

# **STSE Question Paper with Solution (PCM) PART-I PHYSICS**

- $\frac{1}{273.16}$ th part of thermodynamical temperature of triple point of water is called 1.
  - (1) mole
- (2) second
- (3) kelvin
- (4) Celsius

Ans.

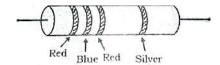
By definition Triple point of water is at 273.16 K. Sol.

- 2. Which of following is majority charge carrier particle in the N-type extrinsic semiconductor?
  - (1) Electron
- (2) Proton
- (3) Neutron
- (4) Hole

Ans.

Majority charge carrier in N type is electrons. Sol.

- 3. Under which of following forces is mechanical energy not conserved?
  - (1) Gravitational force (2) Friction force
  - (3) Restoring force
- (4) Electrostatic force


Ans. [2]

Sol. Friction force is a non conservative force.

- 4. Curie temperature of iron is
  - (1) 1394 K
- (2) 631 K
- (3) 893 K
- (4) 1043 K

Ans. [4]

5. Percentage error for colour coded resistor in the following figure is



- $(1) \pm 20\%$
- $(2) \pm 15\%$
- $(3) \pm 10\%$
- $(4) \pm 5\%$

Ans.

Sol. Silver band represent a tolerance of 10%.

- 6. If the ratio of two specific heats  $\left(x = \frac{C_p}{C_y}\right)$  of any gas is 1.4 then that gas will be
  - (1) monatomic
- (2) diatomic
- (3) triatomic
- (4) none of these

- Ans. [2]
- Sol.

$$\gamma = 1 + \frac{2}{f}$$

$$1.4 = 1 + \frac{2}{f}$$

$$\Rightarrow$$
 f = 5 : Diatomic

- 7. Communication frequency band range for FM broadcast is
  - (1) 540 1600 kHz
- (2) 88 108 MHz
- (3) 54 72 MHz
- (4) 840 935 MHz

- Ans. [2]
- **8.** A radioactive isotope has a half-life of T years. How long will it take to reduce the activity to 3.125% of its original value ?
  - (1) 2 T years
- (2) 3 T years
- (3) 4 T years
- (4) 5 T years

- Ans. [4
- $\textbf{Sol.} \qquad A = A_0 2^{-t/T}$

$$\frac{3.125}{100}A_0 = A_0 2^{-t/T}$$

$$\Rightarrow$$
 t = 5T

- **9.** Which of the following physical quantities remains conserved in the continuity equation for incompressed liquid flow ?
  - (1) Mass
- (2) Energy
- (3) Moment
- (4) Charge

- Ans. [1]
- **Sol.** Continuity equation is based on the principle of conservation of mass.
- **10.** The ground state energy of hydrogen atom is −13.6 eV. The kinetic energy of the electron in this state is
  - (1) -13.6 eV
- (2) +13.6 eV
- (3) -27.2 eV
- (4) +27.2 eV

Ans. [2]



Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005

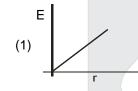
Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

- 11. If the magnification powers of two thin lenser are 4 and 2 respetively then the magnification power of the combined lens formed by these lenses is
  - (1)2
- (2) 4
- (3)8
- (4) 12

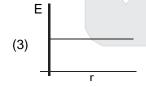
[1] Ans.

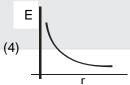
Possible powers are (4+2) & (4-2)Sol.

6 is not present in options


- ∴ 2
- Frequency of electric current of alternating current i = 100 sin  $(120\pi t + \frac{f}{3})$  will be 12.
  - (1) 50 Hz
- (2) 60 Hz
- (3) 70 Hz
- (4) 80 Hz

Ans.


**Sol.** 
$$f = \frac{\omega}{2}$$


$$f = \frac{\omega}{2\pi} = \frac{120\pi}{2\pi} = 60$$
Hz

13. The curve between distance r from sheet and electric field E due to a uniformly charged infinite plane sheet is









Ans.

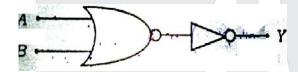
**Sol.** 
$$E = \frac{\sigma}{2t_0} = constant.$$

- 14. Among the following which electromagnetic wave have the wavelength range of 700 nm to 00 nm
  - (1) Light waves
- (2) Microwaves
- (3) X-Rays
- (4) Radio waves

Ans. [1]

By memory. Sol.

