

CODE-A SUBJECT : PHYSICS & CHEMISTRY

WEST BENGAL JOINT ENTRANCE EXAMINATION (WBJEE) 2019

Date: 26 May, 2019 | Duration: 2 Hours | Max. Marks: 100

:: IMPORTANT INSTRUCTIONS ::

- 1. This question paper contains all objective questions divided into three categories. Each question has four answer options given.
- 2. **Category-I**: Carry 1 marks each and only one option is correct. In case of incorrect answer or any combination of more than one answer, ¹/₄ marks will be deducted.
- 3. **Category-II**: Carry 2 marks each and only one option is correct. In case of incorrect answer or any combination of more than one answer, ½ marks will be deducted.
- 4. Category-III : Carry 2 marks each and one or more option(s) is/are correct. If all correct answers are not marked and also no incorrect answer is marked then score = 2 × number of correct answers marked ÷ actual number of correct answers. If any wrong option is marked or if any combination including a wrong option is marked, the answer will considered wrong but there is no negative marking for the same and zero marks will be awarded.
- 5. Questions must be answered on, OMR sheet by darkening the appropriate bubble marked (A), (B), (C) or (D).
- 6. Use only Black/Blue ball point pen to mark the answer by complete filing up of the respective bubbles.
- 7. Mark the answers only in the space provided. Do not make any stray mark on the OMR.
- 8. Write question booklet number and your roll number carefully in the specified locations of the OMR. Also fill appropriate bubbles.
- 9. Write your name (in block letter), name of the examination centre and put you full signature in appropriate boxes in the OMR.
- 10. The OMRs will be processed by electronic means. Hence it is liable to become invalid if there is any mistake in the question booklet number or roll number entered or if there is any mistake in filling corresponding bubbles. Also it may become invalid if there is any discrepancy in the name of the candidate, name of the examination center or signature of the candidate visà-vis what is given in the candidate's admit card. The OMR may also become invalid due to folding or putting stray marks on it or any damage to it. The consequence of such invalidation due to incorrect marking or careless handling by the candidate will be sole responsibility of candidate.
- 11. Candidates are not allowed to carry any written or printed material, calculator, pen, docu-pen, log table, wristwatch, any communication device like mobile phones etc. inside the examination hall. Any candidate found with such items will reported against & his/her candidature will be summarily cancelled.
- 12. Rough work must be done on the question paper itself. Additional blank pages are given in the question paper for rough work.
- 13. Hand over the OMR to the invigilator before leaving the Examination Hall.
- 14. This paper contains questions in both English and Bengali. Necessary care and precaution were taken while framing the Bengali version. However if any discrepancy(ies) is/are found between the two versions, the information provided in the English version will stand and will be treated as final.

Resonance Eduventures Ltd.

Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 **Tel.No.:** 0744-6607777, 3012100, 3012222, 6635555 | **Toll Free:** 1800 258 5555 | **Fax:** +91-022-39167222 | **Website:** www.resonance.ac.in | **E-mail:** contact@resonance.ac.in | **CIN:** U80302RJ2007PLC024029

Toll Free : 1800 258 5555 🔊 08003 444 888 f facebook.com/ResonanceEdu Ӯ twitter.com/ResonanceEdu 🔠 www.youtube.com/resowatch 🕒 blog.resonance.ac.ir

HIGHEST number of CLASSROOM Students Qualified for JEE (Advanced) 2019 from any Institute of India*

CHEMISTRY

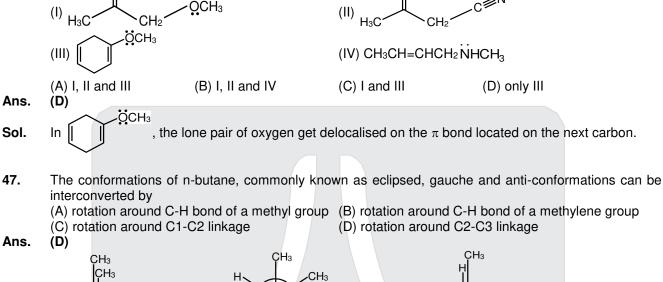
Category - I (Q.41 to Q.70)

