STATE TALENT SEARCH EXAMINATION-2018-19 SCHOLASTIC APTITUDE TEST (SAT) HINTS & SOLUTIONS

1.	In the given velocity-time graph, the distance covered by the body in 3s is						
		$ \begin{array}{c} \uparrow & 72 \\ & 54 \\ & 36 \\ & 18 \\ & 0 \\ & 1 \\ & 2 \end{array} $	$A \\ A \\ 3 4 $ Time(s)				
Ans.	(1) 22.50 m (1)	(2) 45.0 m	(3) 90.00 m	(4) 112.50 m			
Sol.	distance = Area under v	/-t curve					
	$=\frac{1}{2}\times\left(54\times\frac{5}{18}\right)$)×3					
	= 22.5 m						
2. Ans.	The rate of change of m (1) applied force (1)	nomentum is equal to (2) impulse	(3) pressure	(4) work			
Sol.	(')						
3.	On playing carom board (1) increase friction	d powder is used to (2) decrease friction	(3) increase work done	(4) decrease momentum			
Ans. Sol.	(2)	(_) accreace measure					
4.	Which of the following is (1) poundal	s not a unit of foce ? (2) newton	(3) dyne	(4) pascal			
Ans. Sol.	(4)						
5.	Which of the following is	s the vector quantity?	(2) Appeloration				
Ans. Sol.	(3)	(z) Speeu	(3) Acceleration	(4) WOIK			
6.	Lactometer and hydrom (1) Newton's first law (3) Principle of Archime	neter are based on the	(2) Law of conservation of momentum				
Ans. Sol.	(3) (3)			N			
7.	A body of mass 6 kg me rest. After collision first	oving with velocity 15 m/s body's velocity is 5 m/s.	s collides with a second The velocity of second b	body of mass 10 kg, which is at body after collision will be			
Ans. Sol.	(1) 4 m/s(2)from conservation of mo	(2) 6 m/s omentum	(3) 8 m/s	(4) 19 m/s			
		Corporate Office : CG Tower A-	46 & 52, IPIA, Near City Mall Jha	lawar Road, Kota (Rai.)- 324005			
八	Resonance [®]	Head Office: Plot No. A-51 [A], IP	IA, Near Resonance CG Tower Cc	MAT (MAHARASHTRA)			

- Website :www.pccp.resonance.ac.in | E-mail : pccp@resonance.ac.in
- MAT (MAHARASHTRA) NTSE STAGE-I-2018 PAGE-1

		STATE TALENT SEARCH E	XAMINATION-2018-19, 1	8.11.2018
	$m_1v_1 + m_2v_2 = m_1u_1 + 6 \times 5 + 10 \times v_2 = 6 \times 7$	m ₂ u ₂ 15 + 10 × 0		
	$30 + 10v_2 = 90$ $10v_1 - 90 - 30$			
	$v_{0} = \frac{60}{100} = 6m/s$			
	10			
8.	Which of the following (1) Mercury	planets has maximum gra (2) Venus	avitational acceleration ir (3) Saturn	n the solar system? (4) Jupiter
Ans. Sol.	(4)	(<i>)</i>		
9.	The weights of the bo (1) zero	dy of mass 50 kg in a free (2) 49 N	falling artificial satellite is (3) 50 N	s (4) 98N
Sol.	In free fall motion con $w = 0$	dition of weightlessness so	0	
10.	The unit of universal ((1) Nm ² /Kg ²	gravitational constant G is (2) N ² m/Kg ²	(3) N ² m/Kg	(4) Nm/Kg ²
Ans.	(1) (1)			
11.	If the radius of a plane	et becomes double then th (2) be one-fourth	e gravitational accelerati (3) be half	on would (if mass is constant) (4) be double
Ans.	(2) GM	(_)		(),
Sol.	$g = \frac{GW}{R^2}$			
	$g' = \frac{GM}{(2R)^2} = \frac{GM}{4R^2}$			
	$g'=\frac{2}{4}$			
12.	The radius of curvatur	re of a concave mirror is 2	8 cm. Its focal length is	
Ans.	(1) / cm (2)	(2) 14 cm	(3) 28 cm	(4) 56 CM
501.	R = 21 $f = \frac{R}{2} = \frac{28}{2} = 14$ cm			
13.	Which of the following	g ray diagrams is not corre	ct ?	
		P		E p
	C F m		C F	
	(1)		(2)	44
	C F	P	C. F	P
Ans.	(3) (4)	\$C	(4)	R.
	Resonance®	Corporate Office : CG Tower, A-4 Head Office: Plot No. A-51 [A], IPI/	46 & 52, IPIA, Near City Mall, Jhala A, Near Resonance CG Tower Con	awar Road, Kota (Raj.)- 324005 tact : 0744-6635569
Z \ E	ducating for better tomorrow	website :www.pccp.resonance.ac. Toll Free : 1800 258 5555 CIN: U803	m ⊏-maii : <u>pccp@resonance.ac.in</u> 02RJ2007PLC024029	SAT PAPER & SOLUTION STSE-2018 PAGE-2