- A jet plane is travelling towards west at a speed of 400 m/s while the earth's magnetic field at the location has a magnitude of  $5 \times 10^{-4}$  T and the dip angle is 30°. The voltage difference developed between the ends of the wings of the plane having a span of 25 m long is
  - (1) 1.0 V
- (2) 1.5 V
- (3) 2.0 V
- (4) 2.5 V


Ans. [4]

**Sol.** 
$$e = VB\ell$$

$$=400 \times 5 \times 10^{-4} \times \frac{1}{2} \times 25$$

$$= 2.5 V$$

**16.** Which fundamental logic gate is equivalent to the following iruit?



- (1) NOT-gate
- (2) AND-gate
- (3) OR-gate
- (4) none of these

Ans. [3]

**Sol.** 
$$((A + B)')' = A + B$$

- 17. The de-Broglie wavelength associated with an electron accelerated by 100 volt will be
  - (1) 0.123 nm
- (2) 0.312 nm
- (3) 0.231 nm
- (4) 0.132 nm

Ans. [1

**Sol.** 
$$\lambda = \frac{h}{mv} = \frac{12.3}{\sqrt{V}} \text{ Å} = 1.23 \text{ Å}$$

$$= 0.123 \text{ nm}.$$

- 18. The value of gravitational acceleration at the centre of earth is
  - (1) zero
- $(2) 9.8 \text{ m/s}^2$
- $(3) 4.9 \text{ m/s}^2$
- (4) 19.6 m/s<sup>2</sup>

Ans. [1

**Sol.** 
$$g = \frac{GMx}{P^3}$$
;  $x = 0$  therefore  $g = 0$ 

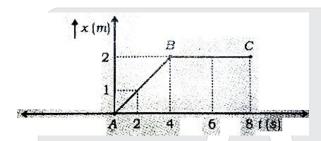


Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005

(1) 
$$p = \frac{F}{V}$$

(2) 
$$F = \frac{P}{v}$$

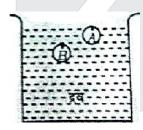
(3) 
$$P = \frac{V}{F}$$
 (4)  $V = \frac{F}{P}$ 


(4) 
$$v = \frac{F}{F}$$

Ans.

Sol.

$$P = \vec{F} \cdot \vec{V} = FV$$


20. The acceleration of the object in the given graph between the point A to point B is



(2) 
$$2 \text{ m/s}^2$$

**Sol.** 
$$a = \frac{d^2x}{dt^2} = 0$$
; second derivative for straight line is 0

21. If U<sub>A</sub> and U<sub>B</sub> are surface energies of the molecules A and B of the liquids respectively in given figure then relation between U<sub>A</sub> and U<sub>B</sub> is



(1) 
$$U_A < U_B$$

(2) 
$$U_A = U_B$$

(3) 
$$U_A > U_B$$

(4) None of these

Ans.

A is on the surface. So it has more potential energy due to surface tension Sol.

The approximate nuclear energy released due to nuclear fission of one atom of  $_{92}\mathrm{U}^{235}$  is 22.

(1) 500 MeV

(2) 400 MeV

(3) 300 MeV

(4) 200 MeV

Ans. [4]

Sol. By memory.

- 23. Energy of photons depends on
  - (1) frequency of photons
  - (2) intensity of photons
  - (3) both frequency and intensity of photons
  - (4) none of these

Ans. [1]

**Sol.** The energy of a photon is given by E = hv

- **24.** The unit of electromotive force (emf) is
  - (1) newton
- (2) volt
- (3) joule
- (4) coulomb

Ans. [2]

**Sol.** EMF is actually a kind of potential difference.

- 25. An object is moving in one direction with constant power under the influence of a source. At any time t, the displacement is proportional to
  - (1)  $t^{\frac{1}{2}}$
- $(2) t^2$

(3) t

(4)  $t^{\frac{3}{2}}$ 

Ans. [4]

Sol. P = FV

$$=\frac{\text{mvdv}}{\text{ds}}xV$$

 $Pds = mv^2 dv$ .

$$s = \frac{mv^3}{3P}$$

$$v r x^{\frac{1}{3}}$$

$$\frac{dx}{dt} r x^{\frac{3}{2}}$$

$$\frac{dx}{\frac{1}{3}}$$
 r dt

$$x^{\frac{2}{3}}$$
 r t

- **26.** A player can throw a ball up to a maximum horizontal distance of 80 m. The same player can throw the ball up to which maximum vertical height?
  - (1) 40 m
- (2) 80 m
- (3) 120 m
- (4) 160 m

Sol.

 $R_{\text{max}} = \frac{V^2}{g}$  [when angle of projection = 45°]

 $H_{max} = \frac{v^2}{2a}$  [ when angle of projection = 90°]

 $\therefore \text{ Hmax } = \frac{R_{\text{max}}}{2},$ 

- If the mass of 0.72 m long steel wire is  $5.0 \times 10^{-3}$  kg then the speed of produced transverse waves 27. on the wire under 60 N tension in the wire is
  - (1) 63 m/s
- (2) 73 m/s
- (3) 93 m/s
- (4) 39 m/s

Ans.

Sol.

 $v = \sqrt{\frac{T}{\sim}} = \sqrt{\frac{60 \times 0.72}{5 \times 10^{-3}}} \simeq 93 \text{ m/s}$ 

- 28. If the amplitude of S.H.M. is A and potential energy and kinetic energy are equal then displacement will be
  - (1) ± A
- (3)  $\pm \frac{A}{\sqrt{2}}$  (4)  $\pm \sqrt{2}A$

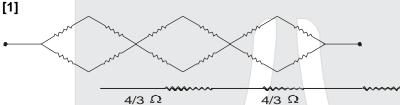
Ans.