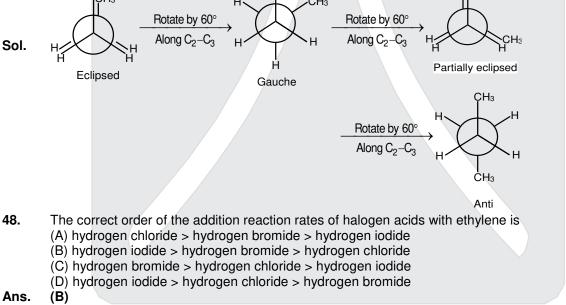
Carry 1 mark each and only one option is correct. In case of incorrect answer or nay combination of more than one answer, ¹/₄ mark will be deducted.

41.	The H–N–H angle in ammonia is 107.6°, while the H–P–H angle in phosphine is 93.5°. Relative to phosphine, the p-character of the lone pair on ammonia is expected to be					
Ano	(A) Less	(B) More	(C) Same	(D) Cannot be predicte	d	
Ans. Sol.						
42.	The reactive species					
Ans.	(A) Cl ₂ O (B)	(B) OCI⁻	(C) CIO ₂	(D) HCI		
Sol.	Chlorine bleach is Ca its composition is Ca					
43.	ions in solution. The (A) Hexaamminecob (B) Pentaamminesul (C) Pentaamminechl (D) Pentaamminechl	compound is	de te	balt (III) shows that it dissociate	s into 3	
Ans. Sol.	(D) Pentaammine chlorid	le cobalt (III) chloride				
001.		\geq [Co(NH ₃) ₅ Cl ⁻] ⁺² + 20	CH			
	Gives 3 ions in aque	ous solution				
44.	In the Bayer's proces	s, the leaching of alu	mina is done by using			
Ans.	(A) Na ₂ CO ₃ (B)	(B) NaOH	(C) SiO ₂	(D) CaO		
Sol.						
	$AI_2O_3.2H_2O + 2NaOH \xrightarrow{190^{\circ}C} 3 atm \xrightarrow{2NaAIO_2} + 3H_2O$ (Soluble)					
	NaAlO ₂ + H ₂ O \longrightarrow NaOH + Al(OH) ₃ \downarrow 2Al(OH) ₃ \longrightarrow Al ₂ O ₃ + 3H ₂ O					
45.	Which atomic specie (A) ²³³ U	s cannot be used as a (B) ²³⁵ U	a nuclear fuel ? (C) ²³⁹ ∪	(D) ²³⁸ U		
Ans. Sol.	(D) ₉₂ U ²³⁸ isotope of urar	nimum not participate	in nuclear chain reactio	n.		
Resonance Eduventures Limited REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph.No. : 0744-2777777, 0744-2777700 Toll Free : 1800 258 5555 FAX No. : +91-022-39167222 To Know more : sms RESO at 56677						

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

 Toll Free : 1800 258 5555 73400 10333


 If facebook.com/ResonanceEdu


 It www.youtube.com/resowatch

 It www.youtube.com/resowatch

This solution was download from Resonance WBJEE 2019 Solution portal

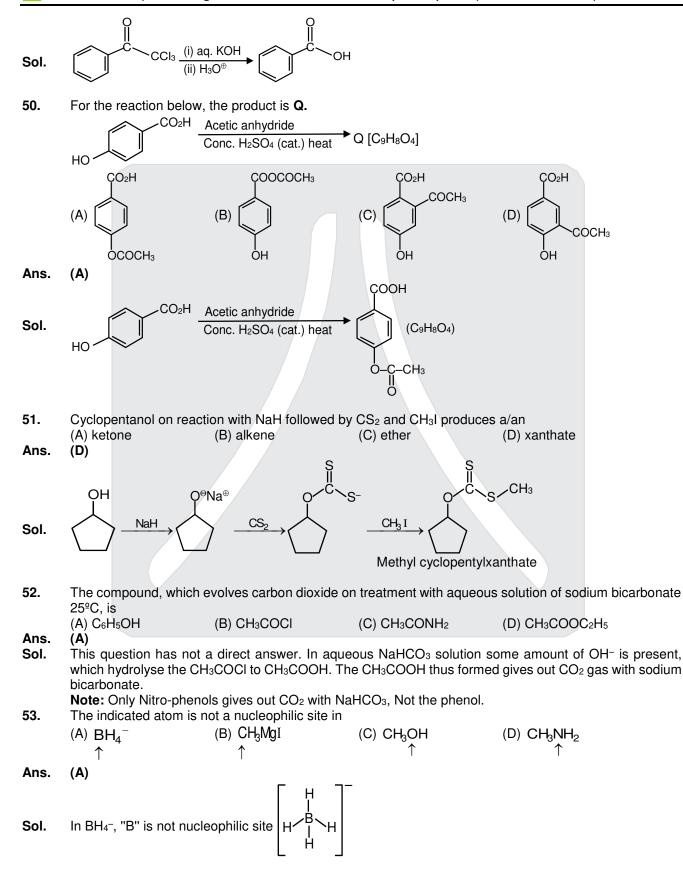
Resonance[®] | West Bengal Joint Entrance Examination (WBJEE) 2019 | DATE : 26-05-2019 | CHEMISTRY 46. The molecule/molecules that has/have delocalised lone pair(s) of electrons is/are :0: .c≢^Ň ÖCH3

