)

mili eq. (0.5) (0.5)
It is acidic buffer solution $\mathrm{pH}=\mathrm{pKa}+\log \frac{\mathrm{CH}_{3} \mathrm{COO}^{-}}{\mathrm{CH}_{3} \mathrm{COOH}}$
(pH = pKa) only
this solution will have lowest pH ,
(A)

$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NH}_{4} \mathrm{OH} \longrightarrow \mathrm{CH}_{3} \mathrm{COONH}_{4}$			
0.05 N	0.1 N	\downarrow	
10 ml	5 ml	(WAWB Salt)	
(0.5)	(0.5)	$[\mathrm{Ph}=7-1 / 2 \mathrm{pKb}+1 / 2 \mathrm{pKa}] \sim 7$	[pKa = pKb]

(B)
$\left(\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NH}_{4} \mathrm{OH}\right)$ Basic buffer solution

$$
\begin{aligned}
& \mathrm{POH}=\mathrm{pKb}+\log \left(\frac{\mathrm{CA}}{\mathrm{~B}}\right) \\
& \mathrm{PH}>7
\end{aligned}
$$

(D)

56. Consider the following two first order reactions occurring at 298 K with same initial concentration of A :
(1) $\mathrm{A} \rightarrow \mathrm{B}$: rate constant, $\mathrm{k}=0.693 \mathrm{~min}^{-1}$
(2) $\mathrm{A} \rightarrow \mathrm{C}$: half - life, $\mathrm{t}_{1 / 2}=0.693 \mathrm{~min}^{-1}$

Choose the correct option:
(A) Reaction (1) is faster than Reaction (2).
(B) Reaction (1) is slower than Reaction (2).
(C) Both reaction proceed at the same rate.
(D) Since two different products are formed, rates cannot be compared.

Ans. (B)
Sol. For I^{H} order Reaction ; Rate constant $K=\frac{0.693}{\mathrm{ty}_{2}}$ and Rate $=K(A)^{1}$
For (I) Reaction $=\mathrm{K}=0.693 \mathrm{mint}^{-1}$
For (II) Reaction $=\mathrm{K}=\frac{0.693}{\mathrm{ty}_{2}}=\frac{0.693}{0.693}=1 \mathrm{Mint}^{-1}$
So, $\mathrm{K}_{1}<\mathrm{K}_{11}$
than Rate (I) < Rate (II)

Resonance Eduventures Limited

REGISTERED \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph.No. : 0744-2777777, 0744-2777700 | Toll Free : 18002585555 | FAX No. : +91-022-39167222| To Know more : sms RESO at 56677
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

57. For the equilibrium $\mathrm{H}_{2} \mathrm{O}(\ell) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(v)$, which of the following is correct ?
(A) $\Delta \mathrm{G}=0, \Delta \mathrm{H}<0, \Delta \mathrm{~S}<0$
(B) $\Delta \mathrm{G}<0, \Delta \mathrm{H}>0, \Delta \mathrm{~S}>0$
(C) $\Delta \mathrm{G}>0, \Delta \mathrm{H}=0, \Delta \mathrm{~S}>0$
(D) $\Delta G=0, \Delta H>0, \Delta S>0$

Ans. (D)
Sol. For equilibrium $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
$\Delta G=0$,
$\Delta \mathrm{H}>0$ (+ive) endothermic
$\Delta \mathrm{S}>0$ (+ ive)
ΔS sys $=\left(n C_{v} \ln \frac{T_{2}}{T_{1}}\right)+n R \ln \frac{V_{2}}{V_{1}}$
0
ΔS sys $=n \operatorname{Rln} \frac{V_{2}}{V_{1}}$ at constant temperature
58. For a vander Waal's gas, the term $\left(\frac{a b}{v^{2}}\right)$ represents some
(A) Pressure
(B) Energy
(C) Critical density
(D) Molar mass

Ans. (B)
Sol. Term $\frac{\mathrm{ab}}{\mathrm{v}^{2}}$ represent energy permole of gases.
Unit of a (Vander wal's constant) $=\frac{\text { atm.liter }^{2}}{\text { mole }^{2}}$
Unit of b (Vander wals's constant $)=\frac{\text { liter }}{\text { mole }}$
$\mathrm{V}=$ volume of gas per mole $=\frac{\text { liter }}{\text { mole }}$
So $\frac{\mathrm{ab}}{\mathrm{v}^{2}}($ Unit $)=\frac{\frac{\text { atm.liter }^{2}}{\mathrm{~mole}^{2}} \times \frac{\text { liter }}{\mathrm{mole}}}{\left(\frac{\text { liter }}{\text { mole }}\right)^{2}}=\left(\frac{\text { atm.liter }}{\text { mole }}\right)$
It is unit of energy per mole.
59. In the equilibrium $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$, if at a given temperature the concentrations of the reactants are increased, the value of the equilibrium constant, K_{c}, will
(A) Increase
(B) Decrease
(C) Remain the same
(D) Cannot be predicted with certainty