 $R = \frac{v^2}{P} = \frac{220 \times 220}{10}$ $R = 4840 \Omega$

- 20. For a current carrying conductor, in the 'Right hand law' the thumb points towards the (1) direction of magnetic field (2) direction of electric current (3) direction of earth's magnetic field (4) none of these
- Ans.
- Sol.

(2)

21. A body of mass m undergoes a change in speed from u to v by applying force F and the body travels a distance of s. The work done by the force is

(3) $\frac{m(v^2 - u^2)s}{s}$ (4) $\frac{v^2 - u^2}{2ms}$ (2) $\frac{m(v^2 - u^2)}{2s}$ (1) $\frac{1}{2}$ m(v² – u²) Ans. (1)Sol. from work-energy theorem $W = \Delta K.E.$ $W = \frac{1}{2}m(v^2 - u^2)$ 22. For producing equal light energy, which of the following devices use minimum electric energy? (1) Incandescent bulb (2) Tubelight (3) CFL light (4) LED light Ans. (4)

Sol.

23. A foce of 20 N acts on a body of mass 10 kg and the body moves 2 m at an angle of 45° to the direction of the force in 4 second. The dissipated power is

	(1) 5√2 J/s	(2) $\frac{5}{\sqrt{2}}$ J/s	(3) 10√2 J/s	(4) $\frac{10}{\sqrt{2}}$ J/s
Ans.	(1)	VZ		V2
Sol.	Power = $\frac{\text{Work}}{\text{Time}} = \frac{\text{FSc}}{4}$ $\Rightarrow \frac{20 \times 2 \times \cos 45^{\circ}}{4} = 5$	$\frac{\cos \theta}{\sqrt{2}}$ J/s		
24. Ans. Sol.	Colum 1 A. Hypermetropia B. Myopia C. Presbyopia D. Asttigmatism A B C D (1) s p q r (2) p r q s (3) p r s q (4) s q p r (4)	Column 2 p. Bifocal lens q. Concave lens r. Cylindrical lens s. Convex lens		
25. Ans. Sol.	A moving body of mas (1) 8 kg m/s (1) $p = \sqrt{2mk}$	s 2 kg, has kinetic ener (2) 16 kg m/s	gy 16 J. Its momentum i (3) 32 kg m/s	s (4) 64 kg m/s
	- ®	Corporate Office : CG Tower, Head Office: Plot No. A-51 [A],	A-46 & 52, IPIA, Near City Mall, J IPIA, Near Resonance CG Tower (Ihalawar Road, Kota (Raj.)- 324005 Contact : 0744-6635569
\wedge		Website :www.pccp.resonance.	ac.in E-mail : pccp@resonance.a	AC.IN SAT PAPER & SOLUTION

Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

STSE-2018 PAGE-4

		ALENT SEARCH E	XAMINATION-2018-19, 1	8.11.2018	
	$=\sqrt{2\times2\times16}$				
	\Rightarrow 8Nm/s				
26.	At one atmospheric pressure, liquid at their melting point is c	the amount of the alled	ermal energy required to	convert one kilogram solid into	
Ans. Sol.	(1) latent heat of fusion(3) latent heat of sublimation(1)		(2) latent heat of vaporisation(4) latent heat of condensation		
27.	The suitable method for purific	ation of two misci	ble liquids not having su	fficient difference in their boiling	
Ans. Sol.	(1) filtration (2) fra (2)	ctional distillation	(3) sublimation	(4) differential extraction	
28.	The atomicities of Helium, Oxy	gen and Ozone a	re respectively	(4) 1 2 2	
Ans. Sol.	(1) 2, 1, 3 (2) 3, (3) He - 1 (as it is a noble gas) oxygen $\rightarrow 2$ (O ₂) Ozone $\rightarrow 3$ (O ₃)	2, 1	(3) 1, 2, 3	(4) 1, 3, 2	
29. Ans. Sol.	Number of molecules present i (1) 6.022×10^{23} (2) 3.0 (2) Molecular mass of methane (C No. of moles of CH ₄ = $\frac{\text{given n}}{\text{molar n}}$ No. of molecules of CH ₄ in 8 given	in 8 g of methane (11×10^{23}) $(H_4) = 12 + 4 = 16)$ $(H_5) = \frac{8}{16} = 0.5 \text{ m}$ $(H_5) = 0.5 \times 6.023 \times 10^{-10}$	is (3) 12.044 × 10^{23} gm nol 10^{23}	(4) 8.011 × 10 ²³	
		= 3.011 ×10 ²³			
30. Ans. Sol.	Maximum number of electrons (1) 8 (2) 18 (4) n = 4 (for N shell)	present in N-shel	l of atom is (3) 50	(4) 32	
	max. no of electrons in N shell	$= 2n^{2}$ = 2 × (4) ² = 2 × 16 = 32			
31. Ans. Sol.	The radioactive isotope used in (1) Cobalt-60 (2) loc (2)	n the treatment of line-131	goitre diseases is (3) Sodium-24	(4) Chlorine-37	

 Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005

 Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower Contact : 0744-6635569

 Website :www.pccp.resonance.ac.in | E-mail : pccp@resonance.ac.in

 Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

State 2018 PAGE-5

	ducating for better tomorrow	Toll Free : 1800 258 5555 CIN:	U80302RJ2007PLC024029	STSE-2018 PAGE-6
八日	Resonance®	Website : WWW pcop resonance	J, IFIA, Near Resonance CG I	
	_	Corporate Office : CG Towe	r, A-46 & 52, IPIA, Near City	Mall, Jhalawar Road, Kota (Raj.)- 324005
Ans.	(1) BF ₃ (4)	(2) AICl ₃	(3) Na⁺	(4) Cl [−]
38.	Lewis base among	the following is		
Ans. Sol.	(1) Megnhad Sana (4)	(2) margobing Knor	ana (3) S. Chandrasi	ieknal (4) C. V. Kaman
37.	First Indian scientist	honoured by Nobel priz	e is	$a_{\rm ob}$
	no. of neutron = A – = 23 - = 12	- Z 11		
Ans. Sol.	(3) ⊔X ²³	7		
36.	Atomic number and neutrons present in (1) 10	d mass number of an element [X] will be (2) 11	element [X] are 11 (3) 12	and 23 respectively. The number of (4) 23
Ans. Sol.	(1) 1,2 (3)	(2) 2, 3	(3) 2, 4	(4) 2, 5
35	Lim	he water hibited by Lead (Ph) is		
Ans.	(2) CaO+H ₂ O>Ca	a(OH) ₂		
	[X] is (1) Cao	(2) Ca(OH) ₂	(3) CaCO ₃	(4) $CaSO_4$
~ 4				T he second sec
	Co-ordinate (D: Covalent bond		
Sol.	structure of ozone -	→ 1 coordinate covalent	bond	
33.	Number of coordina	te covalent bonds in ozc (2) 2	one molecule is (3) 3	(4) 1
	+1 -1 = HgNO ₃			
Sol.	mercurous nitra Hg ⁺¹ NO Molecular formula Hg NO	tte 3 ⁻¹ 3		
32. Ans	Molecular formula o (1) Hg(NO ₃) ₂ (3)	f Mercurous nitrate is (2) Hg(NO ₃) ₃	(3) HgNO ₃	(4) Hg ₂ NO ₃

