

CODE-A SUBJECT : PHYSICS & CHEMISTRY

WEST BENGAL JOINT ENTRANCE EXAMINATION (WBJEE) 2018

Date: 22 April, 2018 | Duration: 2 Hours | Max. Marks: 100

:: IMPORTANT INSTRUCTIONS ::

- 1. This question paper contains all objective questions divided into three categories. Each question has four answer options given.
- 2. **Category-I**: Carry 1 marks each and only one option is correct. In case of incorrect answer or any combination of more than one answer, ¼ marks will be deducted.
- 3. **Category-II**: Carry 2 marks each and only one option is correct. In case of incorrect answer or any combination of more than one answer, ½ marks will be deducted.
- 4. Category-III : Carry 2 marks each and one or more option(s) is/are correct. If all correct answers are not marked and also no incorrect answer is marked then score = 2 × number of correct answers marked ÷ actual number of correct answers. If any wrong option is marked or if any combination including a wrong option is marked, the answer will considered wrong but there is no negative marking for the same and zero marks will be awarded.
- 5. Questions must be answered on, OMR sheet by darkening the appropriate bubble marked (A), (B), (C) or (D).
- 6. Use only Black/Blue ball point pen to mark the answer by complete filing up of the respective bubbles.
- 7. Mark the answers only in the space provided. Do not make any stray mark on the OMR.
- 8. Write question booklet number and your roll number carefully in the specified locations of the OMR. Also fill appropriate bubbles.
- 9. Write your name (in block letter), name of the examination centre and put you full signature in appropriate boxes in the OMR.
- 10. The OMRs will be processed by electronic means. Hence it is liable to become invalid if there is any mistake in the question booklet number or roll number entered or if there is any mistake in filling corresponding bubbles. Also it may become invalid if there is any discrepancy in the name of the candidate, name of the examination center or signature of the candidate visà-vis what is given in the candidate's admit card. The OMR may also become invalid due to folding or putting stray marks on it or any damage to it. The consequence of such invalidation due to incorrect marking or careless handling by the candidate will be sole responsibility of candidate.
- 11. Candidates are not allowed to carry any written or printed material, calculator, pen, docu-pen, log table, wristwatch, any communication device like mobile phones etc. inside the examination hall. Any candidate found with such items will reported against & his/her candidature will be summarily cancelled.
- 12. Rough work must be done on the question paper itself. Additional blank pages are given in the question paper for rough work.
- 13. Hand over the OMR to the invigilator before leaving the Examination Hall.
- 14. This paper contains questions in both English and Bengali. Necessary care and precaution were taken while framing the Bengali version. However if any discrepancy(ies) is/are found between the two versions, the information provided in the English version will stand and will be treated as final.

Resonance Eduventures Ltd.

Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Toll Free: 1800 258 5555 | Fax: +91-022-39167222 |
0 08003 444 888 Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free : 1800 258 5555 💿 08003 444 888 🚹 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu 🔡 www.youtube.com/resowatch 🕒 blog.resonance.ac.i

PHYSICS

Category – I (Q.1 to Q.30)

Carry 1 mark each and only one option is correct. In case of incorrect answer or any combination of more than one answer ¹/₄ marks will be deducted.

- 1. The velocity (v) of a particle (under a force F) depends on its distance (x) from the origin (with x > 0) $v \propto \frac{1}{\sqrt{x}}$. Find how the magnitude of the force (F) on the particle depends on x. (A) $F \propto \frac{1}{x^{\frac{3}{2}}}$ (B) $F \propto \frac{1}{x}$ (C) $F \propto \frac{1}{x^2}$ (D) $F \propto x$ Ans. (C) Sol. $V \propto \frac{1}{\sqrt{x}}$ $\frac{dv}{dt} = \frac{1}{2x^{3/2}} \cdot \frac{dx}{dt} - \frac{1}{\sqrt{x^{1/2}}}$ $\frac{dv}{dt} \propto \frac{1}{x^{3/2}} \times \frac{1}{x^{1/2}}$ $\frac{dv}{dt} \propto \frac{1}{x^2} \Rightarrow F \propto \frac{1}{x^2}$
- 2. The ratio of accelerations due to gravity $g_1 : g_2$ on the surfaces of two planets is 5 : 2 and the ratio of their respective average densities $\rho_1 : \rho_2$ is 2 : 1. What is the ratio of respective escape velocities $v_1 : v_2$ from the surface of the plants ?

(A)
$$5:2$$
 (B) $\sqrt{5}:\sqrt{2}$ (C) $5:2\sqrt{2}$ (D) $25:4$
Ans. (C)
Sol. $-\frac{Gmm}{R} + \frac{1}{2}mv^2 = 0$
 $V = \sqrt{\frac{2GM}{R}} = \sqrt{\frac{2GM}{R^2}R} = \sqrt{2gR}$
 $\frac{G\rho_1 x \frac{4}{3}\pi R_1^3}{\frac{R_1^2}{R_2^2}} = \frac{5}{2} \implies \frac{R_1}{R_2} = \frac{5}{2} \times \frac{\rho_2}{\rho_1} = \frac{5}{2} \times \frac{1}{2} = \frac{5}{4}$
 $G.\frac{\rho_2 x \frac{4}{3}\pi R_2^3}{R_2^2}$
 $\therefore \frac{V_1}{V_2} = \sqrt{\frac{g_1R_1}{g_2R_2}} = \sqrt{\frac{5}{2}} \times \frac{5}{4} = \frac{5}{2\sqrt{2}}$

Resonance Eduventures Limited

3. A spherical liquid drop is placed on a horizontal plane. A small disturbance causes the volume of the drop to oscillate. The time period of oscillation (T) of the liquid drop depends on radius (r) of the drop, density (ρ) and surface tension (s) of the liquid. Which among the following will be a possible expression for T (where k is a dimensionless constant) ?

