

REGIONAL MATHEMATICAL OLYMPIAD 2016

TEST PAPER WITH SOLUTION & ANSWER KEY

REGION : GUJARAT | CENTRE : SURAT

Date: 09th October, 2016 | Duration: 3 Hours | Max. Marks: 102

:: IMPORTANT INSTRUCTIONS ::

- Calculators (in any form) and protractors are not allowed.
- Rulers and compasses are allowed.
- Answer all the questions.
- All questions carry equal marks. Maximum marks: 102.

Answer to each question should start on a new page. Clearly indicate the question number.

1. Let ABC be a right-angled triangle with $\angle B = 90^\circ$. Let I be the incentre of ABC. Let AI extended intersect BC at F. Draw a line perpendicular to AI at I. Let it intersect AC at E. Prove than IE = IF.

Sol

Given : In $\triangle ABC$, $\angle ABC = 90^\circ$, angle bisector of $\angle BAC$ cut BC at F, I is incentre of $\triangle ABC$,

Line perpendicular to I through I cuts AC at E

To prove : IE = IF

Construction : Join IC

- Prove : $\angle IAE = \frac{\angle A}{2}$ (AI is the angle bisector of $\angle BAE$)
- \angle IEC = 90 + $\frac{A}{2}$ { \angle IEC is exterior angle of \angle AEI for \triangle AEI}
- $\angle IFC = 90 + \frac{A}{2}$ $\{ \angle IFC \text{ is exterior angle of } \angle AFB \text{ in } \triangle AFB \}$

Now in $\triangle IEC$ and $\triangle IFC$

$$\angle IEC = \angle IFC = 90 + \frac{A}{2}$$
 {from 1 and 2}

\angle ECI = \angle FCI = $\frac{C}{2}$	{CI is angle bisector of ∠ECF}
IC = IC (common)	
so $\triangle IEC \cong \triangle IFC$	{AAS congruency criterion}
\Rightarrow IE = IF	{corresponding sides of congruent triangles}

2. Let a, b, c be positive real number such that

 $\frac{a}{1+b} + \frac{b}{1+c} + \frac{c}{1+a} = 1$ Prove that $abc \leq \frac{1}{8}$. a(1+c)(1+a) + b(1+b)(1+a) + c(1+b)(1+c) = (1+a)(1+b)(1+c) \Rightarrow (a² + b² + c²) + (a²c + b²a + c²b) = 1 + abc(1) Now $\frac{a^2 + b^2 + c^2}{3} \ge (abc)^{2/3}$ (AM \ge GM) $\Rightarrow a^2 + b^2 + c^2 \ge 3(abc)^{2/3}$(2) $\frac{a^2c+b^2a+c^2b}{3} \ge \text{ (abc)} \qquad (AM \ge GM)$ \Rightarrow a²c + b²a + c²b \ge 3abc(3) add (2) and (3) we get $(a^{2} + b^{2} + c^{2}) + (a^{2}c + b^{2}a + c^{2}b) \ge 3(abc)^{2/3} + 3abc$ (4) \Rightarrow 1 + abc \ge 3(abc)^{2/3} + 3(abc) (using (1) and (4)) ...(5) Let $(abc)^{1/3} = t$ Now $1 + t^3 \ge 3t^2 + 3t^3$ $\Rightarrow (1+t)(1+t^2-t) \geq 3t^2(1+t) \Rightarrow (1+t)(3t^2-t^2+t-1) \leq 0 \Rightarrow (1+t)^2(2t-1) \leq 0$ \Rightarrow t $\leq \frac{1}{2} \Rightarrow$ (abc)^{1/3} $\leq \frac{1}{2} \Rightarrow$ abc $\leq \frac{1}{8}$

3. For any natural number n, expressed in base 10, let S(n) denote the sum of all digits of n. Find all natural numbers n such that $n^3 = 8S(n)^3 + 6nS(n) + 1$.

Ans. 17

Sol.