$\overline{2}$	Educating for better tomorrow	Toll Free : 1800 258 5555 CIN: U80	o.m ⊏-man : <u>pccp@resonance.ac.</u> 0302R.I2007PI C024029	SAT PAPER & SOLUTION STSE-2018 PAGE-7
八	Resonance®	Head Office: Plot No. A-51 [A], IF	PIA, Near Resonance CG Tower Co	ntact : 0744-6635569
		Corporate Office : CG Tower, A	A-46 & 52, IPIA, Near City Mall, Jha	alawar Road, Kota (Raj.)- 324005
Ans.	(1) Li > C > B > O (4)	(2)	(3) U > Li > B > C	(4) Li > B > C > O
45.	Correct decreasing of Li, C, B O	order of atomic radii of the	following elements is	
Sol.	Ionisation enthalpy, only atomic radius in	electron gain enthalpy & e acreases due to addition of	lectronegativity decrease f new shell.	s as we go down the group. 0
Ans.	(3) Atomic radius (3)		(4) Electronegativity	
44.	The periodic propert (1) Ionisation enthal	y which increases on goin by	g from top to bottom in th (2) Electron gain entha	e groups of periodic table is alpy
Sol.	-	↓ Atomic oxygen		
	$H_2O + CI_2 \longrightarrow 2HC$	CI + [O]		
43. Ans.	[X] + Coloured subs t [X] + Coloured subs t (1) Molecular oxyger (2)	ance \rightarrow Colourless subs tance \rightarrow Colourless subs tance \rightarrow Colourless subs tand	an ce (3) Ozone	(4) Atomic chlorine
40	CH ₃ COONa is basic	salt so solution having p	I more than 7.	
Sol.	CH ₃ COOH + NaOH - weak strong acid base	\longrightarrow CH ₃ COONa + H ₂ O Basic salt		
Ans.	(1) 7.0 (2)	(2) above 7.0	(3) below 7.0	(4) zero
42.	The pH of solution o CH₂COOH + NaOH	btained by taking equal methods \rightarrow CH ₂ COONa + H ₂ O	ole of reactants in the foll	owing reaction will be
Ans. Sol.	(1) K < Mg < Zn < C (3)	u (2) Zn < Mg < Cu < K	(3) CU < Zn < Mg < K	(4) Mg < K < Zn < Cu
41.	Arrange the following Mg, K, Zn, Cu	g elements in increasing o	rder of their reactivity :	
Ans. Sol.	(3)		2	
	(1) CaSO ₄	(2) CaSO ₄ . 2H ₂ O	(3) CaSO ₄ . $\frac{1}{2}$ H ₂ O	(4) CaCO ₃
40.	The compound of ca	lcium used for joining the	broken bones is	
Ans. Sol.	(2) Potash atom is used formula - K_2SO_4 . Al ₂	for water purification. $_{2}$ (SO ₄) ₃ . 24H ₂ O		
39.	The formula of the so $(1) K_2 SO_4 \cdot Al_2 (SO_4)$ $(3) KCI \cdot MgCl_2 \cdot 6H_2$	alt used in purification of w p_3 . 6H ₂ O p_2 O	vater among the following (2) K ₂ SO ₄ . Al ₂ (SO ₄) ₃ (4) FeSO ₄ . (NH ₄) ₂ SO	is . 24H₂O ₄ . 6H₂O
501.				