(A)
$$k \sqrt{\frac{\rho r}{s}}$$
 (B) $k \sqrt{\frac{\rho^2 r}{s}}$ (C) $k \sqrt{\frac{\rho r^3}{s}}$ (D) $k \sqrt{\frac{\rho r^3}{s^2}}$

Ans. (C)

Sol.

$$\begin{split} T &= kr^{x} \rho^{y} s^{z} \\ T &\to T, r \to L, \rho \to ML^{-3}, S \to MT^{-2} \\ S &= \frac{F}{\ell} = \frac{ma}{\ell} = \frac{m}{s^{2}} \\ T^{1} &= KL^{x} (ML^{-3})^{y} (MT^{-2})^{z} \qquad \Rightarrow T^{1} = KL^{x-3y} M^{y+z} T^{-2z} \\ -2z &= 1 \qquad \Rightarrow z = -\frac{1}{2}, y + z = 0 \qquad y = -z = +\frac{1}{2} \\ x - 3y &= 0 \qquad \Rightarrow x = 3y = \frac{3}{2} \\ T &= Kr^{3/2} \rho^{1/2} s^{-1/2} = K \sqrt{\frac{\rho r^{3}}{s}} \end{split}$$

4. The stress along the length of a rod (with rectangular cross section) is 1% of the Young's modulus of its material. What is the approximate percentage of change of its volume ? (Poisson's ratio of the material of the rod is 0.3)

- 5. What will be the approximate terminal velocity of a rain drop of diameter 1.8×10^{-3} m, when density of rain water $\approx 10^3$ kgm⁻³ and the co-efficient of viscosity of air $\approx 1.8 \times 10^{-5}$ Nsm⁻²? (Neglect buoyancy of air). (A) 49 ms⁻¹ (B) 98 ms⁻¹ (C) 392 ms⁻¹ (D) 980 ms⁻¹
- Ans. (B)

Resonance Eduventures Limited

6. The water equivalent of a calorimeter is 10 g and it contains 50 g of water at 15°C. Some amount of ice, initially at -10° C is dropped in it and half of the ice melts till equilibrium is reached. What was the initial amount of ice that was dropped (when specific heat of ice = 0.5 cal gm⁻¹°C⁻¹, specific heat of water = 1.0 cal gm⁻¹°C⁻¹ and latent heat of melting of ice = 80 cal gm⁻¹)?

7. One mole of a mono-atomic ideal gas undergoes a quasi-static process, which is depicted by a straight line joining points (V_0 , T_0) and ($2V_0$, $3T_0$) in a V-T diagram. What is the value of the heat capacity of the gas at the point (V_0 , T_0) ?

(A) R (B) $\frac{3}{2}$ R (C) 2R (D) 0

Ans. (C)

Resonance Eduventures Limited

8. For an ideal gas with initial pressure and volume P_i and V_i , respectively, a reversible isothermal expansion happens, when its volume becomes V_0 . Then it is compressed to its original volume V_i by a reversible adiabatic process. If the final pressure is P_f then which of the following statements is true ?

9. A point charge – q is carried from a point A to another point B on the axis of a charged ring of radius 'r' carrying a charge +q. If the point A is at a distance $\frac{4}{3}$ r from the centre of the ring and the point B is

 $\frac{3}{4}$ r from the centre but on the opposite side, what is the net work that need to be done for this? 7 a^2 1 a^2 7 a^2 1 a^2

(A)
$$-\frac{7}{5} \frac{q^2}{4\pi\epsilon_0 r}$$
 (B) $-\frac{1}{5} \frac{q^2}{4\pi\epsilon_0 r}$ (C) $\frac{7}{5} \frac{q^2}{4\pi\epsilon_0 r}$ (D) $\frac{1}{5} \frac{q^2}{4\pi\epsilon_0 r}$

Ans. (B)

Resonance Eduventures Limited

 Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

 Toll Free : 1800 258 5555

 © 08003 444 888

10. Consider a region in free space bounded by the surfaces of an imaginary cube having sides of length 'a' as shown in the diagram. A charge +Q is placed at the centre 'O' of the cube. P is such a point outside the cube that the line OP perpendicularly intersects the surface ABCD at R and also OR = RP = a/2. A charge +Q is placed at point P also. What is the total electric flux through the five faces of the cube other than ABCD ?

Resonance Eduventures Limited

11. Four equal charges of value +Q are placed at any four vertices of a regular hexagon of side 'a'. By suitable choosing the vertices, what can be the maximum possible magnitude of electric field at the centre of the hexagon ?

(A)
$$\frac{Q}{4\pi\epsilon_0 a^2}$$
 (B) $\frac{\sqrt{2}Q}{4\pi\epsilon_0 a^2}$ (C) $\frac{\sqrt{3}Q}{4\pi\epsilon_0 a^2}$ (D) $\frac{2Q}{4\pi\epsilon_0 a^2}$
(C)

Ans. Sol.

to maximize the electric field at the centre both –q should be present at adjacent vertices $E = \sqrt{E_1^2 + E_1^2 + E_1^2} = \sqrt{3}E_1$

$$E = \sqrt{E_1^2 + E_1^2 + E_1^2} = \sqrt{E_1} = \frac{kQ}{a^2} = \frac{Q}{4\pi\varepsilon_0 a^2}$$
$$E = \frac{\sqrt{3}Q}{4\pi\varepsilon_0 a^2}$$

- **12.** A proton of mass 'm' moving with a speed v (<< c, velocity of light in vacuum) completes a circular orbit in time 'T' in a uniform magnetic field. If the speed of the proton is increased to $\sqrt{2}$ v, what will be time needed to complete the circular orbit ?
 - (A) $\sqrt{2}$ T (B) T (C) $\frac{T}{\sqrt{2}}$ (D) $\frac{T}{2}$

Ans. (B)

Sol. $T = \frac{2\pi m}{qB}$

T is independent of v.

13. A uniform current is flowing along the length of an infinite, straight, thin, hollow cylinder of radius 'R'. The magnetic field 'B' produced at a perpendicular distance 'd' from the axis of the cylinder is plotted in a graph. Which of the following figures looks like the plot ?

Resonance Eduventures Limited

 Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

 Toll Free : 1800 258 5555 S

 Solo 2444 888
 If facebook.com/ResonanceEdu
 Image | 6 | Contact.ac.in

14. A circular loop of radius 'r' of conducting wire connected with a voltage source of zero internal resistance produces a magnetic filed 'B' at its centre. If instead, a circular loop of radius '2r' made of same material, having the same cross section is connected to the same voltage source, what will be the magnetic field at its centre ?

