REGIONAL MATHEMATIGAL OLYMPIAD 2016

TEST PAPER WITH SOLUTION \& ANSWER KEY

REGION: GUJARAT | CENTRE: SURAT

Date: 09th October, 2016 | Duration: 3 Hours | Max. Marks: 102

Resonance's Forward Admission \& Scholarship Test (ResoFAST)

Enroll Now for Academic Session 2017-18 @ Coaching Fee of 2016-17

Academic Benefits*
More than $\mathbf{8 0 0}$ Academic Hours \& $\mathbf{5 0 0}$ Classes
More than 15000 Academic Questions
More than $\mathbf{1 0 0}$ Testing Hours

Financial Benefits*

Upto ₹ 30000+ Saving on 1 Year Course Fee 50\% Concession on Admission Form Fee
Upto 90\% Scholarship on Course Fee

Test Dates
$20^{\text {th }}$ Nov $16 \mid 27^{\text {th }}$ Nov $16 \mid 11^{\text {th }}$ Dec $16 \mid 25^{\text {th }}$ Dec $16 \mid 15^{\text {th }}$ Jan 17

Resonance Eduventures Limited

:: IMPORTANT INSTRUCTIONS ::

- Calculators (in any form) and protractors are not allowed.
- Rulers and compasses are allowed.
- Answer all the questions.
- All questions carry equal marks. Maximum marks: 102.

Answer to each question should start on a new page. Clearly indicate the question number.

1. Let $A B C$ be a right-angled triangle with $\angle B=90^{\circ}$. Let I be the incentre of $A B C$. Let $A I$ extended intersect $B C$ at F. Draw a line perpendicular to $A I$ at I. Let it intersect $A C$ at E. Prove than $I E=I F$.

Sol

Given : In $\triangle A B C, \angle A B C=90^{\circ}$, angle bisector of $\angle B A C$ cut $B C$ at F, I is incentre of $\triangle A B C$,
Line perpendicular to I through I cuts AC at E
To prove : IE = IF
Construction : Join IC
Prove: $\angle \mathrm{IAE}=\frac{\angle \mathrm{A}}{2} \quad$ (AI is the angle bisector of $\angle \mathrm{BAE}$)
$\angle \mathrm{IEC}=90+\frac{\mathrm{A}}{2} \quad\{\angle \mathrm{IEC}$ is exterior angle of $\angle \mathrm{AEI}$ for $\triangle \mathrm{AEI}\}$
$\angle \mathrm{IFC}=90+\frac{\mathrm{A}}{2} \quad\{\angle \mathrm{IFC}$ is exterior angle of $\angle \mathrm{AFB}$ in $\triangle \mathrm{AFB}\}$
Now in $\Delta \mathrm{IEC}$ and $\Delta \mathrm{IFC}$
$\angle \mathrm{IEC}=\angle \mathrm{IFC}=90+\frac{\mathrm{A}}{2} \quad\{$ from 1 and 2$\}$

Corporate Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005
$\angle \mathrm{ECI}=\angle \mathrm{FCI}=\frac{\mathrm{C}}{2}$
$\{C I$ is angle bisector of $\angle E C F\}$

IC = IC (common)
so $\Delta \mathrm{IEC} \cong \Delta \mathrm{IFC}$
\{AAS congruency criterion\}
$\Rightarrow \mathrm{IE}=\mathrm{IF}$
\{corresponding sides of congruent triangles\}
2. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be positive real number such that