 $\frac{1}{2}KA^2 = \frac{1}{2}m\omega^2(A^2 - x^2)$ 

 $x = A\sqrt{2}$ 

- The focal length of a concave mirror in air is f. If it is immersed in water  $\left(n = \frac{4}{3}\right)$  then the focal 29. length will be
  - (1) 3f
- (2) f
- (3)  $\frac{3}{f}$
- (4) 4f

Ans.


Sol.  $\frac{f'}{f} = \frac{1.5 - 1}{\left[\frac{1.5 \times 3}{4} - 1\right]} = 4$ 



- (1)  $4\Omega$
- (2)  $3\Omega$
- $(3) 2\Omega$
- $(4) 1 \Omega$

Ans.

Sol.



# **PART-II CHEMISTRY**

- 31. Molecule having only sp3 hybrid carbon atoms is
  - (1)  $C_2H_2$
- (2) C<sub>2</sub>H<sub>4</sub>
- (3)  $C_6H_6$
- $(4) C_3H_8$

4/3 Ω

Ans. [4]

C<sub>3</sub>H<sub>8</sub> is an alkane Sol.

$$CH_3 - CH_2 - CH_3$$
.

All 'C' atoms are sp3 hybrid

- 32. Compound having highest oxidation state of halogen is
  - (1) Hypochlorous acid (2) Chlorous acid
- (3) Chloric acid
- (4) Perchloric acid

Ans. [4]

Sol. Oxidation number of chlorine

> Perchloric acid HClO<sub>4</sub> +7

Chloric acid HCIO<sub>3</sub> +5 Chlorous acid HCIO<sub>2</sub> +3

Hypochlorous acid **HCIO** +1

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

(1)  $X_2C = CY_2$ 

(2)  $X_2C = CXY$ 

(3) YXC = CXY

(4)  $YXC = CY_2$ 

Ans. [3]

**Sol.** YXC = CXY will show Cis-trans isomerism.

**34.** Highest heat resistant compound is

(1) Na<sub>2</sub>CO<sub>3</sub>

(2) CaCO<sub>3</sub>

(3)  $Al_2(CO_3)_3$ 

(4) MgCO<sub>3</sub>

Ans. [1]

**Sol.** Group 1 carbonates except Li<sub>2</sub>CO<sub>3</sub> do not decompose on heating.

35. In the 13<sup>th</sup> group from Al to TI, the stability of +1 oxidation state increases due to

(1) Irregular increase in size

(2) decrease in ionization enthalpy

(3) inert pair effect

(4) decrease in ionic nature of compounds

Ans. [3]

**Sol.** Due to inert pair effect, in group 13, stability of (+1) oxidation store increases down the group.

36. In the refining of Nickel, technique used is

(1) Zone refining

(2) Liquation refining

(3) Vapour phase refining

(4) Chromatography

Ans. [3]

**Sol.** Vapour phase refining (Mond's process) is used for the purification of Ni.

37. Liquid in liquid colloid is

(1) Gel

(2) Emulsion

(3) sol

(4) Foam

Ans. [2]

**Sol.** Liquid in liquid are called emulsions.

**38.** ns<sup>2</sup>np<sup>4</sup> configuration represents the group

(1) 4

(2)6

(3) 16

(4) 18

Ans. [3]