(A)
$$\frac{B}{2}$$
 (B) $\frac{B}{4}$ (C) 2B (D) B

Ans. (B)

Sol. When radius is doubled the resistance in the circuit is also doubled. Therefore the current in the circuit becomes halved.

$$\frac{\mu_0 l}{2r} = B$$

$$\frac{\mu_0 l'}{2r'} = B' \text{ where } l' = \frac{I}{2}, r' = 2r$$

$$\therefore B' = \frac{\mu_0 l}{8r} = \frac{B}{4}$$

An alternating current is flowing through a series LCR circuit. It is found that the current reaches a value of 1 mA at both 200 Hz and 800 Hz frequency. What is the Resonance frequency of the circuit?
 (A) 600 Hz
 (B) 300 Hz
 (C) 500 Hz
 (D) 400 Hz

Sol.
$$\omega L = \frac{1}{\omega C}$$
 $\omega = \frac{1}{\sqrt{LC}}$
 $\Rightarrow X_L \text{ and } X_C \text{ will get interchanged.}$
 $\Rightarrow 200L = \frac{1}{\omega C} \Rightarrow \frac{1}{\sqrt{200 \times 10^2}}$

$$200L = \frac{1}{800C} \Rightarrow \frac{1}{\sqrt{LC}} = \sqrt{200 \times 800} = 400 \text{Hz}$$

Resonance Eduventures Limited

 Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

 Toll Free : 1800 258 5555 S

 Solution
 Solution

 Solution

 Solution

 Solution

 Solution

 Solution

 Solution

 Solution

 Solution

 Solution

 Solution

 Solution

 Solution

 Solution

 Solution

 Solution

 Solution

 Solution

 Solution

 Solution

 Solution

 Solution

 Solution

 Solution

 Solution

 Solution

 Solutin

 Solu

- **16.** An electric bulb, a capacitor, battery and a switch are all in series in a circuit. How does the intensity of light very when the switch is turned on?
 - (A) Continues to increase gradually.
 - (B) Gradually increases for some time and then becomes steady.
 - (C) Sharply rises initially and then gradually decreases.
 - (D) Gradually increases for some then time and then gradually decreases.
- Ans. (C)
- **Sol.** $I(t) = \frac{\varepsilon}{R} e^{-t/RC}$

Intensity $\alpha I^2 R = \epsilon^2 Re^{-2t/RC}$

17. Four resistors, 100Ω , 200Ω , 300Ω , and 400Ω , are connected to form four sides of a square. The resistors can be connected in any order. What is the maximum possible equivalent resistance across the diagonal of the square ?

	(A) 210	Ω	(B) 240 Ω	(C) 300 Ω	(D) 250 Ω
Ans.	(D)				
Sol.	$R_{\text{eff}}^{\text{max}} =$	$\frac{5R \times 5R}{5R + 5R}$	where R = 100		
	=2.5R =	= 250			
	R	-2R] ∰3R		

18. What will be current through the 210 Ω resistor in the given circuit a long time after the switch 'K' is made on ?

Resonance Eduventures Limited

Hint : Capacitors behave as infinite resistance in steady state Ans: - (D)

19. A point source is placed at co-ordinates (0, 1) in X-Y plane. A ray of light from the source is reflected on a plane along the X-axis and perpendicular to the X-Y plane. The reflected ray passes through the point (3, 3). What is the path length of the ray from (0, 1) to (3, 3)?

20. Two identical equi-convex lenses, each of focal length 'f' are placed side by side in contact with each other with a layer of water in between them as shown in the figure. If refractive index of the material of the lenses is greater then that of water, how the combined focal length 'F' is related to 'f' ?

(A) F > f (B)
$$\frac{f}{2} < F < f$$
 (C) F < $\frac{f}{2}$ (D) F = f

Ans. (B)

Resonance Eduventures Limited

Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in Page | 9 | Toll Free : 1800 258 5555 🔊 08003 444 888 📫 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu 📓 www.youtube.com/resowatch 🗈 blog.res

$$R \leftarrow \int_{\mu_w} R$$

$$\frac{1}{f_w} = (\mu_w - 1)\left(-\frac{2}{R}\right) = -\frac{\mu_w - 1}{\mu_\ell - 1}\left(\frac{1}{f_\ell}\right)$$

$$\frac{1}{f_\ell} = (\mu_\ell - 1)\frac{2}{R}$$

$$\mu_\ell > \mu_w$$

$$\frac{1}{f_{eq}} = \frac{2}{f_\ell} - \frac{1}{f_\ell}\left(\frac{\mu_w - 1}{\mu_\ell - 1}\right)$$

$$= \frac{1}{f_\ell}\left(2 - \frac{\mu_w - 1}{\mu_\ell - 1}\right)$$

$$\mu_\ell - 1 > \mu_w - 1$$

$$\Rightarrow \qquad \frac{\mu_w - 1}{\mu_\ell - 1} < 1 \qquad \frac{1}{f} < \frac{1}{f_{eq}} < \frac{2}{f}$$

$$\frac{f}{2} < f_{eq} < f$$

21. There is a small air bubble at the centre of a solid glass sphere of radius 'r' and refractive index 'µ'. What will be the apparent distance of the bubble from the centre of the sphere, when viewed from outside ?

(C) $r\left(1-\frac{1}{\mu}\right)$ (D) Zero (B) $\frac{r}{\mu}$ (A) r

Ans. (D)

- All incident rays are normal to surface, therefore there will be no deviation in the refracting ray. Sol.
- 22. If Young's double slit experiment is done with white light, which of the following statements will be true? (A) All the bright fringes will be coloured. (B) All the bright fringes will be white. (C) The central fringe will be white. (D) No stable interference pattern will be white.
- Ans. (C)

Sol.

- Sol. $\Delta x = 0$ at centre for all wavelengths.
- 23. How the linear velocity 'v' of an electron in the Bohr orbit is related to its quantum number 'n' ?