Sol.
$$n^3 = 8(S(n))^3 + 6n S(n) + 1$$

$$\Rightarrow (2S(n))^{3} + (-n)^{3} + 1^{3} - 3 (2S(n)) (-n) (1) = 0$$


```
(2S(n) + 1 - n) \left[ \frac{(2S(n) + n)^2 + (1 + n)^2 + (2S(n) - 1)^2}{2} \right] = 0
    \Rightarrow
    Because (n + 1)^2 is always positive so second factor is positive
             2 S(n) + 1 - n = 0
    \Rightarrow
             n = 2s(n) + 1
                                                                  .....(1)
    \Rightarrow
    Let n = a_k a_{k-1},...,a_2 a_1 a_0 where a_k, a_{k-1}, ..., a_2, a_1, a_0 represent digits
    Now (10^{k} a_{k} + 10^{k-1} a_{k-1} + \dots + 10a_{1} + a_{0}) = 2 (a_{k} + a_{k-1} + \dots + a_{1} + a_{0}) + 1
    Because 2 (a_k + a_{k-1} + \dots + a_1 + a_0) + 1 \ge 2 (9 (k + 1)) + 1
                                                         {Equality holds when all digit are equal to 9}
    so, (10^{k} a_{k} + 10^{k-1} a_{k-1} + \dots + 10a_{1} + a_{0}) \ge 2 (9 (k + 1)) + 1
    Which can holds only for k = 0, 1
    Case-I K = 0
    It means n is single digit number
                             n = 2 n + 1
    Here S(n) = n \Rightarrow
                                                 \{\text{using }(1)\}
             n = -1 \implies no natural number is possible
    \rightarrow
    Case-II K = 1
    It means n is two digit number.
    Here 10a_1 + a_0 = 2(a_1 + a_0) + 1 {using (1)}
             8a_1 = a_0 + 1 \implies a_0 = 7 \text{ and } a_1 = 1
                                                                           n is 17
    \Rightarrow
```

4. How many 6-digit natural numbers containing only the digits 1,2,3 are there in which 3 occurs exactly twice and the number is divisible by 9 ?

Ans. 0

Sol. Let digits of six digit number are a_5 , a_4 , a_3 , a_2 , a_1 , a_0 where a_0 , a_1 ,, $a_5 \in \{1, 2, 3\}$ in which two of them must be equal 3 and other four equals to either 1 or 2

Let a_5 = a_4 = 3 & a_3 , a_2 , a_1 , $a_0 \in \{1,\,2\}$

Now $a_5 + a_4 + a_3 + a_2 + a_1 + a_0 = 9k$

{If number is divisible by 9 then sum of digits is multiple of 9}

 $\Rightarrow \qquad a_3 + a_2 + a_1 + a_0 + 6 = 9k \quad \Rightarrow \quad a_3 + a_2 + a_1 + a_0 = 3 , 12, 21 , \dots$

But minimum value of $a_0 + a_1 + a_2 + a_3 = 4$ (which is not possible) and maximum value of

 $a_0 + a_1 + a_2 + a_3 = 12$ (Which occur when $a_0 = a_1 = a_2 = a_3 = 3$)

- \Rightarrow no number is possible
- 5. Let ABC be a right-angled triangle with $\angle B = 90^\circ$. Let AD be the bisector of $\angle A$ with D on BC. Let the circumcircle of triangle ACD intersect AB again in E. and let the circumcircle of triangle ABD intersect AC again in F. Let K be the reflection of E in the line BC. Prove that FK = BC.

Sol.

Given : ABC is right angled triangle right angled at B, AD is angle bisector of ∠BAC which cuts BC at D.

 C_2 is circumcircle of $\triangle ADC$ which cuts AB at E, C_1 is circumcircle of $\triangle ABD$ which cuts AC at F.

K is reflection of E about line BD

To prove : FK = BC

Construction : Join FD and extend it so that its cuts extension of AB at K1.