$$
\frac{a}{1+b}+\frac{b}{1+c}+\frac{c}{1+a}=1
$$

Prove that $\mathrm{abc} \leq \frac{1}{8}$.
Sol. $\quad a(1+c)(1+a)+b(1+b)(1+a)+c(1+b)(1+c)=(1+a)(1+b)(1+c)$
$\Rightarrow\left(a^{2}+b^{2}+c^{2}\right)+\left(a^{2} c+b^{2} a+c^{2} b\right)=1+a b c$
Now $\frac{a^{2}+b^{2}+c^{2}}{3} \geq(a b c)^{2 / 3} \quad(A M \geq G M)$
$\Rightarrow a^{2}+b^{2}+c^{2} \geq 3(a b c)^{2 / 3}$
$\frac{a^{2} c+b^{2} a+c^{2} b}{3} \geq(a b c) \quad(A M \geq G M)$
$\Rightarrow a^{2} c+b^{2} a+c^{2} b \geq 3 a b c$
add (2) and (3) we get
$\left(a^{2}+b^{2}+c^{2}\right)+\left(a^{2} c+b^{2} a+c^{2} b\right) \geq 3(a b c)^{2 / 3}+3 a b c$
$\Rightarrow 1+a b c \geq 3(a b c)^{2 / 3}+3(a b c) \quad$ (using (1) and (4))
Let $(a b c)^{1 / 3}=t$
Now $1+\mathrm{t}^{3} \geq 3 \mathrm{t}^{2}+3 \mathrm{t}^{3}$
$\Rightarrow(1+\mathrm{t})\left(1+\mathrm{t}^{2}-\mathrm{t}\right) \geq 3 \mathrm{t}^{2}(1+\mathrm{t}) \Rightarrow(1+\mathrm{t})\left(3 \mathrm{t}^{2}-\mathrm{t}^{2}+\mathrm{t}-1\right) \leq 0 \Rightarrow(1+\mathrm{t})^{2}(2 \mathrm{t}-1) \leq 0$
$\Rightarrow \mathrm{t} \leq \frac{1}{2} \Rightarrow(\mathrm{abc})^{1 / 3} \leq \frac{1}{2} \Rightarrow \mathrm{abc} \leq \frac{1}{8}$
3. For any natural number n, expressed in base 10, let $S(n)$ denote the sum of all digits of n. Find all natural numbers n such that $n^{3}=8 S(n)^{3}+6 n S(n)+1$.
Ans. 17
Sol. $\quad n^{3}=8(S(n))^{3}+6 n S(n)+1$
$\Rightarrow \quad(2 S(n))^{3}+(-n)^{3}+1^{3}-3(2 S(n))(-n)(1)=0$

$$
\Rightarrow \quad(2 \mathrm{~S}(\mathrm{n})+1-\mathrm{n})\left[\frac{(2 \mathrm{~S}(\mathrm{n})+\mathrm{n})^{2}+(1+\mathrm{n})^{2}+(2 \mathrm{~S}(\mathrm{n})-1)^{2}}{2}\right]=0
$$

Because $(n+1)^{2}$ is always positive so second factor is positive
$\Rightarrow \quad 2 S(n)+1-n=0$
$\Rightarrow \quad \mathrm{n}=2 \mathrm{~s}(\mathrm{n})+1$
Let $\mathrm{n}=\mathrm{a}_{\mathrm{k}} \mathrm{a}_{\mathrm{k}-1}$ \qquad $a_{2} a_{1} a_{0}$ where a_{k}, a_{k-1}, \qquad a_{2}, a_{1}, a_{0} represent digits
$\operatorname{Now}\left(10^{k} a_{k}+10^{k-1} a_{k-1}+\ldots .+10 a_{1}+a_{0}\right)=2\left(a_{k}+a_{k-1}+\ldots . .+a_{1}+a_{0}\right)+1$
Because $2\left(a_{k}+a_{k-1}+\ldots \ldots+a_{1}+a_{0}\right)+1 \geq 2(9(k+1))+1$
\{Equality holds when all digit are equal to 9$\}$
so, $\left(10^{k} a_{k}+10^{k-1} a_{k-1}+\ldots . .+10 a_{1}+a_{0}\right) \geq 2(9(k+1))+1$
Which can holds only for $k=0,1$
Case-I $K=0$
It means n is single digit number
Here $S(n)=n \quad n=2 n+1 \quad$ \{using (1) \}
$\Rightarrow \quad \mathrm{n}=-1 \Rightarrow$ no natural number is possible

Case-II K = 1

It means n is two digit number.
Here $10 a_{1}+a_{0}=2\left(a_{1}+a_{0}\right)+1 \quad\{$ using (1)\}
$\Rightarrow \quad 8 a_{1}=a_{0}+1 \quad \Rightarrow \quad a_{0}=7$ and $a_{1}=1 \quad \Rightarrow \quad n$ is 17
4. How many 6-digit natural numbers containing only the digits $1,2,3$ are there in which 3 occurs exactly twice and the number is divisible by 9 ?
Ans. 0
Sol. Let digits of six digit number are $a_{5}, a_{4}, a_{3}, a_{2}, a_{1}, a_{0}$ where $a_{0}, a_{1}, \ldots . . a_{5} \in\{1,2,3\}$ in which two of them must be equal 3 and other four equals to either 1 or 2