- Sol. Hydrogen iodide > hydrogen bromide > hydrogen chloride
- 49. One of the products of the following reactions P.

$$(A) \xrightarrow{O} CCl_3 \xrightarrow{i) \text{ aq KOH}}_{ii) H_3O^{\oplus}} P$$

Structure of **P** is
$$(A) \xrightarrow{O} CO_2H (B) \xrightarrow{O} H (C) \xrightarrow{O} OH (D) \xrightarrow{HO} Cl$$

Ans. (C)


Resonance Eduventures Limited

REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph.No.: 0744-2777777, 0744-2777700 | Toll Free: 1800 258 5555 | FAX No.: +91-022-39167222 | To Know more: sms RESO at 56677

Website : www.	resonance.ac.in	E-mail : <u>contact@resc</u>	onance.ac.in CIN: U	180302RJ2007PLC0240	29
Toll Free : 1800 258 5555	오 73400 10333	facebook.com/ResonanceEdu	🏏 twitter.com/ResonanceEdu	www.youtube.com/resowatch	blog.resonance.ac.in

This solution was download from Resonance WBJEE 2019 Solution portal

REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph.No. :** 0744-2777777, 0744-2777700 | **Toll Free :** 1800 258 5555 | **FAX No. :** +91-022-39167222 | **To Know more :** sms **RESO** at **56677**

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

 Toll Free : 1800 258 5555
 73400 10333
 f facebook.com/ResonanceEdu
 vitter.com/ResonanceEdu
 www.youtube.com/resowatch
 blog.resonance.ac.in

This solution was download from Resonance WBJEE 2019 Solution portal

	for better formerrow West Bengal Joint Entrance Examination (WBJEE) 2019 DATE : 26-05-2019 CHEMISTRY					
54.	The charge carried by 1 millimole of M^{n+} ions is 193 coulombs. The value of n is (A) 1 (B) 2 (C) 3 (D) 4					
Ans.	(B)					
Sol.	Charge on 1 milimole M ⁿ⁺ ions = 193 cb = $\frac{n \times 96500}{1000}$					
	$n = \frac{193 \times 1000}{96500} = 2$					
55.	Which of the following mixtures will have the lowest pH at 298 K ? (A) 10 ml $0.05NCH_3COOH + 5$ ml 0.1 NNH $_4OH$ (B) 5 ml $0.2NH_4CI + 5$ ml 0.2 N NH $_4OH$ (C) 5 ml $0.1N$ CH $_3COOH + 10$ ml 0.05 N CH $_3COONa$ (D) 5 ml $0.1N$ CH $_3COOH + 5$ ml 0.1 N NaOH					
Ans. Sol.	(C) CH ₃ COOH + CH ₃ COONa 0.1N 5ml 0.05 N, 10ml mili eq. (0.5)					
	It is acidic buffer solution pH = pKa + log $\frac{CH_3COO^-}{CH_3COOH}$					
	(pH = pKa) only this solution will have lowest pH,					
	(A) $CH_3COOH + NH_4OH \longrightarrow CH_3COONH_4$ $0.05 N \qquad 0.1 N \qquad \downarrow$ $10 \text{ ml} \qquad 5 \text{ ml} \qquad (WAWB \text{ Salt})$ $(0.5) \qquad (0.5) \qquad [Ph=7 -1/2 \text{ pKb} + 1/2 \text{ pKa}] \approx 7 \qquad [pKa = pKb]$					
	(B) $\begin{array}{l} (0.5) \\ (NH_4Cl + NH_4OH) \text{ Basic buffer solution} \\ POH = pKb + log\left(\frac{CA}{B}\right) \\ PH > 7 \end{array}$					
	(D) $CH_3COOH + NaOH \longrightarrow CH_3COONa$ (WASB Salt) (Ph = 7 + 1/2 PKb = 1/2 log C) PH > 7					
56.	Consider the following two first order reactions occurring at 298 K with same initial concentration of A					