Proof : Points ABDF are concytic (given)

AD is diameter of circumcircle (C₁) of $\triangle ABD$ ($\angle ABD$ is 90°)

 $\angle AFD = 90^{\circ}$ (because AD is diameter)

In ${\Delta}\text{ABD}$ and ${\Delta}\text{AFD}$

 $\angle B = \angle F = 90^{\circ}$, $\angle BAD = \angle FAD = \frac{\angle A}{2}$ (AD is angle bisector), AD is common

so $\triangle ABD \cong \triangle AFD$ (AAS congunecy theorem)

 \Rightarrow AB = AF and BD = FD(1)

______ REGIONAL MATHEMATICAL OLYMPIAD – 2016 | 09-10-2016

- $\angle AED = 180^{\circ} \angle ACD$ (sum of opposite angles of cyclic quadrilateral AEDC is 180°)
- $\angle BED = \angle ACD$ (Linear pair axiom)
- \angle EDB = 90° \angle ACD (\triangle EBD is right triangle)(2)
- \angle FDC = 90° \angle ACD = \angle BDK₁ (\angle FDC and \angle BDK₁ are verticals opposite angle)(3)
- Now In \triangle EBD and \triangle K₁BD

 \angle EDB = \angle K₁DB (from (2) and (3)), \angle EBD = \angle K₁BD (both are 90°), BD is common

- so, $\Delta EBD \cong \Delta K_1 BD$ (AAS congruency theorem)
- \Rightarrow EB = BK₁ (corresponding sides of congruent triangle)
- \Rightarrow K₁ is reflection of E about line BD
- \Rightarrow K₁ is same as K
- Now In \triangle BDK and \triangle FDC
- \angle BDK = \angle FDC, \angle KBD = \angle CFD = 90°, BD = DF (from (1))
- $\Rightarrow \Delta BDK \cong \Delta FDC$
- BD = DF(4)
- DC = DK(5)

Add (4) and (5) we get BC = FK hence proved.

6. Show that the infinite arithmetic progression (1, 4, 7, 10,.....) has infinitely many 3-term subsequences in harmonic progression such that for any two such triples $\langle a_1, a_2, a_3 \rangle$ and

 $\left< b_1, b_2, b_3 \right>$ in harmonic progression one has $\frac{a_1}{b_1} \neq \frac{a_2}{b_2}$

Sol. Consider three terms of this sequence a = 3p + 1, b = 3q + 1, c = 3r + 1 where p,q,r are in A.P.

So a,b,c will also be in A.P.

Now $\frac{abc}{a}, \frac{abc}{b}, \frac{abc}{c} \Rightarrow bc$, ca, ab are in H.P. and all three of bc, ca, ab are of the form 3n + 1 for some $n \in N$, hence there will be infinite triplets of (bc, ca, ab) = (a_1, a_2, a_3) which are in H.P. If (a_1, a_2, a_3) and (b_1, b_2, b_3) are two such triplets. Let $a_1 = (3q + 1)(3r + 1), a_2 = (3r + 1)(3p + 1), a_3 = (3p + 1)(3q + 1)$ where p + r = 2pand $b_1 = (3m + 1)(3n + 1), (3n + 1)(3\ell + 1), (3\ell + 1)(3m + 1)$

where ℓ + n = 2m

If
$$\frac{a_1}{b_1} = \frac{a_2}{b_2} \Rightarrow \frac{(3q+1)(3r+1)}{(3m+1)(3n+1)} = \frac{(3r+1)(3p+1)}{(3n+1)(3\ell+1)}$$

 $\Rightarrow \frac{(3q+1)}{(3m+1)} = \frac{(3p+1)}{(3\ell+1)}$

Now for a choice of q, m, p, the value of ℓ is fixed, but ℓ can be chosen arbitrary for a given m.

Hence there are infinite triplets such that $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$. Thus completes the proof.

 Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in

 Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029

Resonance Forward Admission & Scholarship Test (ResoFAST)

ADMISSION ANNOUNCEMENT

Enroll Now for Academic Session 2017-18 @ Coaching Fee of 2016-17

Classroom Contact Programs for Class V to XII

Target: JEE (Main+Advanced) | JEE (Main) | AIIMS/ NEET | Pre-foundation

Academic Benefits*

More than **800** Academic Hours & **500** Classes

More than **15000** Academic Questions

More than **100** Testing Hours

Financial Benefits*

Upto ₹ 30000 + Saving on 1 Year Course Fee 50% Concession on Admission Form Fee

Upto 90% Scholarship on Course Fee

Tentative

Test Cities for ResoFAST - 2017

Test Dates: 27.11.2016, 11.12.2016

Study Center Cities (29): Rajasthan: Kota, Jaipur, Jodhpur, Udaipur, Ajmer, Sikar; Bihar: Patna; Chattisgarh: Raipur; Delhi; Gujarat: Ahmedabad, Surat, Rajkot, Vadodara; Jharkhand: Ranchi; Madhya Pradesh: Bhopal, Gwalior, Indore, Jabalpur; Maharashtra: Aurangabad, Mumbai, Nagpur, Nanded, Nashik, Chandrapur; Odisha: Bhubaneswar; Uttar Pradesh: Agra, Allahabad, Lucknow; West Bengal: Kolkata:

Test Dates: 20.11.2016, 25.12.2016, 15.01.2017

Study Center Cities (27): Rajasthan: Kota, Jaipur, Jodhpur, Udaipur; Bihar: Patna; Chattisgarh: Raipur; Delhi; Gujarat: Ahmedabad, Surat, Rajkot, Vadodara; Jharkhand: Ranchi; Madhya Pradesh: Bhopal, Gwalior, Indore, Jabalpur; Maharashtra: Aurangabad, Mumbai, Nagpur, Nanded, Nashik, Chandrapur; Odisha: Bhubaneswar; Uttar Pradesh: Agra, Allahabad, Lucknow; West Bengal: Kolkata; Other Test Cities (74): Rajasthan: Ajmer, Sikar, Sri Ganganagar, Alwar, Bhilwara, Bikaner, Bharatpur, Churu, Abu Road, Barmer; Bihar: Arah, Bhagalpur, Purnia, Samastipur, Gaya, Sitamari, Nalanda, Begu Sarai, Madhubani, Muzzafarpur; Delhi NCR: Noida, Gurgaon, Faridabad, Ghaziabad; Haryana: Bhiwani, Rewari, Hisar, Kaithal, Mahendargarh; Jharkhand: Jamshedpur, Bokaro, Dhanbad; J&K: Jammu; Madhya Pradesh: Satna, Singhroli, Guna, Sahdol, Chattarpur; Maharashtra: Pune, Latur, Akola, Jalgaon, Sanghli; North East: Guwahati, Jalpaiguri; Odisha: Rourkela, Sambhalpur; Punjab: Amritsar, Jhalandhar, Bhatinda; Uttarkhand: Dehradun, Haldwani; Uttar Pradesh: Kanpur; Varanasi, Jannyur, Bareily, Rai barely, Sultanpur, Saharanpur, Aligarh, Gorakhpur, Mathura, Rampur; West Bengel: Durgapura; Gujrat: Gendhinagar, Anand, Jamnagar, Vapi, Mehsana; Chattisgarh: Bilaspur, Bhillai; Himachal Pradesh: Mandi; Chandigarh;

HOW TO GET ADMISSION PACKET: (a) Online: Visit www.resonance.ac.in, and buy ONLINE by paying through Credit/Debit Card & Net Banking, | (b) In Person: Through Cash/ DD made in favour of 'Resonance', payable at Kota submit at any of the Resonance Study Centres. | (c) By Post/ Courier: Make a DD/Pay Order of required amount in favour of 'Resonance', payable at Kota and send it to at Kota only. | (d) COD (sms RESO Your City Name to 56677).

Resonance Eduventures Limited

CORPORATE OFFICE: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Rajasthan) - 324005 Reg. Office: J-2, Jawahar Nagar Main Road, Kota (Raj.) - 05 | Tel. No.: 0744-3012100, 3012222, 6635555 | CIN: U80302RJ2007PLC024029

To know more: sms RESO at 56677 | e-mail: contact@resonance.ac.in

Toll Free: 1800 258 5555 | Visit us: www.resonance.ac.in 🖪 🗾 🛅 🕔