		ST.	ATE TALENT SEARCI	HEXAMINATION-2018-1	9, 18.11.2018
Sol.	as we move from	n left to r	ight in a period atom	ic radius decreases.	
46. Ans. Sol.	The period relat (1) fifth (2)	ed to lan	thanoids in modern p (2) sixth	periodic table is (3) seventh	(4) eight
47. Ans. Sol.	Pair of monome (1) Terephthalic (3) Terephthalic (3)	rs of poly acid and acid and	/mer terylene is I Ethylene I Ethylene glycol	(2) Adipic acid and (4) Adipic acid and	Ethylene glycol Hexamehtylene diamine
48. Ans. Sol.	Allotrope of carb (1) Diamond (4)	oon used	as superconductor a (2) Graphite	at high temperature is (3) Charcoal	(4) Fullerene
49. Ans. Sol.	Name of chlorof (1) Freon-11 (2)	luorocart	oon CF ₂ Cl ₂ is (2) Freon-12	(3) Freon-112	(4) Freon-122
50. Ans. Sol.	The ratio of num (1) 1 : 1 (3) cyclohexane chu C : H 6 : 12 1 : 2	nbers of o	carbon and hydrogen (2) 2 : 1 rmula = C ₆ H ₁₂	atoms in cyclohexane (3) 1 : 2	is (4) 2 : 3
51. Ans. Sol. materia	Genetic materia (1) Double helic (2) The genetic ma I of a plant virus	l in plant le DNA terial of is RNA .	virus is (2) RNA most organisms is d	(3) DNase louble strauded DNA .	(4) RNase TMV is a plant virus . The genetic
52. Ans. Sol.	Lignified cell in r (1) Vessel (1) Xylem parenchy	olants is vma,sieve	(2) Xylem parenchyn e tubes and compani	na (3) Sieve tube on all are living (vessel	(4) Companion cell lignin that provides rigidity)
53. Ans. Sol.	The kingdom rel (1) Protista (2) Monera includes	lated with	n Prokaryotic organis (2) Monera aryotes	m is (3) Fungi	(4) Plantae
54. Ans. Sol.	Which division c (1) Thallophyta (2) Bryophyte grows	of plants i s on land	is known as amphibia (2) Bryophyta I and need water for t	ans of plant kingodm? (3) Pteridophyta fertilization	(4) All of these
55. Ans.	Which plant has (1) Cycas (2)	mycorrh	iiza? (2) Pinus	(3) Pea	(4) Equisetum

	Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005			
	Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower Contact : 0744-6635569			
Educating for better tomorrow	Website :www.pccp.resonance.ac.in E-mail : pccp@resonance.ac.in	SAT PAPER & SOLUTION		
	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	STSE-2018 PAGE-8		