(A) $v \propto \frac{1}{n}$ (B) $v \propto \frac{1}{n^2}$ (C) $v \propto \frac{1}{\sqrt{n}}$ (D) $v \propto n$ (A) Ans. $v = \frac{Ze^2}{2 \in 0} nh$

Resonance Eduventures Limited

Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in Page | 10 | Toll Free : 1800 258 5555 🔊 08003 444 888 🚹 facebook.com/ResonanceEdu 🗾 twitter.com/ResonanceEdu 🔣 www.youtube.com/resowatch 🕒 blog.res

- 24. If the half life of a radioactive nucleus is 3 days, nearly what fraction of the initial number of nuclei will decay on the 3rd day ? (Given that $\sqrt[3]{0.25} \approx 0.63$) (A) 0.63 (B) 0.5 (C) 0.37 (D) 0.13
- Ans. (D)
- Sol. Fractional Decay on third day $\begin{bmatrix} N & -2/\tau \end{bmatrix} = \begin{bmatrix} -3/\tau \end{bmatrix}$

$$= \frac{\left[N_{0}e^{-1x} - N_{0}e^{-1x}\right]}{N_{0}} ; \text{ where } \tau = t_{1/2} / \ln 2 = 3/\ln 2$$
$$= e^{-\frac{2\ln 2}{3}} - e^{-\ln 2}$$
$$= 2^{-\frac{2}{3}} - 2^{-1}$$
$$= 0.63 - 0.5 = 0.13$$

- 25. An electron accelerated through a potential of 10,000 V from rest has a de-Broglie wave length '\.'. What should be the accelerating potential so that the wave length is doubled ?
- (A) 20,000 V (B) 40,000 V (C) 5,000 V (D) 2,500 V Ans. (C)
- hc Sol. (10000)e =

$$\frac{nc}{2\lambda} = (5000)e$$

What will be the current flowing through the $6K\Omega$ resistor in the circuit shown, where the breakdown 27. voltage of the zener is 6 V ?

Resonance Eduventures Limited

Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in Page | 11 | Toll Free : 1800 258 5555 🔊 08003 444 888 🚹 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu 🔠 www.youtube.com/resowatch 🕒 blog.reso

28. In case of a simple harmonic motion, if the velocity is plotted along the X-axis and the displacement (from the equilibrium position)(is plotted along the Y-axis, the resultant curve happens to be an ellipse with the ratio :

 $\frac{\text{major axis(along X)}}{\text{minor axis(along Y)}} = 20\pi$

What is the frequency of the simple harmonic motion ?

(A) 100 Hz (B) 20 Hz (C) 10 Hz (D) $\frac{1}{10}$ Hz

Ans. (C)

Sol. Relation between velocity & x in SHM is H.

29. A block of mass m_2 is placed on a horizontal table and another block of mass m_1 is placed on top of it. An increasing horizontal force $F = \alpha t$ is exerted on the upper block but the lower block never moves as a result. If the co-efficient of friction between the blocks is μ_1 and that between the lower block and the table is μ_2 , then what is the maximum possible value of μ_1/μ_2 ?

(A)
$$\frac{m_2}{m_1}$$
 (B) $1 + \frac{m_2}{m_1}$ (C) $\frac{m_1}{m_2}$ (D) $1 + \frac{m_1}{m_2}$
Ans. (B)
Sol.
 $f = \alpha t$ $f = \alpha t$ $f = \alpha t$
FBD of lower block (m₂)
 $f_2 = \alpha ting friction between lower block & the table.
 $f_1 = \alpha ting friction between lower block & upper block.$
 \therefore m_2 never moves.
So $f_1 \le f_2$$

Resonance Eduventures Limited

 Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

 Toll Free : 1800 258 5555 ()

 (C)
 08003 444 888

 (C)
 facebook.com/ResonanceEdu

 (C)
 www.youtube.com/resowatch

 (C)
 blog.resonance.ac.in

So friction acting in between the block is always less than or equal to friction acting between lower block & table.

So
$$\mu_1 m_1 g \le \mu_2 (m_1 + m_2)g$$

 $\frac{\mu_1}{\mu_2} \le \frac{m_1 + m_2}{m_1}$
 $\frac{\mu_1}{\mu_2} \le 1 + \frac{m_2}{m_1}$
So maximum value of $\frac{\mu_1}{m_1} = 1 + \frac{m_2}{m_1}$

So maximum value of $\frac{\mu_1}{\mu_2} = 1 + \frac{m_2}{m_1}$

30. In a triangle ABC, the sides AB and AC are represented by the vectors $3\hat{i} + \hat{j} + \hat{k}$ and $\hat{i} + 2\hat{j} + \hat{k}$ respectively. Calculate the angle \angle ABC.

(A)
$$\cos^{-1}\sqrt{\frac{5}{11}}$$
 (B) $\cos^{-1}\sqrt{\frac{6}{11}}$ (C) $\left(90^{\circ} - \cos^{-1}\sqrt{\frac{5}{11}}\right)$ (D) $\left(180^{\circ} - \cos^{-1}\sqrt{\frac{5}{11}}\right)$
Ans. (A)
Sol. $\overline{AB} = 3\hat{i} + \hat{j} + \hat{k}$
 $\overline{AC} = \hat{i} + 2\hat{j} + \hat{k}$
 $\overline{CB} = \overline{AB} - \overline{AC}$
 $2\hat{i} - \hat{j}$
 $\angle ABC$ is angle between \overline{AB} and \overline{CB}
 $\overline{AB} \cdot \overline{CB} = |\overline{AB}||\overline{CB}|\cos\theta$
 $\Rightarrow 5 = |\sqrt{11}||\sqrt{5}|\cos\theta$
 $\cos\theta = \frac{\sqrt{5}}{\sqrt{11}}$
 $\theta = \cos^{-1}\left(\frac{\sqrt{5}}{\sqrt{11}}\right)$

Category - II (Q.31 to Q.35)

Carry 2 marks each and only one option is correct. In case of incorrect answer or any combination of more than one answer $\frac{1}{2}$ marks will be deducted.

31. The insulated plates of a charged parallel plate capacitor (with small separation between the plates) are approaching each other due to electrostatic attraction. Assuming no other force to be operative and no radiation taking place, which of the following graphs approximately shows the variation with time (t) of the potential difference (V) between the plates ?

Resonance Eduventures Limited

 Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

 Page | 13 |

 To Book.com/ResonanceEdu

32. The bob of a pendulum of mass 'm', suspended by an inextensible string of length 'L' as shown in the figure carries a small charge 'a'. An infinite horizontal plane conductor with uniform surface charge density 'σ'. is placed below it. What will be the time period of the pendulum for small amplitude oscillations

Resonance Eduventures Limited

 Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

 Toll Free : 1800 258 5555

 Image: State St

Ans. (D)

Sol.
$$TP = 2\pi \sqrt{\frac{L}{g - \frac{qE}{m}}}$$

= $2\pi \sqrt{\frac{L}{g - \frac{q\sigma}{\varepsilon_0(m)}}}$

 $B \propto r^{-5/2}$

33. A light charged particle is revolving in a circle of radius 'r' in electrostatic attraction of a static heavy particle with opposite charge. How does the magnetic field 'B' at the centre of the circle due to the moving charge depend on 'r' ?