- 56. Consider the following two first order reactions occurring at 298 K with same initial concentration of A : (1) $A \rightarrow B$: rate constant, k = 0.693 min⁻¹
 - (2) $A \rightarrow C$: half life, $t_{1/2} = 0.693 \text{ min}^{-1}$
 - Choose the correct option :
 - (A) Reaction (1) is faster than Reaction (2).
 - (B) Reaction (1) is slower than Reaction (2).
 - (C) Both reaction proceed at the same rate.
 - (D) Since two different products are formed, rates cannot be compared.

Sol. For I^H order Reaction ; Rate constant $K = \frac{0.693}{ty_2}$ and Rate = K (A)¹

For (I) Reaction =
$$K = 0.693 \text{ mint}^{-1}$$

For (II) Reaction = K =
$$\frac{0.693}{ty_2} = \frac{0.693}{0.693} = 1 \text{ Mint}^{-1}$$

So, $K_I < K_{II}$ than Rate (I) < Rate (II)

Resonance Eduventures Limited

REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph.No. : 0744-2777777, 0744-2777700 | Toll Free : 1800 258 5555 | FAX No. : +91-022-39167222 | To Know more : sms RESO at 56677

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

 Toll Free : 1800 258 5555 73400 10333
 f facebook.com/ResonanceEdu
 vitter.com/ResonanceEdu
 www.youtube.com/resowatch
 blog.resonance.ac.in

This solution was download from Resonance WBJEE 2019 Solution portal

57.	For the equilibrium $H_2O(\ell) \longrightarrow H_2O(\nu)$, which of the following is correct ? (A) $\Delta G = 0$, $\Delta H < 0$, $\Delta S < 0$ (B) $\Delta G < 0$, $\Delta H > 0$, $\Delta S > 0$ (C) $\Delta G > 0$, $\Delta H = 0$, $\Delta S > 0$ (D) $\Delta G = 0$, $\Delta H > 0$, $\Delta S > 0$		
Ans. Sol.	For equilibrium H ₂ O (I) \longrightarrow H ₂ O _(g) Δ G = 0, Δ H > 0 (+ive) endothermic		
	$\Delta S > 0$ (+ ive)		
	$\Delta S \text{ sys} = (nC_v \ln \frac{T_2}{T_1}) + nR \ln \frac{V_2}{V_1}$		
	Δ S sys = n RIn $\frac{V_2}{V_1}$ at constant temperature		
58.	For a vander Waal's gas, the term $\left(\frac{ab}{v^2}\right)$ represents some		
Ans.			
Sol.	. Term $\frac{ab}{v^2}$ represent energy permole of gases.		
	Unit of a (Vander wal's constant) = $\frac{\text{atmliter}^2}{\text{mole}^2}$		
	Unit of b (Vander wals's constant) = $\frac{\text{liter}}{\text{mole}}$		
	V = volume of gas per mole = $\frac{\text{liter}}{\text{mole}}$		
	So $\frac{ab}{v^2}$ (Unit) = $\frac{\frac{atmliter^2}{mole^2} \times \frac{liter}{mole}}{\left(\frac{liter}{mole}\right)^2} = \left(\frac{atmliter}{mole}\right)$		
	It is unit of energy per mole.		
59.	In the equilibrium $H_2 + I_2 \longrightarrow 2HI$, if at a given temperature the concentrations of the readincreased, the value of the equilibrium constant, K _c , will (A) Increase (B) Decrease	ctants are	
Ans.			
Sol.	. Equilibrium constant not depend on concentration of reactant it is depended only on temperatu	ire	
60.	the anode is	g place at	
Ans. Sol.	(D) On electrolysis of aqueous solution of CuSO ₄ on using Cu-electrode. According to SOP values at anot $2H_2O \rightarrow O_2 + 4H^+ + 4e^ E^0 = -1.2.3 \text{ V}$ $Cu \rightarrow Cu^{+2} + 2e^ E^0 = -0.34 \text{ V}$ So reaction carried out on anode, which have high SOP value.		

REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph.No. : 0744-2777777, 0744-2777700 | Toll Free : 1800 258 5555 | FAX No. : +91-022-39167222 | To Know more : sms RESO at 56677

Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 🔊 73400 10333 🛉 🛉 facebook.com/ResonanceEdu 😏 twitter.com/ResonanceEdu 🔠 www.youtube.com/resowatch 🕒 blog.resonance.ac.in

This solution was download from Resonance WBJEE 2019 Solution portal

PAGE # 5

	SONANCe [®] West Ben	gal Joint Entrance Exam	ination (WBJEE) 2019 D	ATE : 26-05-2019 CHEMISTRY
61.	Which one of the follow (A) $n = 3$, $\ell = 1$, $m = -1$ (C) $n = 2$, $\ell = 0$, $m = -2$		ents is absurd? (B) n = 3, ℓ = 0, m = 0 (D) n = 2, ℓ = 1, m = 0	
Ans. Sol.	(C) Quantum number set r	n = 2, l = 0, m = –1 it is no	ot possible (not valid). (V	alue of m \leq + I to –I]
62.	The quantity hv/k _B corr (A) Wavelength	responds to (B) Velocity	(C) Temperature	(D) Angular momentum
Ans.	(C)		· · ·	
Sol.	$K_{\epsilon} = \frac{3}{2}K_{B}T = hv$ (For p	hoton)		
	(Partial form = wave for $\frac{hv}{k_B} = \frac{3}{2}T$ (it represent			
63.	In the crystalline solid I weight. The value of n (A) 2		ss 250 g mol⁻¹, the perce (C) 5	entage of anhydrous salt is 64 by (D) 7
Ans.	(C)			
Sol.	Mass of anhydrous MS	$60_4 \text{ salt} = 250 \times \frac{64}{100} = 1$	60 gm/mole	
	Total. Mass of H2O is I	MSO ₄ . nH ₂ O = 250 – 160		
	So value of n = $\frac{90}{18}$ =	5		
64. Ans.	At S.T.P. the volume o (A) NO (A)	f 7.5 g of a gas is 5.6 L. (B) N ₂ O	The gas is (C) CO	(D) CO ₂
Sol.	At S.T.P weight of 5.6			
	At S.T.P weight of 22.4	$4 \text{ L gas} = \frac{7.5}{5.6} \times 22.4$		
	mol Mass of gas gas is			
65. Ans.	The half – life period o (A) 25 % (B)	f ₅₃ I ¹²⁵ is 60 days. The ra (B) 12.5 %	dioactivity after 180 days (C) 33.3 %	will be (D) 3.0 %
Sol.		vity after t time N _t = $\frac{N_o}{(2)^n}$	and n = $\frac{t}{1}$	
		$\frac{N_o}{(2)^3} = \frac{N_o}{8} = 0.125 N_0$	72	
	So Radioactivity after			
66.	Consider the radioactive ${}_{82}A^{210} \rightarrow B \rightarrow 0$ The sequence of emission	$C \rightarrow {}_{82}D^{206}$		
Ans.	(A) β, β, β (D)	(Β) α, α, β	(C) β, β, γ	(D) β, β, α
Sol.		$\xrightarrow{\beta} _{84}C^{210} \xrightarrow{\alpha} _{82}C^{206}$		
	$zX^A \longrightarrow z_{+1}Y^A + \beta - p_a$			
	$zX^{A} \longrightarrow z_{-2}Y^{A-4} + \alpha$	esonance Edu		

REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph.No. :** 0744-2777777, 0744-2777700 | **Toll Free :** 1800 258 5555 | **FAX No. :** +91-022-39167222 | **To Know more :** sms **RESO** at **56677**

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

 Toll Free : 1800 258 5555 73400 10333

 If facebook.com/ResonanceEdu

 Image: State Stat

This solution was download from Resonance WBJEE 2019 Solution portal

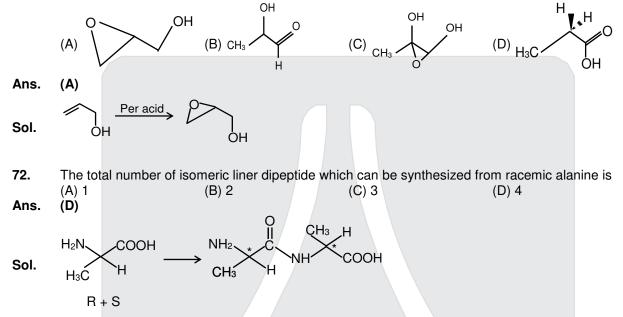
Resonance | West Bengal Joint Entrance Examination (WBJEE) 2019 | DATE : 26-05-2019 | CHEMISTRY 67. The second lonisation energy of the following elements follows the order (A) Zn > Cd < Hg(B) Zn > Cd > Hg(C) Cd > Hg < Zn (D) Zn < Cd < HgAns. (A) Sol. IInd I.E Order : Cd < Zn < Hg Zn > Cd < HgSo. Element IInd I.E. (kJ/mole) Zn 1734 Cd 1631 Hg 1809 The melting points of (i) BeCl₂ (ii) CaCl₂ and (iii) HgCl₂ follows the order 68. (A) i < ii < iii(B) iii < i < ii (C) i < iii < ii (D) ii < i < iii Ans. (B) Sol. Melting point order HgCl₂ < BeCl₂ < CaCl₂ (iii) < (i) < (ii) Melting points = 276°C 399°C 775°C According to covalent character 1 Melting points ∞ Covalent character Which of these species will have non-zero magnetic moment? 69. (C) F-(A) Na+ (B) Mg (D) Ar+ (D) Ans. Sol. No. of unpaired e- $= 1s^2 2s^2 2p^6$ 0 11Na+ $= 1s^2 2s^2 2p^6 3s^2$ 0 $_{12}Mg$ 9F⁻ $= 1s^2 2s^2 2p^6$ 0 $= 1s^2 2s^2 2p^6 3s^2 3p^5$ 1 18Ar+ 70. The first electron affinity of C, N and O will be of the order (A) C < N < O(B) N < C < O(C) C < O < N(D) O < N < CAns. (B) Sol. Ist electron affinity order : N < C < O According to electronic configuration $N = 1s^2 2s^2 2p^3$ Half-filled orbital are more stable EA. kJ/mole N = -6.8

Resonance Eduventures Limited

REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph.No. :** 0744-2777777, 0744-2777700 | **Toll Free :** 1800 258 5555 | **FAX No. :** +91-022-39167222 | **To Know more :** sms **RESO** at **56677**

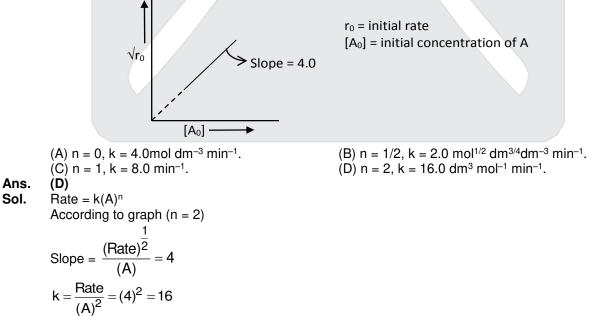
 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

 Toll Free : 1800 258 5555 \$73400 10333


 If facebook.com/ResonanceEdu
 Viviter.com/ResonanceEdu
 Www.youtube.com/resovatch
 Image: Descent colspan="2">Image: Descent colspan="2" Image: Descent colspan="2" Image

This solution was download from Resonance WBJEE 2019 Solution portal

Category-II (Q.71 to Q75)


Carry 2 marks each and only one option is correct. In case of incorrect answer or any combination of more than one answer, 1/2 mark will be deducted.