Ans. (C)
Sol. Equilibrium constant not depend on concentration of reactant it is depended only on temperature
60. If electrolysis of aqueous CuSO_{4} solution is carried out using Cu-electrodes, the reaction taking place at the anode is
(A) $\mathrm{H}^{+}+\mathrm{e} \rightarrow \mathrm{H}$
(B) $\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e} \rightarrow \mathrm{Cu}(\mathrm{s})$
(C) $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})-2 \mathrm{e} \rightarrow \mathrm{SO}_{4}$
(D) Cu (s) $-2 \mathrm{e} \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})$

Ans. (D)
Sol. On electrolysis of aqueous solution of CuSO_{4} on using Cu-electrode. According to SOP values at anode.

$$
\begin{array}{lr}
2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-} & \mathrm{E}^{0}=-1.2 .3 \mathrm{~V} \\
\mathrm{Cu} \rightarrow \mathrm{Cu}^{+2}+2 \mathrm{e}^{-} & \mathrm{E}^{0}=-0.34 \mathrm{~V}
\end{array}
$$

So reaction carried out on anode, which have high SOP value.

Resonance Eduventures Limited

REGISTERED \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph.No. : 0744-2777777, 0744-2777700 | Toll Free : 18002585555 |FAX No. :+91-022-39167222 | To Know more : sms RESO at 56677

Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

61. Which one of the following electronic arrangements is absurd?
(A) $\mathrm{n}=3, \ell=1, \mathrm{~m}=-1$
(B) $\mathrm{n}=3, \ell=0, \mathrm{~m}=0$
(C) $\mathrm{n}=2, \ell=0, \mathrm{~m}=-1$
(D) $\mathrm{n}=2, \ell=1, \mathrm{~m}=0$

Ans. (C)
Sol. Quantum number set $\mathrm{n}=2, \mathrm{I}=0, \mathrm{~m}=-1$ it is not possible (not valid). (Value of $\mathrm{m} \leq+\mathrm{I}$ to -I]
62. The quantity hv/kB corresponds to
(A) Wavelength
(B) Velocity
(C) Temperature
(D) Angular momentum

Ans. (C)
Sol. $K_{\in}=\frac{3}{2} K_{B} T=h v$ (For photon)
(Partial form = wave form)
$\frac{\mathrm{hv}}{\mathrm{k}_{\mathrm{B}}}=\frac{3}{2} \mathrm{~T}$ (it represent temperature)
63. In the crystalline solid MSO_{4}. $\mathrm{nH}_{2} \mathrm{O}$ of molar mass $250 \mathrm{~g} \mathrm{~mol}^{-1}$, the percentage of anhydrous salt is 64 by weight. The value of n is
(A) 2
(B) 3
(C) 5
(D) 7

Ans. (C)
Sol. Mass of anhydrous MSO_{4} salt $=250 \times \frac{64}{100}=160 \mathrm{gm} / \mathrm{mole}$
Total. Mass of $\mathrm{H}_{2} \mathrm{O}$ is MSO_{4}. $\mathrm{nH}_{2} \mathrm{O}=250-160=90 \mathrm{gm} / \mathrm{mole}$
So value of $n=\frac{90}{18}=5$
64. At S.T.P. the volume of 7.5 g of a gas is 5.6 L . The gas is
(A) NO
(B) $\mathrm{N}_{2} \mathrm{O}$
(C) CO
(D) CO_{2}

Ans. (A)
Sol. At S.T.P weight of 5.6 L gas $=7.5 \mathrm{gm}$
At S.T.P weight of 22.4 L gas $=\frac{7.5}{5.6} \times 22.4$
mol Mass of gas gas is $(\mathrm{NO})=30.0 \mathrm{gm} / \mathrm{mole}$
65. The half - life period of $53 \mathrm{I}^{125}$ is 60 days. The radioactivity after 180 days will be
(A) 25%
(B) 12.5%
(C) 33.3%
(D) 3.0%