**Sol.** ns<sup>2</sup> np<sup>4</sup> represents the oxygen family hence group 16.

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005

| 八品   | esonance =                                                                                     | STATE TALE                     | ENT SEARCH EXAM                   | 11NATION-2015   01-11                       | -2015 |
|------|------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------|---------------------------------------------|-------|
| 39.  | In the alkali metal group, the stability of peroxides and superoxides of metal ions increases  |                                |                                   |                                             |       |
|      | (1) due to sam                                                                                 | lue to same size               |                                   | (2) due to increases in ionisation enthalpy |       |
|      | (3) due to increase in size                                                                    |                                | (4) due to decrease in size.      |                                             |       |
| Ans. | [3]                                                                                            |                                |                                   |                                             |       |
| Sol. | Stability of peroxides and super oxides of metal ions increases due to increase in size.       |                                |                                   |                                             |       |
| 40.  | Which of the following pairs of elements forms covalent nitride by the direct combination with |                                |                                   |                                             |       |
|      | nitrogen?                                                                                      |                                |                                   |                                             |       |
|      | (1) Li, Mg                                                                                     | (2) Na, Ca                     | (3) K, Sr                         | (4) Rb, Ba                                  |       |
| Ans. | [1]                                                                                            |                                |                                   |                                             |       |
| Sol. | Li and Mg both forms covalent nitride                                                          |                                |                                   |                                             |       |
|      | GLI 2N 2LIN                                                                                    |                                |                                   |                                             |       |
|      | $6Li + 3N_2 \longrightarrow 2Li_3N$                                                            |                                |                                   |                                             |       |
|      | 3Mg+                                                                                           | $-N_2 \longrightarrow Mg_3N_2$ |                                   |                                             |       |
|      |                                                                                                |                                |                                   |                                             |       |
| 41.  | Covalent solid                                                                                 | is                             |                                   |                                             |       |
|      | (1) CO <sub>2</sub>                                                                            | (2) SiO <sub>2</sub>           | (3) CaF <sub>2</sub>              | (4) SO <sub>2</sub>                         |       |
| Ans. | [2]                                                                                            |                                |                                   |                                             |       |
| Sol. | SiO <sub>2</sub> (silica) is                                                                   | a covalent solid               |                                   |                                             |       |
|      | 2( )                                                                                           |                                |                                   |                                             |       |
| 42.  | 00                                                                                             | ontains odd number of valen    | co electrons                      |                                             |       |
| 42.  |                                                                                                | (2) N <sub>2</sub> O           |                                   | (4) N O                                     |       |
| ۸na  | (1) NO <sub>2</sub>                                                                            | (2) N <sub>2</sub> O           | (3) N <sub>2</sub> O <sub>3</sub> | (4) N <sub>2</sub> O <sub>5</sub>           |       |
| Ans. | [1]                                                                                            |                                |                                   |                                             |       |
| Sol. | NO <sub>2</sub> contains                                                                       | 17 valence electrons.          |                                   |                                             |       |
| 43.  | Nylon-6, 6 is                                                                                  |                                |                                   |                                             |       |
|      | (1) Addition polymer                                                                           |                                | (2) Condensation polymer          |                                             |       |
|      | (3) Thermoplastic polymer                                                                      |                                | (4) thermosetting polymer         |                                             |       |
| Δne  | [2]                                                                                            |                                |                                   |                                             |       |

STSE-10



#### STATE TALENT SEARCH EXAMINATION-2015 | 01-11-2015

**Sol.** Nylon–6,6 is a condensation polymer which is formed by condensation reaction of adipic acid & hexamethylene diamine.

$$\begin{array}{c} O \\ II \\ II \\ II \\ -C-(CH_2)_4-C-OH+nH_2N-(CH_2)_6-NH_2 \\ \end{array} \longrightarrow \\ \left[ \begin{array}{c} O \\ II \\ -C-(CH_2)_4-C-NH-(CH_2)_6-NH- \end{array} \right]_n$$

- 44. Propene react with ozone to give addition product. This on hydrolysis in the presence of Zn gives
  - (1) Formaldehyde

(2) Acetaldehyde

(3) Acetone

(4) Formaldehyde and Acetaldehyde

Ans. [4]

Sol. 
$$CH_3-CH=CH_2 \xrightarrow{O_3} CH_3-CH \xrightarrow{O} CH_2 \xrightarrow{Zn+H_2O} CH_3-CHO+CH_2=O$$
Ozonide

- **45.** Which of the following elements does not exhibit positive oxidation state?
  - (1) Br
- (2) CI
- (3) F
- (4) I

- Ans. [3]
- **Sol.** 'F' atom shows only –1 oxidation Number where as other halogen can show both negative and positive oxidation number.
- **46.** Zincite ore is
  - (1) oxide
- (2) chloride
- (3) sulphate
- (4) carbonate

- Ans. [4]
- **Sol.** Zincite is the ore of Zn formula of zincite is (ZnCO<sub>3</sub>) which is a carbonate ore.
- 47. In first row transition series the metal which exhibits the maximum oxidation state is
  - (1) Cr
- (2) Co
- (3) Fe
- (4) Mn

- Ans. [4]
- **Sol.** In first row transition series, Mn shows maximum oxidation number.



#### STATE TALENT SEARCH EXAMINATION-2015 | 01-11-2015

- 48. By treating an aqueous solution of ammonium chloride with sodium nitrite, gaseous product obtained is
  - (1) NH<sub>3</sub>
- (2) Cl<sub>2</sub>
- (3)  $N_2$
- (4) NO<sub>2</sub>

Ans. [3]

- **Sol.**  $NH_4CI + NaNO_2 \longrightarrow N_2 + NaCI + 2H_2O$
- 49. Ranitidine drug is
  - (1) Tranquilizer
- (2) Antihistamine
- (3) Antacid
- (4) Antibiotic

- Ans. [3]
- **Sol.** Ranitidine is an antacid.
- **50.** In which reaction is aldehyde obtained from acyl chloride?
  - (1) Rosenmund reduction

(2) Stephen reaction

(3) Clemmensen reduction

(4) Finkelstein reaction

Ans. [1]

Sol. 
$$R-C-CI + H_2 \xrightarrow{Pd+BaSO_4+Xylene} R-C-H$$

- **51.** Amino acids obtained by the hydrolysis of proteins are
  - (1) α- amino acids
- (2) β-amino acids
- (3)  $\gamma$  -amino acids
- (4) all of these