(A)
$$B \propto \frac{1}{r}$$
 (B) $B \propto \frac{1}{r^2}$ (C) $B \propto \frac{1}{\frac{3}{r^2}}$ (D) $B \propto \frac{1}{\frac{5}{r^2}}$
Ans. (D)
Sol.
Electrostatic force of attraction
 $f = \frac{KqQ}{r^2}$
 $\frac{mv^2}{r} = \frac{KqQ}{r^2}$
 $v \propto \frac{1}{\sqrt{r}}$
T.P. $= \frac{2\pi r}{v}$ T.P. $\propto \frac{r}{v}$
T.P. $\propto r^{3/2}$
 $I \propto \frac{Q}{TP}$ \therefore $I \propto r^{-3/2}$
 $B = \frac{\mu_0 I}{2r}$
 $B \propto I$ $B \propto \frac{1}{r}$
 $B \propto \frac{1}{r}$ $B \propto \frac{r^{-3/2}}{r}$

Resonance Eduventures Limited

34. As shown in the figure, a rectangular loop of a conducting wire is moving away with a constant velocity 'v' in a perpendicular direction from a very long straight conductor carrying a steady current 'I'. When the breadth of the rectangular loop is very small compared to its distance from the straight conductor, how does the e.m.f. 'E' induced in the loop vary with time 't' ?

35. A solid spherical ball and a hollow spherical ball of two different materials of densities ρ_1 and ρ_2 respectively have same outer radii and same mass. What will be the ratio the moment of inertia (about an axis passing through the centre) of the hollow sphere to that of the solid sphere ?

(A)
$$\frac{\rho_2}{\rho_1} \left(1 - \frac{\rho_2}{\rho_1}\right)^{\frac{5}{3}}$$
 (B) $\frac{\rho_2}{\rho_1} \left[1 - \left(1 - \frac{\rho_2}{\rho_1}\right)^{\frac{5}{3}}\right]$ (C) $\frac{\rho_2}{\rho_1} \left(1 - \frac{\rho_1}{\rho_2}\right)^{\frac{5}{3}}$ (D) $\frac{\rho_2}{\rho_1} \left[1 - \left(1 - \frac{\rho_1}{\rho_2}\right)^{\frac{5}{3}}\right]$

Ans. (D)

Sol. $\rho_1 \rightarrow \text{solid}$

 $\rho_2 \rightarrow \text{Hollow}$

$$\mu = \frac{4}{3}\pi\rho_1 R^3 = \frac{4}{3}\pi\rho_2 [R^3 - R^3_{inner}]$$
$$\Rightarrow R^3 - R^3_{inner} = \frac{\rho_1}{\rho_2} R^3$$

Resonance Eduventures Limited

 Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

 Toll Free : 1800 258 5555 ()
 08003 444 888

 f acebook.com/ResonanceEdu
 ✓ twitter.com/ResonanceEdu

 www.youtube.com/resowatch
 C) blog.resonance.ac.in

Category – III (Q.36 to Q.40)

Carry 2 marks each and one or more option(s) is/are correct. If all correct answers are not marked and also no incorrect answer is marked then score = $2 \times$ number of correct answers marked \div actual number of correct answers. If any wrong option is marked or if any combination including a wrong option is marked, the answer will considered wrong but there is no negative marking for the same and zero marks will be awarded.

- 36. Which of the following statement(s) is/are true ?

 "Internal energy of an ideal gas"
 (A) decreases in an isobaric process.
 (C) increases in an isobaric process.

 Ans. (B)

 Sol. In isothermal process ΔU = 0

 In isothermal process ΔU = 0
 In isobaric expansion V ∝ T so ΔU increases.
- **37.** Two positive charges Q and 4Q are placed at points A and B respectively, where B is at a distance 'd' units to the right of A. The total electric potential due to these charges is minimum at P on the line through A and B, What is (are) the distance(s) of P from A ?

(A) $\frac{d}{3}$ units to the right of A	(B) $\frac{d}{3}$ units to the left of A
(C) $\frac{d}{5}$ units to the right of A	(D) d units to the left of A

Resonance Eduventures Limited

 Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

 Toll Free : 1800 258 5555

 Image | 17 |

Ans. (A)

Sol. Electric potential is minimum where $\vec{E} = 0$

38. A non-zero current passes through the galvanometer G shown in the circuit when the key 'K' is closed and its value does not change when the key is opened. Then which of the following statement(s) is/are true ?

- (A) The galvanometer resistance is infinite.
- (B) The current through the galvanometer is 40 mA.
- (C) After the key is closed, the current through the 200Ω resistor is same as the current through the 300Ω resistor.
- (D) The galvanometer resistance is 150Ω .
- Ans. (B), (C), (D)

Resonance Eduventures Limited

 Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

 Toll Free : 1800 258 5555

 Image: State St

 $\frac{200}{300} = \frac{100}{a}$

39. A ray of light is incident on a right angled isosceles prism parallel to its base as shown in the figure. Refractive index of the material of the prism is $\sqrt{2}$. Then which of the following statement(s) is/are true?

- (A) The reflection at P is total internal.
- (B) The reflection at Q is total internal.
- (C) The ray emerging at R is parallel to the ray incident at S.
- (D) Total deviation of the ray is 150°.
- Ans. (A), (C)

Resonance Eduventures Limited

 Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

 Toll Free : 1800 258 5555

 Image: State St

1.sini =
$$\sqrt{2}$$
.sin15°

1. sini =
$$\sqrt{2}\left(\frac{\sqrt{3}-1}{2\sqrt{2}}\right)$$

sin i = $=\frac{\sqrt{3}-1}{2}$

Ans. Ray will undergo TIR at P only Ans. (A)If Ray emerge from R (Partially) it is possible, then it will become parallel to the incident Ray so ans (C)

- **40.** The intensity of a sound appears to an observer to be periodic. Which of the following can be the cause of it ?
 - (A) The intensity of the source is periodic.
 - (B) The source is moving towards the observer.
 - (C) The observer is moving away from the source.
 - (D) The source is producing a sound composed of two nearby frequencies.
- Ans. (A, D)