Ans. (B)
Sol. $\quad t_{1 / 2}=60$ days Radioactivity after t time $N_{t}=\frac{N_{0}}{(2)^{n}}$ and $n=\frac{t}{t_{1 / 2}}$
So, $\mathrm{n}=\frac{180}{60}=3 ; \mathrm{N}_{\mathrm{t}}=\frac{\mathrm{N}_{\mathrm{o}}}{(2)^{3}}=\frac{\mathrm{N}_{\mathrm{o}}}{8}=0.125 \mathrm{~N}_{0}$
So Radioactivity after 180 days $=12.5 \%$.
66. Consider the radioactive disintegration

$$
{ }_{82} \mathrm{~A}^{210} \rightarrow \mathrm{~B} \rightarrow \mathrm{C} \rightarrow 82 \mathrm{D}^{206}
$$

The sequence of emission can be
(A) β, β, β
(B) α, α, β
(C) β, β, γ
(D) β, β, α

Ans. (D)
Sol. $\quad{ }_{82} A^{210} \xrightarrow{\beta} 83 B^{210} \xrightarrow{\beta} 84 C^{210} \xrightarrow{\alpha}{ }_{82} C^{206}$
$z X^{A} \longrightarrow z_{+1} Y^{A}+\beta$-particle
$\mathrm{zX}^{A} \longrightarrow \mathrm{z}-2 \mathrm{Y}^{\mathrm{A}-4}+\alpha$-particle

Resonance Eduventures Limited

REGISTERED \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

67. The second lonisation energy of the following elements follows the order
(A) $\mathrm{Zn}>\mathrm{Cd}<\mathrm{Hg}$
(B) $\mathrm{Zn}>\mathrm{Cd}>\mathrm{Hg}$
(C) $\mathrm{Cd}>\mathrm{Hg}<\mathrm{Zn}$
(D) $\mathrm{Zn}<\mathrm{Cd}<\mathrm{Hg}$

Ans. (A)
Sol. IInd I.E Order: $\mathrm{Cd}<\mathrm{Zn}<\mathrm{Hg}$
So, $\quad \mathrm{Zn}>\mathrm{Cd}<\mathrm{Hg}$
Element IInd I.E. (kJ/mole)
Zn 1734
Cd 1631
$\mathrm{Hg} \quad 1809$
68. The melting points of (i) BeCl_{2} (ii) CaCl_{2} and (iii) HgCl_{2} follows the order
(A) $\mathrm{i}<\mathrm{ii}<\mathrm{iii}$
(B) iii < i <ii
(C) $\mathrm{i}<\mathrm{iii}<\mathrm{ii}$
(D) ii < i < iii

Ans. (B)
Sol. Melting point order $\mathrm{HgCl}_{2}<\mathrm{BeCl}_{2}<\mathrm{CaCl}_{2}$

$$
\text { (iii) }<\text { (i) }<\text { (ii) }
$$

Melting points $=276^{\circ} \mathrm{C} \quad 399^{\circ} \mathrm{C} \quad 775^{\circ} \mathrm{C}$
According to covalent character

$$
\text { Melting points } \propto \frac{1}{\text { Covalent character }}
$$

69. Which of these species will have non-zero magnetic moment?
(A) Na^{+}
(B) Mg
(C) F^{-}
(D) Ar^{+}

Ans. (D)
Sol.

${ }_{11} \mathrm{Na}^{+}$	$=1 s^{2} 2 s^{2} 2 p^{6}$	0
${ }_{12} \mathrm{Mg}$	$=1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$	0
${ }_{9} \mathrm{~F}^{-}$	$=1 s^{2} 2 s^{2} 2 p^{6}$	0
${ }_{18} \mathrm{Ar}^{+}$	$=1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}$	1

70. The first electron affinity of C, N and O will be of the order
(A) $\mathrm{C}<\mathrm{N}<\mathrm{O}$
(B) $\mathrm{N}<\mathrm{C}<\mathrm{O}$
(C) $\mathrm{C}<\mathrm{O}<\mathrm{N}$
(D) $\mathrm{O}<\mathrm{N}<\mathrm{C}$

Ans. (B)
Sol. ${ }^{\text {st }}$ electron affinity order: $\mathrm{N}<\mathrm{C}<\mathrm{O}$
According to electronic configuration
$N=1 s^{2} 2 s^{2} 2 p^{3}$ Half-filled orbital are more stable
EA. kJ $/$ mole $\left(\begin{array}{l}C=121.77 \\ \mathrm{~N}=-6.8 \\ \mathrm{O}=140\end{array}\right)$

Resonance Eduventures Limited

REGISTERED \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Category-II (Q. 71 to Q75)

Carry 2 marks each and only one option is correct. In case of incorrect answer or any combination of more than one answer, $1 / 2$ mark will be deducted.
71. Oxidatin of allyl alcohol with a peracid gives a compound of molecular formula $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$, Which contains an asymmetric carbon atom. The structure of the compound is
(A)

(B)

(C)

(D)

Ans. (A)

Sol.