Let $a_{5}=a_{4}=3 \& a_{3}, a_{2}, a_{1}, a_{0} \in\{1,2\}$
Now $a_{5}+a_{4}+a_{3}+a_{2}+a_{1}+a_{0}=9 k$
$\{$ If number is divisible by 9 then sum of digits is multiple of 9$\}$

$$
\Rightarrow \quad a_{3}+a_{2}+a_{1}+a_{0}+6=9 k \quad \Rightarrow \quad a_{3}+a_{2}+a_{1}+a_{0}=3,12,21, \ldots
$$

But minimum value of $a_{0}+a_{1}+a_{2}+a_{3}=4$ (which is not possible) and maximum value of
$a_{0}+a_{1}+a_{2}+a_{3}=12 \quad\left(\right.$ Which occur when $\left.a_{0}=a_{1}=a_{2}=a_{3}=3\right)$
$\Rightarrow \quad$ no number is possible
5. Let $A B C$ be a right-angled triangle with $\angle B=90^{\circ}$. Let $A D$ be the bisector of $\angle A$ with D on $B C$. Let the circumcircle of triangle $A C D$ intersect $A B$ again in E. and let the circumcircle of triangle $A B D$ intersect $A C$ again in F. Let K be the reflection of E in the line $B C$. Prove that $F K=B C$.
Sol.

Given : $A B C$ is right angled triangle right angled at $B, A D$ is angle bisector of $\angle B A C$ which cuts $B C$ at D.
C_{2} is circumcircle of $\triangle A D C$ which cuts $A B$ at E, C_{1} is circumcircle of $\triangle A B D$ which cuts $A C$ at F.
K is reflection of E about line $B D$
To prove : FK = BC
Construction : Join FD and extend it so that its cuts extension of $A B$ at K_{1}.
Proof : Points ABDF are concytic (given)
$A D$ is diameter of circumcircle $\left(C_{1}\right)$ of $\triangle A B D \quad\left(\angle A B D\right.$ is $\left.90^{\circ}\right)$
$\angle \mathrm{AFD}=90^{\circ}$ (because AD is diameter)
In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{AFD}$
$\angle \mathrm{B}=\angle \mathrm{F}=90^{\circ}, \quad \angle \mathrm{BAD}=\angle \mathrm{FAD}=\frac{\angle \mathrm{A}}{2}$ (AD is angle bisector), AD is common
so $\triangle \mathrm{ABD} \cong \triangle \mathrm{AFD}$
(AAS congunecy theorem)
$\Rightarrow A B=A F$ and $B D=F D$

Corporate Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005
$\angle A E D=180^{\circ}-\angle A C D$
$\angle B E D=\angle A C D$
$\angle E D B=90^{\circ}-\angle A C D$
$\angle \mathrm{FDC}=90^{\circ}-\angle \mathrm{ACD}=\angle \mathrm{BDK}_{1}$
(sum of opposite angles of cyclic quadrilateral AEDC is 180°) (Linear pair axiom)
(\triangle EBD is right triangle)(2)
($\angle \mathrm{FDC}$ and $\angle \mathrm{BDK}_{1}$ are verticals opposite angle)
Now In $\Delta \mathrm{EBD}$ and $\Delta \mathrm{K}_{1} \mathrm{BD}$
$\angle \mathrm{EDB}=\angle \mathrm{K}_{1} \mathrm{DB}\left(\right.$ from (2) and (3)), $\angle \mathrm{EBD}=\angle \mathrm{K}_{1} \mathrm{BD}$ (both are 90°), BD is common
so, $\Delta \mathrm{EBD} \cong \Delta \mathrm{K}_{1} \mathrm{BD} \quad$ (AAS congruency theorem)
$\Rightarrow \mathrm{EB}=\mathrm{BK}_{1} \quad$ (corresponding sides of congruent triangle)
$\Rightarrow K_{1}$ is reflection of E about line $B D$
$\Rightarrow \mathrm{K}_{1}$ is same as K
Now $\ln \triangle \mathrm{BDK}$ and $\triangle \mathrm{FDC}$
$\angle \mathrm{BDK}=\angle \mathrm{FDC}, \angle \mathrm{KBD}=\angle \mathrm{CFD}=90^{\circ}, \quad \mathrm{BD}=\mathrm{DF}($ from (1) $)$
$\Rightarrow \triangle \mathrm{BDK} \cong \triangle \mathrm{FDC}$
$B D=D F$
$D C=D K$
Add (4) and (5) we get $B C=F K$ hence proved.
6. Show that the infinite arithmetic progression (1, 4, 7, 10,.......) has infinitely many 3-term subsequences in harmonic progression such that for any two such triples $\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\left\langle b_{1}, b_{2}, b_{3}\right\rangle$ in harmonic progression one has $\frac{a_{1}}{b_{1}} \neq \frac{a_{2}}{b_{2}}$