		ATE TALENT SEARCH E	XAMINATION-2018-19, 1	8.11.2018
Sol.	Pinus is a gymnosperm.	Its root shows symbiosis	s & mycorrhiza means a	ssociation of fungus with roots
of high	er plants.			
56. Ans. Sol.	From which plant part is (1) Root (1) Botanical name of ashwa	Ashwagandha medicine (2) Stem agandha is withania som	e obtained? (3) Leaf nnifera. Its root and fruits	(4) Fruit have medicinal importance
57. Ans. Sol.	The chemical used in the (1) Codeine (1) Codience is an opiate us	e preparation of pain reli (2) Nicotine sed to treat pain,as a cou	ef medicine is (3) Caffeine ugh medicine and for dia	(4) Tannin Irrhea
58. Ans. Sol.	The generation which firs (1) Parental generation (2) Law of dominance	st of all expresses domir (2) F ₁ generation 1 only dominant chara	nant characters in hybric (3) F_2 generation acters express	lization experiment is (4) F_3 generation
59. Ans. Sol.	In which state is Kaziran (1) West Bengal (3) Kaziranga Asam	ga National park locatec (2) Kerala	l ? (3) Assam	(4) Gujarat
60. Ans. Sol.	The first human astronau (1) Neil Armstrong (3) Yuri Gagarin	ut in space was (2) Michael Collins	(3) Yuri Gagarin	(4) Alan Shepard
61. Ans. Sol.	Presence of jointed appa (1) Annelida (3) Arthropoda means jointe	andages is feature of wh (2) Mollusca d appendages , it includ	ich phylum? (3) Arthropoda le all insects	(4) Echinodermata
62. Ans. Sol.	Excretory organ in earthy (1) Kidney (2) Earthworm (annelid) exc	worm is (2) Nephridia cretory organ Nephric	(3) Malpighian tubules dia	(4) Flame cells
63. Ans. Sol.	Imbalance secretion of w (1) Thyroxine (1) Thyroxine released by T	vhich hormone results in (2) Thymosin hyroid gland	Goitre ? (3) Insulin	(4) Adrenaline
64. Ans. Sol.	Protozoan disease is (1) Leprosy (4) It is caused by plasmodie	(2) Poliomyelitis um, Which is a protozoa	(3) Jaundice	(4) Malaria
65. Ans. Sol.	In which phase of cell cy (1) G-1 phase (2) Interphase G1 Phase (Growth phase S (DNA Synthesis) G2 (Growth phase II)	cle does DNA synthesis (2) S phase se)	take place? (3) M phase	(4) G-2 phase

 Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005

 Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower Contact : 0744-6635569

 Website :www.pccp.resonance.ac.in | E-mail : pccp@resonance.ac.in

 Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

SAT PAPER & SOLUTION
STSE-2018 PAGE-9

66.	Which of the following (1) Pituitary gland	glands is endocrine as w (2) Thyroid gland	ell as exocrine? (3) Adrenal gland	(4) Pancreas		
Ans. Sol.	(4) Pancreas is a dual gla	nd , it secretes harmone a	as well play role in diges	tion		
67.	Thecodont and diphyo (1) Reptilia	dont dentition is found in (2) Mammalia	(3) Amphibia	(4) Pisces		
Ans. Sol.	(2) Thewdant Teeth fixes Diphywdent two set o	in socket of teeth				
	1.Tempory 2. F	Permanent				
68.	Antibody found in mot (1) IgG	her's milk is (2) IgM	(3) IgA	(4) IgE		
Sol.	Mother's milk called co	blosium IgA antibody pres	sent in it			
69.	Coral belongs to which (1) Ctenophora	n phylum ? (2) Coelenterata	(3) Porifera	(4) Mollusca		
Sol.	(2) Coelenterata / Cridaria	a				
70.	The disease caused b (1) Night blindness	y deficiency of Vitamin C (2) Beri-Beri	is (3) Scurvy	(4) Rickets		
Ans. Sol.	(3) Vitamin C deficienc	y dieses Scurvy				
71.	Dvandva yoga of 3456 (1) 110	67 is (2) 115	(3) 120	(4) 125		
Ans. Sol.	$\begin{array}{c} (2) \\ 3 4 5 6 7 \\ \hline \\ 3 4 5 6 7 \\ \hline \\ 3 4 5 6 7 \\ \end{array}$					
	$3 \times 7 + 3 \times 7 + 4 \times 6 -$	+ 4 × 6 + 5 × 5				
	21 + 21 + 24 + 24 + 25 42 + 48 + 25 = 115)				
72.	If $\frac{1-2\sqrt{3}}{2} = 4a - b\sqrt{3}$,	where a and b are rationa	al then the value of (a – I	o) ² is		
	$2 - \sqrt{3}$ (1) 25	(2) 16	(3) 4	(4) 9		
Ans. Sol.	(2) $\frac{1-2\sqrt{3}}{2} \times \frac{2+\sqrt{3}}{2} = \frac{2-2}{2}$	$\frac{4\sqrt{3}+\sqrt{3}-2\times3}{4}$				
	$2 - \sqrt{3} 2 + \sqrt{3}$ $4a - b\sqrt{3} = -4 - 3\sqrt{3}$	a = -1				
	$(a-b)^2 = (-1+3)^2 = 1$	b = +3 6				
73.	The value of $\overline{1.324}$ is					
	(1) $\frac{1311}{990}$	(2) $\frac{1113}{990}$	(3) $\frac{1312}{990}$	(4) $\frac{1213}{990}$		
Ans.	(1)	Corporate Office + CC Tower A	16 & 52 IDIA Noor Chy Moll that	awar Road Koto (Roi) 224005		
		Head Office: Plot No. A-51 [A], IPI	A, Near Resonance CG Tower Cor	ntact : 0744-6635569		
\sim		Website :www.pccp.resonance.ac.	in E-mail : pccp@resonance.ac.ir	SAT PAPER & SOLUTION		
	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029 STSE-2018 PAGE-					