71. Oxidatin of allyl alcohol with a peracid gives a compound of molecular formula C₃H₆O₂, Which contains an asymmetric carbon atom. The structure of the compound is

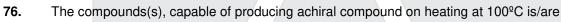
Dipeptide has two chiral carbon and both side unsymmetrical hence RR, RS, SR and SS is possible.

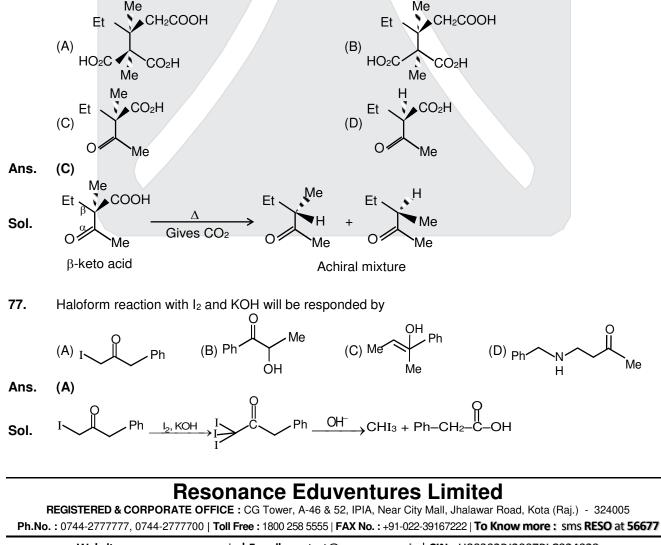
73. The kinetic study of a reaction like $vA \rightarrow P$ at 300 K provides the following curve. Where concentration is taken in mol mol⁻³ and time in min.

Resonance Eduventures Limited

REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph.No. :** 0744-2777777, 0744-2777700 | **Toll Free :** 1800 258 5555 | **FAX No. :** +91-022-39167222 | **To Know more :** sms **RESO** at **56677**

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

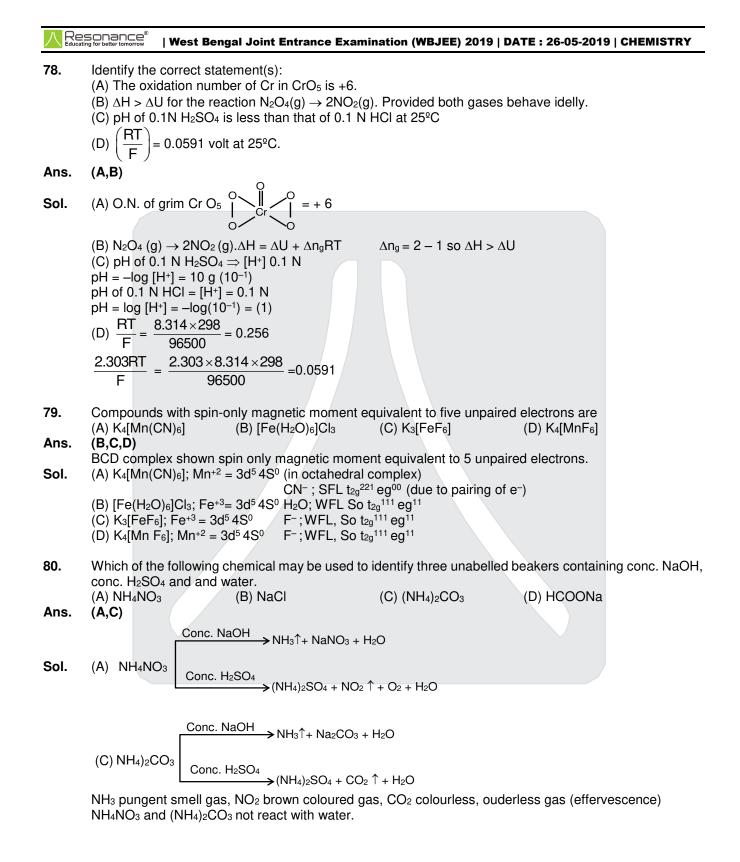

 Toll Free : 1800 258 5555
 73400 10333
 f facebook.com/ResonanceEdu
 twitter.com/ResonanceEdu
 www.youtube.com/resowatch
 blog.resonance.ac.in