Resonance Eduventures Limited

CHEMISTRY

Resonance Eduventures Limited

 Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

 Toll Free : 1800 258 5555

 Source Colspan="2">Witter.com/Resonance.ac.in

 Www.youtube.com/resonance.ac.in

45.	The heat of neutralization of a strong base and a strong acid is 13.7 kcal. The heat released when 0.6 me			The heat released when 0.6 mole		
		(P) 8.22 keel		(\mathbf{D}) 12.7 kool		
Δns	(A) 5.425 KCal	(D) 0.22 KCal	(C) 11.045 KCal	(D) 13.7 KCal		
Sol.	$\begin{array}{c} HCI + NaOH \longrightarrow N\\ 1 \text{ mole} & 1 \text{ mole} \end{array}$	$AH = -\Delta H$	-13.7 Kcal			
	HCI + NaOH 0.25 mole 0.6 mole	\rightarrow NaCl + H ₂ O				
	then HCl is limiting reage	nt 0.05 mole				
	Then release energy = 1:	$3.7 \times 0.25 = 3.425$ Kcal				
46.	A compound formed by	elements X and Y crystall	lizes in the cubic structure.	where X atoms are at the corners		
	of a cube and Y atoms ar	re at the centres of the bo	dy. The formula of the corr	npound is :		
	(A) XY	(B) XY ₂	(C) X_2Y_3	(D) XY ₃		
Ans.	(A)					
Sol.	$X = 8 \times \frac{1}{8} = 1$ (at corner)					
	$Y = 1 \times 1 = 1$ (at body cere So formula of compound	nter) = XY				
47.	What amount of electricit	y can deposit 1 mole of A	I metal at cathode when pa	assed through molten AICl ₃ ?		
	(A) 0.3 F (B) 1 F (C) 3F (D) 1/3F					
Ans.	(C)					
Sol.	$A\ellC\ell_3 \longrightarrow A\ell^{+3} + 3C\ell^{-1}$					
	At cathode : $A\ell^{+3} + 3e^- \longrightarrow A\ell$					
	3 mole 1 mole					
	or 3 F					
	so required charge = 3P					
48.	Given the standard half-c	cell potentials (Eº) of the fo	bllowing as			
	Zn = Zn	$E^{0} = +0$	0.76 V			
	Fe = Fe	$E^{0} = 0.$.41 V			
	Then the standard e.m.f.	of the cell with the reaction	on Fe^{2+} + Zn \rightarrow Zn ²⁺ + Fe is	5		
	(A) –0.35V	(B) + 0.35 V	(C) +1.17 V	(D) –1.17 V		
Ans.	(B) $= +2^{2} \circ = -7$					
501.	$\angle n^- + 2e \longrightarrow \angle n$	$E^{\circ} = -0.76 V (S)$	SRP) (Anode)			
	$Fe^{-} + 2e \longrightarrow Fe$	$E^{\circ} = -0.41 V (S)$	SKP) (Cathode)			
	$E_{cell}^{-} = E_{Fe^{+2}/fe}^{-} = E_{Zn^{+2}/Zl}^{-}$	n				
	$0.41 \pm 0.70 = 0.33$ V					

49. The following equilibrium constants are given :

$$N_{2} + 3H_{2} \rightleftharpoons 2NH_{3}; K_{1}$$

$$N_{2} + O_{2} \rightleftharpoons 2NO; K_{2}$$

$$H_{2} + \frac{1}{2}O_{2} \rightleftharpoons H_{2}O; K_{3}$$

The equilibrium constant for the oxidation of 2 mol of NH₃ to give NO is

(A)
$$K_1 \cdot \frac{K_2}{K_3}$$
 (B) $K_2 \cdot \frac{K_3^3}{K_1}$ (C) $K_2 \cdot \frac{K_3^2}{K_1}$ (D) $K_2^2 \cdot \frac{K_3}{K_1}$

Ans. (B)

Sol.
$$2NH_3 + \frac{5}{2}O_2 \longrightarrow 2NO + 3H_2O$$

 $K = \frac{[NO]^2 [H_2O]^3}{[NH_3]^2 [O_2]^{5/2}}$
According to question for given reaction
 $K_1 = \frac{[NH_3]^2}{[N_2][N_2][O_2]}$
 $K_2 = \frac{[NO]^2}{[H_2]O_2]^{1/2}}$
 $K_3 = \frac{[H_2O]}{[H_2][O_2]^{1/2}}$
 $K = K_2 \cdot \frac{K_3}{K_1} = \frac{[NO]^2}{[N_2][O_2]} \times \frac{[H_2O]^3}{[H_2]^3 [O_2]^{3/2}} \times \frac{[N_2][H_2]^3}{[NH_3]^2}$
 $= \frac{[NO]^2 [H_2O]^3}{[NH_3]^2 [O_2]^{5/2}}$
50. Which one of the following is a condensation polymer ?
(A) PVC (B) Tellon (C) Dacron (D) Polystyrene
Ans. (C)
Dacron is a condensation of polymer of terephthalic acid and ethylene glycol.
51. Which of the following is present in maximum amount in 'acid rain' ?
(A) HNO_3 (B) H_2SO_4 (C) HCl (D) H_2CO_3
Ans. (B)
Sol. $2SO_2(g) + O_2(g) + 2H_2O(I) \longrightarrow H_2SO_4 (aq.)$
52. Which of the set of oxides are arranged in the proper order of basic, amphoteric, acidic?
(A) SO_2, P_2O_5, CO (B) BaO, Al_2O_3, SO_2
(C) CaO, SiO_2, Al_2O_3 (D) CO_2, Al_2O_3, CO
Ans. (B)
Basic Amphoteric acidic
BaO Al_2O_3 SO_2