		1.2018
Sol.	$\frac{1.324 - 13}{990} = \frac{1311}{990}$	
74. Ans. Sol.	Which of the following numbers is subtracted from the polynomial $p(x) = 2x^4 - 3x^3 + 3x + 1$ having a factor $(x + 1)$? 1) -3 (2) $+2$ (3) $+3$ (4 3) $p(x) = 2x^4 - 3x^3 + 3x + 1$	·) –2
	$p(-1) = 2(-1)^4 - 3(-1)^3 + 3(-1) + 1$ = 2 + 3 - 3 + 1 = 6 - 3 = 3	
75. Ans. Sol.	Sum of three consecutive odd numbers is 45. Then the greatest number is 1) 19 (2) 15 (3) 13 (4 4) (2x + 1) + (2x + 3)(2x + 5) = 45	.) 17
76.	f zeros of a quadratic polynomial are 7 and $-\frac{1}{3}$, then the quadratic polynomial	mial will be
Ans. Sol.	1) $3x^{2} + 20x - 7$ (2) $3x^{2} - 20x - 7$ (3) $3x^{2} - 20x + 7$ (4 2) $x^{2} - \left(7 - \frac{1}{3}\right)x - \frac{7}{3}$ $x^{2} - \frac{20}{3}x - \frac{7}{3}$ $3x^{2} - 20x - 7$.) 3x ² + 20x + 7
77. Ans. Sol.	The 8th term of the A.P. series $(24 + 7\sqrt{3})$ $(21 + 6\sqrt{3})$ $(18 + 5\sqrt{3})$, is 1) -3 (2) +3 (3) 0 (4 2) $a = 24 + 7\sqrt{3}$ $d = -3 - \sqrt{3}$ $a_8 = a + (n - 1)d$ $= 24 + 7\sqrt{3} + (8 - 1) \times (-3 - \sqrt{3})$	$(3+\sqrt{3})$
78. Ans. Sol.	$= 24 + 7\sqrt{3} + (6 - 1) \times (-3 - \sqrt{3})$ $= 24 + 7\sqrt{3} - 21 - 7\sqrt{3}$ $= 3$ f the roots of quadratic equation $5x^{2} - 10x + k = 0$ are real and equal, then 1) +5 (2) -10 (3) +10 (4 1) D = 0 -10)^{2} - 4 \times 5 \times k = 0 100 - 20k = 0 100 = 20 k x = 5	value of k will be ∙) –5

Resonance Estate TALENT SEARCH EXAMINATION-2018-19, |18.11.2018

80. In the following diagram AD is bisector of angle A, AB = 8 cm, AC = 6.4 cm, DC = 4 cm. Then the value of BD is

84. If the angle of elevation of the top of a tower whose height is 50 m from the top of the pole and the angle of depression of the foot of the tower from the top of the pole are equal, then the height of the pole is