- Ans. [1]
- **Sol.** Amino acids are  $\alpha$  –amino arboxylic acids

- **52.** Radioactive decay takes place by...... kinetics.
  - (1) zero order
- (2) first order
- (3) second order
- (4) pseudo first order

Ans. [2]



Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029

#### Radioactive decay follow I order kinetics

- 53. Which of the following reagents on reaction with CH<sub>3</sub>Mgl gives primary alcohol?
  - (1) Formaldehyde
- (2) Acetaldehyde
- (3) Acetone
- (4) Water

Ans. [1]

- $CH_2=O + MeMgI \xrightarrow{(ii)H_3O^+} Me-CH_2-OH (1^\circ Alcohol)$ **Sol.** (1)
  - CH<sub>3</sub>—CH=O (ii) MeMgI → CH<sub>3</sub>—CH—OH (2° Alcohol) (2)
  - $Me_2C=O$   $\xrightarrow{(i) MeMgI}$   $Me_3C-OH$  (3° Alcohol) (3)
  - Me—MgI + H<sub>2</sub>O ——— (4)
- 54. Most successful and pollution free cell is
  - (1) Dry cell
- (2) Mercury cell
- (3) Fuel cell
- (4) Ni-Cd cell

Ans. [3]

- Sol. Most successful and pollution free cell is fuel cell because it produces H<sub>2</sub>O as product.
- 55. The concentratration of 0.1 M NaOH solution is
  - (1) 1 g/250 mL
- (2) 2 g/250 mL (3) 4 g/250 mL
- (4) 8 g/250 mL

Ans. [1]

0.1 mole NaOH in 1000 ml Sol.

so 
$$\frac{0.1}{4} \times 40 = 1 \text{ gm in } 250 \text{ ml}$$

- 56. Which of the following salts does not hydrolise?
  - (1) CH<sub>3</sub>COONa
- (2) NH<sub>4</sub>CI
- (3) CH<sub>3</sub>COONH<sub>4</sub>
- (4) NaCl

Ans. [4]

- Sol. NaCl will not hydrolised
- 57. Which of the following is Lewis acid?
  - (1) F<sup>-</sup>
- (2) NH<sub>3</sub>
- (3) HO<sup>-</sup>
- (4) BCI<sub>3</sub>

Ans. [4]

- **Sol.** BF<sub>3</sub> has incomplete octet and vacant p-orbital so it will accept lone pair. So it acts like lewis acid.
- **58.** Paramagnetic behaviour is represented by
  - (1) S<sub>8</sub> monoclinic
- (2)  $S_2$
- (3) S<sub>8</sub> rhombic
- (4)  $S_6$

Ans. [2]

- **Sol.** According to M.O.T. it has unpaired  $e^-$  in  $\pi^*$  2Px and  $\pi^*$  2Py orbitals. so it is paramagnetic.
- **59.** Nucleophilic addition reactions are shown by
  - (1) Carboxylic acids

(2) Haloalkanes

(3) Carbonyl compounds

(4) Amines

Ans. [3]

- **Sol.** Nucleophilic addition reaction is characteristic reaction of carbonyl compounds.
- 60. In which of the following is the number of significant figures maximum?
  - (1) 0.0015
- (2) 115000
- (3) 5.0045
- (4) 1002

Ans. [3]

# PART-III MATHEMATICS

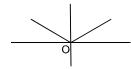
- **61.** If P (A) is power set of A, then which one of the following is true?
  - $(1) \{A\} \in P(A)$
- (2)  $A \subset P(A)$
- (3)  $\{A\} \subset P(A)$
- (4) None of these

Ans. [3]

- **Sol.** Obriously  $\{A\} \subset P(A)$
- **62.** If function f(x) = |x-2|-2|x-3| then for 2 < x < 3, f(x) is equal to
  - (1) x 4
- (2) 4 x
- (3) 8 3x
- (4) 3x 8

Ans. [4]

**Sol.** for 2 < x < 3, |x - 2| = x - 2


$$\& 2|x-3| = -2x + 6$$

so 
$$f(x) = x - 2 + 2x - 6$$

$$= 3x - 8$$

- **63.** If  $f: R \to R$  and f(x) = |x| then f(x) will be
  - (1) one-one onto
- (2) one-one into
- (3) many-one onto
- (4) many-one into

Ans. [4]



so may one and into

**64.** Value of 
$$\cot\left(\frac{23\pi}{12}\right)$$
 is

(1) 
$$2-\sqrt{3}$$

(2) 
$$2+\sqrt{3}$$

(3) 
$$-(2-\sqrt{3})$$

(3) 
$$-(2-\sqrt{3})$$
 (4)  $-(2+\sqrt{3})$ 

Ans. [4]