Resonance Eduventures Limited

 Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

 Toll Free : 1800 258 5555

 Solution
 Solution

 Image | 23 |

 Image | 23 |

 Image | 23 |

 Image | 23 |

 Image | 24

 Image | 23 |

53.	Out of the following outer electronic configurations of atoms, the highest oxidation state is achieved bone ?				by which
	(A) (n – 1) $d^8 ns^2$	(B) (n −1) d ⁵ ns ²	(C) (n –1) d ³ ns ²	(D) (n –1) d ⁵ ns ¹	
Ans.	(B)				
Sol.	$(n - 1) d^5 ns^2 \longrightarrow [$ Mn show highest Oxid	Mn] ation state = +7			
54.	At room temperature,	the reaction between wat	ter and fluorine produces		
	(A) HF and H_2O_2 (B) H	$F, O_2 \text{ and } F_2O_2 \qquad (C)$	F^- , O_2 and H^+ (D)	HOF and HF	
Ans.	(C)	aratura			
Sol.	$F_2 + H_2O$	$\xrightarrow{\text{erature}} \text{HF} + \text{O}_2$			
		↓ H ⁺ + F ⁻			
55.	Which of the following	is least thermally stable?			
	(A) MgCO₃	(B) CaCO ₃	(C) SrCO ₃	(D) BeCO ₃	
Ans.	(D)				
Sol.	BeCO ₃ MgC	CaCO ₃ CaCO ₃	SrCO ₃		
	Ionic chara	acter \uparrow thermal stability	\uparrow		
	Least thermal stable is	BeCO			
		.20003			
56.	Cl_2O_7 is the anhydride	of			
	(A) HOCI	(B) HCIO ₂	(C) HCIO ₃	(D) HCIO ₄	
Ans.	(D)		(,)	() .	
Sol.	$2\text{HClO}_4 \xrightarrow{-\text{H}_2\text{O}} \text{Cl}_2$	D_7			
57.	The main reason that	SiCl ₄ is easily hydrolysed	as compared to CCI_4 is the	nat	
	(A) Si-Cl bond is weak	er than C-Cl bond.			
	(B) SiCl₄ can form hyd	rogen bonds.			
	(C) SiCl₄ is covalent.				
_	(D) Si can extend its c	pordination number beyo	nd four.		
Ans. Sol.	(D) In SiCl ₄ vacant d–orb valency.	itals are present. So hy	ydrolysed by co-ordinatic	on bond formation and Si ex	pand its
58.	Silver chloride dissolve	es in excess of ammoniu	m hydroxide solution. The	cation present in the resulting	solution
	ο (Δ) [Δα(ΝΙΗ) 1 ⁺	(B) [Δα(NIH.) 1 ⁺	$(C) \wedge a^{+}$		
Δne	(m) [m9(19113)6]				
Alla.		- (NUL) ^{]+}			
501.	$Ag' + NH_3 \longrightarrow Ag$	$J(NH_3)_2$			
	excess				

59.	The ease of hydrolysis in the compounds CH_3COC	CI(I), CH_3 -CO-O-COCH ₃ (II), $CH_3COOC_2H_5(III)$ and
	$CH_3CONH_2(IV)$ is of the order	
	$(A) > > > V \qquad (B) V > > > (C) > > V > V > > > V > > V > V > > V > > V > V > > V > > V > > V > > V > > V > > V > > V > > V > > V > > V > > V > > V > > V > $	> III (D) II > I > IV > III
Ans.	(A)	
Sol.	Reactivity towards hydrolysis of acid derivatives is	
	Acid halide > Anhydride > Ester > Amide	
60.	CH_3 –C=C MgBr can be prepared by the reaction of	
	(A) CH_3 -C=C-Br with MgBr ₂ (B) C	$H_3 - C \equiv CH$ with MgBr ₂
	(C) CH_3 -C=CH with KBr and Mg metal (D) C	CH₃–C≡CH with CH₃MgBr
Ans.	(D)	
Sol.	$CH_{3}-C=C-H + CH_{3}MgBr \longrightarrow CH_{3}-C=CMgBr + CH_{4}$	
61.	The number of alkene(s) which can produce-2-buta	anol by the successive treatment of (i) B_2H_6 in
	tetrahydrofuran solvent and (ii) alkaline H_2O_2 solution is	
	(A) 1 (B) 2 (C) 3	(D) 4
Ans.	(A)	
Sol.	$CH_3 - CH = CH - CH_3 \xrightarrow{(1) B_2H_6} CH_3 - CH_2 - CH_3 - CH_3 - CH_2 - CH_3 -$	CH ₃
	(2) H ₂ O ₂ / OH ⁻ OH	
	Butan-2-ol	
62.	Identify 'M' in the following sequence of reactions :	
	ÇH ₃	
		CI
	$C_8H_6CI_2O \longrightarrow C_8H_8CINO \longrightarrow NaOH$	
	H_2N^2	
	Ŷ	U U
		C CI
	CH ₃ ⁻ ×	
	CHO	
	(C) (D)	
	ĊH₂CI	Ö CH₃
Ans.	(B)	
	О Ц	
Sol		NH_2
	CH ₃ CH ₃	∽' I CH₃

67.	Which of the following electronic configuration is not possible ?							
	(A) n = 3, <i>l</i> = 0, n	n = 0		(B) n = 3, <i>l</i> =	1, m = – 1			
	(C) n = 2, $l = 0$, n	n = -1	(D) n = 2	2, <i>l</i> = 1, m = 0				
Ans.	(C)			-				
Sol.	(A) n = 3	<i>ℓ</i> = 0	m = 0	3 s				
	(B) n = 3	ℓ = 1	m = 1	3 p				
	(C) n = 2	$\ell = 0$	<u>m = -1</u>	Not possible				
	(D) n = 2	$\ell = 1$	m = 0	3 p				
68.	The number of u	npaired	electrons	in Ni (atomic	number = 28	3) are		
_	(A) 0		(B) 2		(C) 4		(D) 8	
Ans.	(B)	- 18 - 2						
Sol.	$_{28}Ni \longrightarrow [Ar]$	3d°4s²						
		11/1	1/1	1 1				
		· · · ·		d .		4s		
	No of unpaired e	= 2						
••								
69.	Which of the follo	owing ha	is the stro	ongest H-bond	?			
A	(A) O – H … S		(B) S – I	нО	(C) F –	н г	(D) F – H O	
Ans. Sol.	(C) Fluorine always f	formed s	strong hyd	drogen bond.				
			3 1	3				
70.	The half life of C	¹⁴ is 576	0 years. F	⁻ or a "200" mg	sample of (C ¹⁴ , the time take	n to change to 25 mg	j is
	(A) 11520 years		(B) 2304	40 years	(C) 576	0 years	(D) 17280 years	
Ans.	(D)	— 200 r	na					
Sol		2001	iig					
001.		t	_{1/2} = 5760	years				
		100 -	~ a					
	17280 vears		ng					
		t	$_{\frac{1}{2}} = 5760$	years				
		▼	a					
		- 50 m	9					
		t,	₂ = 5760	years				
		*						
		— 25 m o ⁿ	g					
	$Ur \qquad U_t = U_0/2$	2	, t = n ×	l _{1/2}				

Category – II (Q.71 to Q.75)

Carry 2 marks each and only one option is correct. In case of incorrect answer or any combination of more than one answer, ½ marks will be deducted.