Ans.	(1) 100 m (3)		(2) 75m	(3) 25m	(4) 50m
Sal	h c x	$ \begin{array}{c} A \\ \downarrow \\ \downarrow \\ B \end{array} $			
501.	In ∆AED,				
	$\tan \theta = \frac{50 - x}{x}$ In $\triangle DCB$	<u>h</u> (1)			
	$\tan \theta = \frac{n}{x}($	(2)			
	From (1) & (2)			
	<u>50-h_h</u>				
	$\frac{1}{x} = \frac{1}{x}$				
	2h = 50				
	h = 25 m				

85. A square of which are is 128 cm², is inside a circle, then the value of radius of the circle is (1) 16cm (2) 8cm (3) 45cm (4) 12cm

Sol.

Ans.

 Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005

 Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower Contact : 0744-6635569

 Website :www.pccp.resonance.ac.in | E-mail : pccp@resonance.ac.in

 Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

SAT PAPER & SOLUTION
STSE-2018 PAGE-13

Resonance STATE TALENT SEARCH EXAMINATION-2018-19, 18.11.2018

According to question, AC must be diagonal Area of ABCE = 128 cm^2 $a^2 = 128$ $a = 8\sqrt{2}$ \Rightarrow AC = a $\sqrt{2}$ = 8 $\sqrt{2} \times \sqrt{2}$ = 16 cm Hence radius = $\frac{16}{2} = 8$ cm

- The volume and the area of the curved surface of cylinder are 2618 cm³ and 748 cm² respectively. The 86. the height of the cylinder is
 - (1) 17 cm (2) 7cm (3) 15 cm (4) 22cm (1)

volume = $\pi r^2 h = 2618$ Sol.

$$\frac{22}{7} \times r^2 \times h = 2618$$

$$rh \times r = \frac{2618 \times 7}{22}$$
put rh = 119
$$r = \frac{2618 \times 7}{22 \times 119} = 7$$
curved surface area = $2\pi rh = 748$

$$2 \times \frac{22}{7} \times rh = 748$$
$$rh = \frac{748 \times 7}{2 \times 22}$$
$$rh = 7 \times 17$$

- 87. The point of concurrency of perpendicular bisectors of the sides of a triangle is known as (1) Centre of gravity (2) Orthocentre (3) Incentre (4) Circumcentre (4)
- Ans.
- Sol. intersection point of perpendicular bisector is called circumcentre.
- In the following diagram AB is a tangent at R on a circle having centre O. If $\angle QRA = 35^{\circ}$, then the 88. value of ∠QOR is

Ans. (4)

prporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005	
ead Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower Contact : 0744-6635569	
ebsite :www.pccp.resonance.ac.in E-mail : pccp@resonance.ac.in	SAT PAPER & SOLUTION
II Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	STSE-2018 PAGE-14

人 **Resonance**

 $=\frac{43}{2}$ median = 21.5

(1)

(1)

90. Two dice are thrown at the same time. What is the probability that the sum of the numbers appearing on the tops of the dice is 7?

(3) $\frac{1}{36}$

Ans. **Sol.**

 $\begin{array}{rcl}
1 + 6 &= 7 \\
6 + 1 &= 7 \\
4 + 3 &= 7 \\
3 + 4 &= 7 \\
5 + 2 &= 7 \\
2 + 5 &= 7 \\
Total possible case 6 \\
probability = \frac{6}{total} = \frac{6}{36} = \frac{1}{6}
\end{array}$

(2) $\frac{1}{9}$

 Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005

 Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower Contact : 0744-6635569

 Website :www.pccp.resonance.ac.in | E-mail : pccp@resonance.ac.in

 Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

STSE-2018 PAGE-15

(4) $\frac{5}{36}$