**Sol.** 
$$\cot\left(\frac{23\pi}{12}\right) = \cot\left(2\pi - \frac{\pi}{12}\right)$$

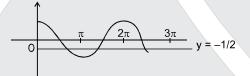
$$=-\cot\frac{\pi}{12}$$

$$= -tan75^{\circ}$$

$$= -(2 + \sqrt{3})$$

- 65. Number of solutions of  $2\cos x + 1 = 0$  in interval  $[0, 3\pi]$  is
  - (1) 1

- (2)2
- (3) 3


(4) infinite

Ans. [3]

**Sol.** 
$$\cos x = \frac{-1}{2}$$

Number of solutions

= 3



66. Amplitude (iz) is equal to

(1) 
$$\frac{\pi}{2}$$
 + amp z

(1) 
$$\frac{\pi}{2} + \text{amp z}$$
 (2)  $-\frac{\pi}{2} + \text{amp z}$  (3)  $\frac{\pi}{2} - \text{amp z}$ 

(3) 
$$\frac{\pi}{2}$$
 - amp z

$$(4) - \frac{\pi}{2} - amp z$$

Ans. [1]

**Sol.** Amplitude (iz) = Ampi + Amp 
$$z =$$

$$= \pi/2 + Amp z =$$

- 67. How many even numbers of 5 digits can be made from digits 2, 4, 6, 8, 9?
  - (1) 120
- (2)24
- (3)12
- (4)96

Ans. [4]

**Sol.** 
$$4 \times 4! = 96$$



### Resonance STATE TALENT SEARCH EXAMINATION-2015 | 01-11-2015

- There are 20 persons in a party and every person shakes hand to each other. Then total number of handshakes will be
  - (1) 100
- (2)190
- (3)200
- (4)380

Ans. [2]

**Sol.** 
$$^{20}C_2 = \frac{20 \times 19}{2} = 190$$

- 69. If nth term of an A.P. in 3n + 5, then its common difference is
  - (1) 1

- (2) 3
- (3)5
- (4) 8

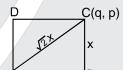
Ans. [2]

**Sol.** 
$$d = T_n - T_{n-1} = (3n+5) - (3(n-1)+5) = 3$$

- Middle term of, in the expansion of  $\left(3x^2 \frac{1}{2x}\right)^{10}$  will be **70**.
  - (1) 6th
- (2) 5th
- (3) 10th
- (4) 11th

Ans. [1]

Sol. Middle Term =  $T_6$ 


- 71. Area of the square whose vertices of diagonals are (p, q) and (q, p) will be
  - $(1) (p+q)^2$
- (2)  $p^2 + q^2$
- (3)  $p^2 q^2$
- (4)  $(p-q)^2$

[4] Ans.

 $AC = \sqrt{2} |p - q| = \sqrt{2}x$ Sol.



Area of square =  $(p - q)^2$ 



Eccentricity of the parabola is

- (1) e = 0
- (2) e = 1
- (3) e < 1
- (4) e > 1

Ans. [2]

**72**.

Sol. e = 1

- If f(9) = 9, f'(9) = 4, then the value of  $\lim_{x \to 9} \frac{\sqrt{f(x) 3}}{\sqrt{x} 3}$  is 73.
  - (1) 1

- (2) 2
- (3) 3
- (4) 4

Ans. [4]

Sol. 
$$\lim_{x \to 9} \frac{\frac{1}{2} \frac{f'(x)}{\sqrt{f(x)}}}{\frac{1}{2\sqrt{x}}}$$

$$=\frac{4\times3}{3}=4$$



Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

74. If  $f(x) = log_x (log_e x)$  then at x = e,  $f'(x) = log_x (log_e x)$ 

(3) 
$$\frac{1}{6}$$

Ans. [3]

**Sol.** 
$$f(x) = log_x (log_e x) = \frac{ln(ln x)}{ln x}$$

$$f'(x) = \frac{\ln x \cdot \frac{1}{\ln x} \cdot \frac{1}{x} - \frac{\ln \ln x}{x}}{(\ln x)^{2}}$$

$$f'(x) = \frac{1 - \ln(\ln x)}{x(\ln x)^2} =$$

$$f'(e) = \frac{1}{e}$$

If  $f(x) = 2^x + 2^{x+1} + 2^{x+2} + \dots + 2^{x+9}$  then the value of f'(2) will be **75**.

Ans. [3]

**Sol.** 
$$f(x) = 2^x \left( \frac{2^{10} - 1}{2 - 1} \right) = 1023.2^x$$

$$f'(x) = 1023 \quad 2^x \ln 2$$

$$f'(2) = 1023 \times 4 \times \ln 2 = 1023 \ln 16$$

76. If A is non-zero square matrix whose order is 3 x 3 then |adj A| is equal to

$$(2) |A|^2$$

$$(3) |A|^3$$

[2] Ans.