Sol. Consider three terms of this sequence $a=3 p+1, b=3 q+1, c=3 r+1$ where p, q, r are in A.P.
So a, b, c will also be in A.P.
Now $\frac{a b c}{a}, \frac{a b c}{b}, \frac{a b c}{c} \Rightarrow b c, c a, a b$ are in H.P. and all three of $b c, c a, a b$ are of the form $3 n+1$ for some $n \in N$, hence there will be infinite triplets of $(b c, c a, a b) \equiv\left(a_{1}, a_{2}, a_{3}\right)$ which are in H.P.

If $\left(a_{1}, a_{2}, a_{3}\right)$ and $\left(b_{1}, b_{2}, b_{3}\right)$ are two such triplets.
Let $a_{1}=(3 q+1)(3 r+1), a_{2}=(3 r+1)(3 p+1), a_{3}=(3 p+1)(3 q+1)$
where $p+r=2 p$
and $b_{1}=(3 m+1)(3 n+1),(3 n+1)(3 \ell+1),(3 \ell+1)(3 m+1)$
where $\ell+\mathrm{n}=2 \mathrm{~m}$
If $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}} \Rightarrow \frac{(3 q+1)(3 r+1)}{(3 m+1)(3 n+1)}=\frac{(3 r+1)(3 p+1)}{(3 n+1)(3 \ell+1)}$
$\Rightarrow \frac{(3 q+1)}{(3 m+1)}=\frac{(3 p+1)}{(3 \ell+1)}$
Now for a choice of $\mathrm{q}, \mathrm{m}, \mathrm{p}$, the value of ℓ is fixed, but ℓ can be chosen arbitrary for a given m .
Hence there are infinite triplets such that $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$. Thus completes the proof.

Be FAST to be the FIRST

ADMISSION ANNOUNCEMENT

Enroll Now for Academic Session 2017－18＠Coaching Fee of 2016－17
Classroom Contact Programs for Class V to XII
Target：JEE（Main＋Advanced）｜JEE（Main）｜AllMS／NEET｜Pre－foundation

Academic Benefits＊
More than $\mathbf{8 0 0}$ Academic Hours \＆ $\mathbf{5 0 0}$ Classes
More than 15000 Academic Questions
More than $\mathbf{1 0 0}$ Testing Hours

Financial Benefits＊

Upto ₹ 30000＋Saving on 1 Year Course Fee

 $\mathbf{5 0 \%}$ Concession on Admission Form FeeUpto 90\％Scholarship on Course Fee

Test Cities for ResoFAST－ 2017
 Test Dates：27．11．2016，11．12．2016

Study Center Cities（29）：Rajasthan：Kota，Jaipur，Jodhpur，Udaipur，Ajmer，Sikar；Bihar：Patna；Chattisyarh：Raipur；Delhi；Gujarat：Ahmedabad，Surat，Rajkot，Vadodara；Jharkhand：Ranchi； Madhya Pradesh：Bhopal，Gwalior，Indore，Jabalpur；Maharashtra：Aurangabad，Mumbai，Nagpur，Nanded，Nashik，Chandrapur；Odisha：Bhubaneswar；Uttar Pradesh：Agra，Allahabad，Lucknow West Bengal：Kolkata；