72. The total number of isomeric liner dipeptide which can be synthesized from racemic alanine is
(A) 1
(B) 2
(C) 3
(D) 4

Ans. (D)

Sol.

Dipeptide has two chiral carbon and both side unsymmetrical hence RR, RS, SR and SS is possible.
73. The kinetic study of a reaction like $v \mathrm{~A} \rightarrow \mathrm{P}$ at 300 K provides the following curve. Where concentration is taken in $\mathrm{mol}^{\mathrm{mol}}{ }^{-3}$ and time in min.

$$
\begin{aligned}
& r_{0}=\text { initial rate } \\
& {\left[A_{0}\right]=\text { initial concentration of } A}
\end{aligned}
$$

Ans. (D)
Sol. \quad Rate $=k(A)^{n}$
According to graph ($\mathrm{n}=2$)
Slope $=\frac{(\text { Rate })^{\frac{1}{2}}}{(\mathrm{~A})}=4$
$k=\frac{\text { Rate }}{(A)^{2}}=(4)^{2}=16$

Resonance Eduventures Limited

REGISTERED \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph.No. : 0744-2777777, 0744-2777700 | Toll Free : 18002585555 |FAX No. : +91-022-39167222 | To Know more : sms RESO at 56677

[^1]
74. At constant pressure, the heat of formation of compound is not dependent on temperature, when
(A) $\Delta \mathrm{C}_{\mathrm{p}}=0$
(B) $\Delta C v=0$
(C) $\Delta \mathrm{C}_{\mathrm{p}}>0$
(D) $\Delta \mathrm{C}_{\mathrm{p}}<0$

Ans. (A)
Sol. For reaction: (According to Kirchhoff's equation)
$\Delta \mathrm{H}_{2}=\Delta \mathrm{H}_{1}+\Delta \mathrm{Cp}(\Delta \mathrm{T})$
When $\Delta \mathrm{Cp}=0$
$\Delta \mathrm{H}_{\mathrm{f}}$ is not depends on temperature.
75. A coper coin was electroplated with Zn and then heated at high temperature until there is a change in colour. What will be the resulting colour?
(A) White
(B) Black
(C) Silver
(D) Golden

Ans. (B)
Sol. If these coins are heated, the zinc will diffuse into the copper layer, producing a surface alloy of zinc and copper. These alloys are brasses. Copper also oxidizes when heated in air, producing a black layer of copper-oxide (CuO).

Category-III ($\mathbf{Q} .76$ to $\mathbf{Q . 8 0}$)

Carry 2 marks each one or more option(s) is/are correct. If all correct answer are not marked and also no incorrect answer is marked then score $=2 \times$ number of correct answer marked + actual number of correct answers. If any wrong option is marked or if any combination including a wrong option is marked, the answer will considered wrong, but three is no negative marking for the same and zero mark will be awarded.
76. The compounds(s), capable of producing achiral compound on heating at $100^{\circ} \mathrm{C}$ is/are
(A)

(C)

(B)

(D)

Ans. (C)

β-keto acid

77. Haloform reaction with I_{2} and KOH will be responded by
(A)

(B)

(C)

(D)

Ans. (A)

Sol.

Resonance Eduventures Limited

REGISTERED \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph.No. : 0744-2777777, 0744-2777700 | Toll Free : 18002585555 | FAX No. : +91-022-39167222 | To Know more : sms RESO at 56677

[^2]
78. Identify the correct statement(s):
(A) The oxidation number of Cr in CrO_{5} is +6 .
(B) $\Delta \mathrm{H}>\Delta \mathrm{U}$ for the reaction $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$. Provided both gases behave idelly.
(C) pH of $0.1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ is less than that of 0.1 N HCl at $25^{\circ} \mathrm{C}$
(D) $\left(\frac{R T}{F}\right)=0.0591$ volt at $25^{\circ} \mathrm{C}$.