**Sol.** 
$$|adj A| = |A|^{n-1} = |A|^2$$

Matrix A is or order  $3 \times 4$  and B is such a type of matrix that  $A^TB$  and  $AB^T$  are both defined. The **77.** order of matrix B will be

$$(1) 4 \times 3$$

$$(2) 3 \times 3$$

$$(3) \ 3 \times 4$$

$$(4) 4 \times 4$$

Ans. [3]

area of B must be 3 x 4 Sol.

$$A' \cdot B = [A'B]$$

$$A^{T} \cdot B = [A^{T}B]$$
  $A B^{T} = [AB^{T}]_{3\times 3}$ 



- The value of the following determinant  $\begin{vmatrix} o & p & -q \\ -p & o & r \\ q & -r & o \end{vmatrix}$  will be 78.
  - (1) pqr
- (2) -2pqr
- (3)  $p^2 + q^2 + r^2$
- (4) 0

- [4] Ans.
- Sol. (skew symmetric matrix of odd order is always singular)
  - $\Delta = \begin{vmatrix} o & p & -q \\ -p & o & r \\ q & -r & o \end{vmatrix} = (-1)^3 \begin{vmatrix} o & -p & +q \\ p & o & -r \\ -\sigma & r & o \end{vmatrix}$  (taking common -1 from R<sub>1</sub>, R<sub>2</sub> & R<sub>3</sub>)
  - $\Delta = -\begin{vmatrix} o & -p & q \\ p & o & -r \\ -q & r & o \end{vmatrix} = -\begin{vmatrix} o & p & -q \\ -p & o & r \\ q & -r & o \end{vmatrix}$   $(A^{T} = A)$
  - $\Delta = -\Delta \implies \Delta = 0$
- If  $\cos^{-1}\frac{3}{5} \sin^{-1}\frac{4}{5} = \cos^{-1}x$  then value of x is 79.
  - (1) 0

(2) 1

- (3)2
- (4) 3

- [2] Ans.
- $\cos^{-1}\left(\frac{3}{5}\right) \sin^{-1}\left(\frac{4}{5}\right) = \cos^{-1}x$ Sol.
  - $\cos^{-1}\left(\frac{3}{5}\right) \cos^{-1}\frac{3}{5} = \cos^{-1}x$   $\left(\because \sin^{-1}\frac{4}{5} = \cos^{-1}\frac{3}{5}\right)$
  - $\cos^{-1} x = 0$  x = 1
- Increasing function for all real values of x is 80.
  - $(1) x^2$
- (2)  $x^2 1$
- (3)  $x^3$
- $(4) x^4$

- [3] Ans.
- Sol.
- $f(x) = x^3$   $f'(x) = 3x^2 \ge 0 \quad \forall x \in \mathbb{R}$
- The point where slope of curve  $y = y = \sqrt{4x-3} 1$  is  $\frac{2}{3}$ , is 81.
  - (1)(2,3)
- (2)(3,2)
- (3)(4,3)
- (4)(3,4)

- Ans. [2]
- $y = \sqrt{4x 3} 1$ Sol.

Resonance STAT
$$\frac{dy}{dx} = \frac{4}{2\sqrt{4x-3}} = \frac{2}{3} \Rightarrow \sqrt{4x-3} = 3$$

$$4x - 3 = 9$$

$$x = 3$$

$$y = \sqrt{4x - 3} - 1 = 2$$

$$x = 3$$

82. If 
$$\int \sqrt{2}\sqrt{1+\sin x} \ dx = -4\cos(ax+b)+c$$
, then the value of (a, b) is

$$(1) \left(\frac{1}{2}, \frac{\pi}{2}\right) \qquad \qquad (2) \left(\frac{1}{2}, \frac{\pi}{4}\right)$$

(2) 
$$\left(\frac{1}{2}, \frac{\pi}{4}\right)$$

$$(3) \left(\frac{1}{4}, \frac{\pi}{2}\right)$$

$$(4)\left(\frac{1}{4},\frac{\pi}{4}\right)$$

Ans.

**Sol.** 
$$\int \sqrt{2} \sqrt{1 + \sin x} \, dx$$

$$= \int \sqrt{2} (\cos \frac{x}{2} + \sin \frac{x}{2}) dx$$

$$= 2 \int \sin \left( \frac{\pi}{4} + \frac{x}{2} \right) dx$$

$$= -\frac{2\cos\left(\frac{x}{2} + \frac{\pi}{4}\right)}{\frac{1}{2}} + C$$

$$= -4\cos\left(\frac{x}{2} + \frac{\pi}{4}\right) + C$$

$$a = \frac{1}{2}, \quad b = \frac{\pi}{4}$$

83. The value of 
$$\int x^x (1 + \log_e x) dx$$
 is

(2) 
$$x^{2x}$$

(4) 
$$\frac{1}{2}(1 + \log_e x)^2$$

Ans. [1]

**Sol.** 
$$\int x^x (1 + \log_e x) dx$$

$$x^{x} = t$$

$$x^{x}(1 + \log_{e} x)dx = dt$$

$$= \int \frac{t \ dt}{t} = t + C = x^x + c$$

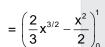




- The value of  $\int_{0}^{1} x(1-x)^{n} dx$  is 84.