This solution was download from Resonance WBJEE 2019 Solution portal

Resonance West Bengal Joint Entrance Examination (WBJEE) 2019 DATE : 26-05-2019 CHEMISTRY						
74.	At constant press (A) $\Delta C_p = 0$	ure, the heat of formation (B) $\Delta C_V = 0$	of compound is not dep (C) $\Delta C_p > 0$	bendent on temperature, when (D) $\Delta C_p < 0$		
Ans. Sol.	$\Delta H_2 = \Delta H_1 + \Delta Cp($ When $\Delta Cp = 0$	ording to Kirchhoff's equa ∆T) Is on temperature.	ation)			
75.		electroplated with Zn ar be the resulting colour? (B) Black	d then heated at high t (C) Silver	emperature until there is a change (D) Golden	ə in	
Ans.	(B)					
Sol.		oys are brasses. Copper		producing a surface alloy of zinc a ated in air, producing a black laye		

Category-III (Q.76 to Q.80)

Carry 2 marks each one or more option(s) is/are correct. If all correct answer are not marked and also no incorrect answer is marked then score = $2 \times \text{number of correct}$ answer marked + actual number of correct answers. If any wrong option is marked or if any combination including a wrong option is marked, the answer will considered wrong, but three is no negative marking for the same and zero mark will be awarded.


 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

 Toll Free : 1800 258 5555 973400 10333

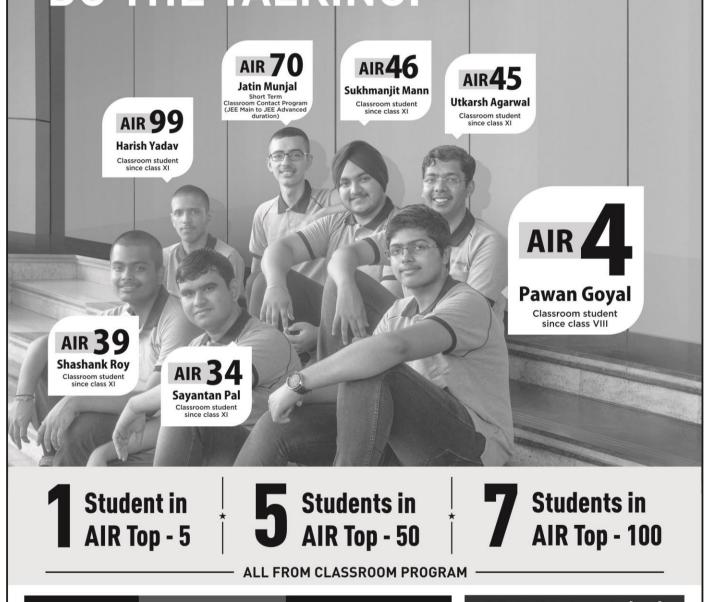
 If facebook.com/ResonanceEdu

 Image: State Sta

This solution was download from Resonance WBJEE 2019 Solution portal

REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph.No. :** 0744-2777777, 0744-2777700 | **Toll Free :** 1800 258 5555 | **FAX No. :** +91-022-39167222 | **To Know more :** sms **RESO** at **56677**

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029


 Toll Free : 1800 258 5555 973400 10333

 If facebook.com/ResonanceEdu

 Image: State Sta

This solution was download from Resonance WBJEE 2019 Solution portal

ADMISSIONS OPEN FOR 2019-20 Classes: V to XII & XII+ Target: JEE (Main+Advanced) JEE (Main) | AIIMS/ NEET Pre-foundation | Commerce & CLAT **ResoNET Dates** 9th & 16th June 2019

Resonance Eduventures Limited Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Rajasthan) - 324005 Tel. No.: 0744-2777777, 2777700 | CIN: U80302RJ2007PLC024029

Toll Free: **1800 258 5555** website: www.resonance.ac.in COURSE: VIJAY (JR) FOR CLASS: XIII Target: JEE (Main+Advanced) 2020 Course Starts from 10th June 2019