Resonance Eduventures Limited

71.	During a reversible adiabatic process, the pressure of a gas is found to be proportional to the cube of it			
	absolute temperature. Th	he ratio $\frac{C_p}{C_v}$ for the gas is		
	(A) $\frac{3}{2}$	(B) $\frac{7}{2}$	(C) $\frac{5}{3}$	(D) 9 7
Ans.	(A)			
Sol.	$PT^{\frac{\gamma}{1-\gamma}} = Constant$ $PT^{-3} = Constant$	for reversible adiabatic p	rocess	
	$\frac{\gamma}{1-\gamma} = -3$			
	$\gamma = -3 + 3\gamma \qquad ;$	3 = 2 γ so	γ = 3/2	
72.	$[X] + \text{dil. } H_2\text{SO}_4 \longrightarrow [Y]$	[] : Colourless, suffocating	gas	
	$[Y] + K_2Cr_2O_7 + H_2SO_4 -$ Then [X] and [V] are	\longrightarrow Green colouration of	solution	
	(A) SO_{2}^{2-} , SO_{2}	(B) CI [–] , HCI	(C) S ²⁻ . H ₂ S	(D) CO_2^{2-} , CO_2
Ans.	(A)	() = , =		() 3 , 2
Sol.	SO ₃ ⁻² + dil H ₂ SO ₄ [x]	$\rightarrow SO_2(g)$ colourless, sur [y]	focating gas	
	$SO_2(g) + K_2Cr_2O_7 + H_2SC$	$D_4 \longrightarrow Green colour of$	solution due $Cr_2(SO_4)_3$	
73.	$[P] \xrightarrow{Br_2} C_2H_4Br_2 \xrightarrow{N}$	$\xrightarrow{\text{IaNH}_2} Q$		
	$[Q] \xrightarrow{20\%H_2SO_4}_{Hg^{2^+},\Delta} [R] \longrightarrow$	$\xrightarrow{\text{Zn-Hg/HCl}} [S]$		
	The species P, Q, R and	S respectively are		
	(A) ethene, ethyne, ethan	nal, ethane	(B) ethane, ethyne, ethan	nal, ethene
Ans.	(A)			
Sol.	$CH_2=CH_2 \xrightarrow{Br_2} Br-CH_2$	H_2 -C H_2 -Br $\xrightarrow{NaNH_2}$ H H_3	$C = CH \xrightarrow{HgSO_4} CH_3 - C$	$HO \xrightarrow{Zn-Hg} CH_3-CH_3$
74.	The number of possible	e organobromine compo	unds which can be obtai	ined in the allylic bromination of
	1-butene with N-bromos	succinimide is		
Ane	(A) 1 (D)	(B) 2	(C) 3	(D) 4
Sol.	$CH_2 = CH_2 - CH_3 - \frac{N}{N}$	BS → CH₂=CH–CH–CH-CH₂	←→ĊH₂−CH=CH–(CH₃
	2 2 3			0
		CH2=CH-CH3	G CH₂−CH≛CH−C	CH ₃
		! Br	! Br	

(cis + trans)

(±)

 Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

 Toll Free: 1800 258 5555
 Image: 1600 258 5555

 Image: 1600 258 5555
 Image: 1600 258 5555

 Image: 1600 258 5555
 Image: 1600 258 5555

75.	A metal M (specific heat	t 0.16) forms a metal ch	loride with $\approx 65\%$ chlorine	e present in it. T	he formula of the
	metal chloride will be				
	(A) MCI	(B) MCl ₂	(C) MCl ₃	(D) MCl ₄	
Ans.	(B)				
Sol.	Let metal chloride is MCl,	, then,			
	6.4 – Atomic	woight			
	Specific Heat	weight			
	$\frac{6.4}{0.16}$ = Atomic weight				
	Atomic weight = 40 = (Ca according to question) so CaCl ₂			
	$\frac{x \times 35.5}{40 + x \times 35.5} = 0.65$				
	\Rightarrow x = 2 approx So MCl _x = MCl ₂				

Category - III (Q.76 to Q.80)

Carry 2 marks each and one or more option(s) is/are correct. If all correct answers are not marked and also no incorrect answer is marked then score = $2 \times$ number of correct answers marked \div actual number of correct answers. If any wrong option is marked or if any combination including a wrong option is marked, the answer will considered wrong but there is no negative marking for the same and zero marks will be awarded.

76.	Among the following, the extensive variables are		
	(A) H (Enthalpy)	(B) P (Pressure)	
	(C) E (Internal energy)	(D) V (Volume)	
Ans.	(A,C,D)		
Sol.	Extensive variable \longrightarrow enthalpy, E (Int	ternal energy) , Volume (V)	
77.	White phosphorus P4 has the following cha	aracteristics :	
	(A) 6 P – P single bonds	(B) 4 P – P single bonds	
	(C) 4 lone pair of electrons	(D) $P - P - P$ angle of 60°	
Ans.	(A,C, D)		
Sol.	White phosphorus $(P_4) = P$		
	(A) 6 P–P Single Bond (C) 4 line pair of electrons (D) Bond angle $\angle P - P - P = 60^{\circ}$		

Resonance Eduventures Limited

 Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

 Toll Free : 1800 258 5555 S

 Solution
 Solution

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

 Toll Free : 1800 258 5555 S

 Solution

 Solution

B.O = $\frac{10-8}{2} = 1$, no. of unpaired electron = 0 (diamagnetic)

Resonance Eduventures Limited

 Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

 Toll Free : 1800 258 5555

 Source Colspan="2">Source Colspan="2"Source Colspan="2">Source Colspan="2"Source Colspan="2"Source Colspan="2">Source Colspan="2"Source Colspan="2"Source Colspan="2"Source Colspan="2"Source Colspan="2"Source Colspan="2"Source Colspan="2">Source Colspan="2"Source Colspan="2"Source Colspan="2"Source Colspan="2"Source Colspan="2"Source Colspan="2"Source Colspan="2"Source Colspan="2"Source Colspan="2"Source Colspan="2"So