- (1)  $\frac{1}{n+1}$  (2)  $\frac{1}{n+2}$  (3)  $\frac{1}{n+1} \frac{1}{n+2}$  (4)  $\frac{1}{n+1} + \frac{1}{n+2}$

Ans.


- $I = \int_0^1 x (1-x)^n dx$ Sol.

  - $I = \int_0^1 (1-x)x^n dx \qquad [\because \int_0^a f(x) dx = \int_0^a f(a-x) dx$
  - $=\left(\frac{x^{n+1}}{n+1}-\frac{x^{n+2}}{n+2}\right)_{0}^{1}$
  - $=\frac{1}{n+1}-\frac{1}{n+2}$
- Area enclosed between the curve  $y^2 = x$  and y = |x| is 85.
  - $(1) \frac{2}{3}$
- (2) 1

- $(4) \frac{1}{3}$

Ans.

Area =  $\int_0^1 (\sqrt{x} - |x|) dx$ Sol.





- If  $|\vec{a}| = 3$ ,  $|\vec{b}| = 4$  and  $|\vec{a} + \vec{b}| = 5$  then  $|\vec{a} \vec{b}| =$ 86.
  - (1)5

(2) 4

(3)6

(4) 3

[1] Ans.

 $\left|\overline{a} + \overline{b}\right|^2 = 5^2$ Sol.

$$a^2 + b^2 + 2\vec{a}.\vec{b} = 25$$

$$25+2\vec{a}.\vec{b}=25$$

$$\vec{a}.\vec{b} = 0$$

$$\left| \vec{a} - \vec{b} \right| = \sqrt{a^2 + b^2 - 2\vec{a}.\vec{b}}$$

$$=\sqrt{25-0}=5$$

87. If line 
$$\frac{x-x_1}{1} = \frac{y-y_1}{m} = \frac{z-z_1}{n}$$
 and the plane ax + by + cz + d = 0 is parallel then

(1) 
$$al + bm + cn = 0$$

$$(2) a + b + c = 0$$

$$(3) I + m + n = 1$$

(4) 
$$\frac{a}{1} = \frac{b}{m} = \frac{c}{n}$$

**Sol.** normal of plane is 
$$\perp r$$
 to line

$$\therefore$$
 al + bm + cn = 0

$$(1) \frac{1}{2} \left(\frac{5}{6}\right)^4$$

(2) 
$$\frac{1}{2} \left( \frac{5}{6} \right)^5$$

$$(3) \left(\frac{5}{6}\right)^5$$

(4) 
$$\left(\frac{1}{6}\right)^2 \left(\frac{5}{6}\right)^4$$

**Sol.** 
$$P = {}^{6}C_{2} \times \left(\frac{1}{6}\right)^{2} \left(\frac{5}{6}\right)^{4}$$

$$= \frac{15 \times 5^4}{6^6} = \frac{3 \times 5^5}{6 \times 6^5} = \frac{1}{2} \left(\frac{5}{6}\right)^5$$

89. If the one end of diameter of the circle 
$$x^2 + y^2 - 4x - 6y + 11 = 0$$
 is (3, 4) then other end will be

**Sol.** centre 
$$(2, 3)$$
 let it is  $(\alpha, \beta)$ 

$$\frac{\alpha+3}{2}=2, \qquad \frac{\beta+4}{2}=3$$

$$\alpha = 1$$
,  $\beta = 2$ 

**90.** If 
$$\sum x_i^2 = 100$$
,  $n = 5$  and  $\sum x_i = 20$  then variance =

**Sol.** 
$$\sigma^2 = \frac{\sum x_1^2}{n} - (\overline{x})^2$$

$$=\frac{100}{5}-\left(\frac{20}{5}\right)^2$$

$$= 20 - 16 = 4$$



# ADMISSION OPEN

for Academic Session: 2016-17

# **Result @ Resonance**



JEE (Adv.) 2015

JEE (Main) 2015

**AIIMS 2015** 

**AIPMT 2015** 

**Enroll Now for Academic Session 2016-17** @ Coaching Fee of 2015-16



#### **Financial Advantages**

Early Admission Benefit Upto ₹ 26000 on One Year Course Fee

50% Saving on Cost of Admission Packet | Upto 90% Scholarship on Course Fee based on ResoFAST

## For Classes: V to XII

Target: JEE (Main+Advanced) | JEE (Main) | AIIMS/AIPMT | Pre-foundation

Test Dates: 22 & 29 November 2015

#### **Resonance Eduventures Limited**

CORPORATE OFFICE: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Rajasthan) - 324005 | Tel. No.: 0744-3192222, 3012222, 6635555 To Know more: sms RESO at 56677 | E-mail: contact@resonance.ac.in | Website: www.resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555 🖪 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu 🖺 www.youtube.com/resowatch 🕒 blog.resonance.ac.in