Ans. (A,B)
Sol. (A) O.N. of grim CrO_{5}

(B) $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}) \cdot \Delta \mathrm{H}=\Delta \mathrm{U}+\Delta \mathrm{n}_{\mathrm{g}} R \mathrm{~T} \quad \Delta \mathrm{n}_{\mathrm{g}}=2-1$ so $\Delta \mathrm{H}>\Delta \mathrm{U}$
(C) pH of $0.1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4} \Rightarrow\left[\mathrm{H}^{+}\right] 0.1 \mathrm{~N}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=10 \mathrm{~g}\left(10^{-1}\right)$
pH of $0.1 \mathrm{~N} \mathrm{HCl}=\left[\mathrm{H}^{+}\right]=0.1 \mathrm{~N}$
$\mathrm{pH}=\log \left[\mathrm{H}^{+}\right]=-\log \left(10^{-1}\right)=(1)$
(D) $\frac{R T}{F}=\frac{8.314 \times 298}{96500}=0.256$
$\frac{2.303 R T}{F}=\frac{2.303 \times 8.314 \times 298}{96500}=0.0591$
79. Compounds with spin-only magnetic moment equivalent to five unpaired electrons are
(A) $\mathrm{K}_{4}\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]$
(B) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$
(C) $\mathrm{K}_{3}\left[\mathrm{FeF}_{6}\right]$
(D) $\mathrm{K}_{4}\left[\mathrm{MnF}_{6}\right]$

Ans. (B,C,D)

BCD complex shown spin only magnetic moment equivalent to 5 unpaired electrons.
Sol. (A) $\mathrm{K}_{4}\left[\mathrm{Mn}(\mathrm{CN})_{6}\right] ; \mathrm{Mn}^{+2}=3 \mathrm{~d}^{5} 4 \mathrm{~S}^{0}$ (in octahedral complex) $\mathrm{CN}^{-} ; \mathrm{SFL}_{2 \mathrm{~g}}{ }^{221} \mathrm{eg}^{00}$ (due to pairing of e^{-})
(B) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3} ; \mathrm{Fe}^{+3}=3 \mathrm{~d}^{5} 4 \mathrm{~S}^{0} \mathrm{H}_{2} \mathrm{O}$; WFL So $\mathrm{t}_{2 \mathrm{~g}}{ }^{111} \mathrm{eg}^{11}$
(C) $\mathrm{K}_{3}\left[\mathrm{FeF}_{6}\right] ; \mathrm{Fe}^{+3}=3 \mathrm{~d}^{5} 4 \mathrm{~S}^{0} \quad \mathrm{~F}^{-}$; WFL, So $\mathrm{t}_{2 \mathrm{~g}}{ }^{111} \mathrm{eg}^{11}$
(D) $\mathrm{K}_{4}\left[\mathrm{Mn} \mathrm{F}_{6}\right] ; \mathrm{Mn}^{+2}=3 \mathrm{~d}^{5} 4 \mathrm{~S}^{0} \quad \mathrm{~F}^{-} ; \mathrm{WFL}$, So $\mathrm{t}_{2 g}{ }^{111} \mathrm{eg}^{11}$
80. Which of the following chemical may be used to identify three unabelled beakers containing conc. NaOH , conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and and water.
(A) $\mathrm{NH}_{4} \mathrm{NO}_{3}$
(B) NaCl
(C) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
(D) HCOONa

Ans. (A,C)

Sol. (A) $\mathrm{NH}_{4} \mathrm{NO}_{3}$
$\xrightarrow{\text { Conc. } \mathrm{NaOH}} \mathrm{NH}_{3} \uparrow+\mathrm{NaNO}_{3}+\mathrm{H}_{2} \mathrm{O}$
Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$
$\begin{gathered}\left.\text { (C) } \mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \xrightarrow{\text { Conc. } \mathrm{NaOH}} \mathrm{NH}_{3} \uparrow+\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O} \\ \text { Conc. } \mathrm{H}_{2} \mathrm{SO}_{4} \\ \end{gathered}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+\mathrm{CO}_{2} \uparrow+\mathrm{H}_{2} \mathrm{O}$
NH_{3} pungent smell gas, NO_{2} brown coloured gas, CO_{2} colourless, ouderless gas (effervescence) $\mathrm{NH}_{4} \mathrm{NO}_{3}$ and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ not react with water.

Resonance Eduventures Limited

REGISTERED \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph.No. : 0744-2777777, 0744-2777700 | Toll Free : 18002585555 |FAX No. : +91-022-39167222 | To Know more : sms RESO at 56677

Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 180025855557340010333 f facebook.com/ResonanceEdu Y twitter.com/ResonanceEdu wime ww.youtube.com/resowatch Blog.resonance.ac.in

[^0]: Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

[^1]: Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

[^2]: Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