$$
\text { Test Dates: } 20.11 .2016,25.12 .2016,15.01 .2017
$$

Study Center Cities（27）：Rajasthan：Kota，Jaipur，Jodhpur，Udaipur；Bihar：Patna；Chattisyarh：Raipur；Delhi；Gujarat：Ahmedabad，Surat，Rajkot，Vadodara；Jharkhand：Ranch；；Madhya Pradesh： Bhopal，Gwalior，Indore，Jabalpur；Maharashtra：Aurangabad，Mumbai，Nagpur，Nanded，Nashik，Chandrapur；Odisha：Bhubaneswar；Uttar Pradesh：Agra，Allahabad，Lucknow；West Bengal：Kolkata； Other Test Cities（74）：Rajasthan：Aimer，Sikar，Sri Ganganagar，Alwar，Bhilwara，Bikaner，Bharatpur，Churu，Abu Road，Barmer；Bihar：Arah，Bhagalpur，Purnia，Samastipur，Gaya，Sitamari，Nalanda， Begu Sarai，Madhubani，Muzzafarpur；Delhi NCR：Noida，Gurgaon，Faridabad，Ghaziabad；Haryana：Bhiwani，Rewari，Hisar，Kaithal，Mahendargarh；Jharkhand：Jamshedpur，Bokaro，Dhanbad；J\＆K： Jammu；Madhya Pradesh：Satna，Singhroli，Guna，Sahdol，Chattarpur；Maharashtra：Pune，Latur，Akola，Jalgaon，Sanghli；North East：Guwahati，Jalpaiguri；Odisha：Rourkela，Sambhalpur；Punjab： Amritsar，Jhalandhar，Bhatinda；Uttarkhand：Dehradun，Haldwani；Uttar Pradesh：Kanpur，Varanasi，Jhansi，Jaunpur，Bareily，Rai barely，Sultanpur，Saharanpur，Aligarh，Gorakhpur，Mathura，Rampur： West Bengal：Durgapura；Gujrat：Gandhinagar，Anand，Jamnagar，Vapi，Mehsana；Chattisgarh：Bilaspur，Bhillai；Himachal Pradesh：Mandi；Chandigarh；

[^0]
Resonance Eduventures Limited

CORPORATE OFFICE：CG Tower，A－46 \＆52，IPIA，Near City Mall，Jhalawar Road，Kota（Rajasthan）－ 324005
Reg．Office：J－2，Jawahar Nagar Main Road，Kota（Raj．）－ 05 ｜Tel．No．：0744－3012100，301२2२2，6635555｜CIN：U80302RJ2007PLCO24029

$$
\text { To know more: sms RESO at } 56677 \text { | e-mail: contact@resonance.ac.in }
$$

Toll Free： 18002585555 ｜Visit us：www．resonance．ac．in f $⿴$ 㘣（L）

Result @ Resonance

Resonance's Forward Admission \& Scholarship Test (ResoFAST)

\qquad
Target: JEE (Main + Advanced) | JEE (Main) AIIMS/ NEET | BOARD/ USO/ NTSE

Enroll Now for Academic Session 2017-18 @ Coaching Fee of 2016-17

Academic Benefits*
More than $\mathbf{8 0 0}$ Academic Hours \& $\mathbf{5 0 0}$ Classes
More than 15000 Academic Questions
More than $\mathbf{1 0 0}$ Testing Hours

Financial Benefits*

Upto ₹ $\mathbf{3 0 0 0 0}+$ Saving on 1 Year Course Fee 50\% Concession on Admission Form Fee Upto $9 \mathbf{9 0}$ Scholarship on Course Fee

Test Dates
$20^{\text {th }}$ Nov $16 \mid 27^{\text {th }}$ Nov $16 \mid 11^{\text {th }}$ Dec $16 \mid 25^{\text {th }}$ Dec $16 \mid 15^{\text {th }}$ Jan 17

Resonance Eduventures Limited

CORPORATE OFFICE: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Rajasthan) - 324005 | Tel. No.: 0744-3012100, 3012222, 6635555 To Know more: sms RESO at $\mathbf{5 6 6 7 1}$ | E-mail: contact@resonance.ac.in \| Website: www.resonance.ac.in | CIN: U80302RJ2007PLCO24029

Toll Free: 18002585555 | Visit us: www.resonance.ac.in f y

[^0]: HOW TO GET ADMISSION PACKET：（a）Online：Visit www．resonance．ac．in，and buy ONLINE by paying through Credit／Debit Card \＆Net Banking，｜（b）In Person：Through Cash／DD made in favour of＇Resonance＇，payable at Kota submit at any of the Resonance Study Centres．\｜（c）By Post／Courier：Make a DD／Pay Order of required amount in favour of＇Resonance＇，payable at Kota and send it to at Kota only．｜（d）COD（sms RESO Your City Name to 56677）．

