

REGIONAL MATHEMATICAL OLYMPIAD 2016

TEST PAPER WITH SOLUTION & ANSWER KEY

REGION: RAJASTHAN, CHHATTISGARH, JHARKHAND, ORRISA, MADHYA PRADESH

CENTRE : JAIPUR, RAIPUR, RANCHI, BHUVNESWAR, INDORE

Date: 16th October, 2016 | Duration: 3 Hours | Max. Marks: 102

For Classes: V to XII

Target: JEE (Main+Advanced) | JEE (Main) AIIMS/ NEET | BOARD/ IJSO/ NTSE

Tentative

Enroll Now for Academic Session 2017-18 @ Coaching Fee of 2016-17

Academic Benefits*

More than 800 Academic Hours & 500 Classes

More than **15000** Academic Questions

More than **100** Testing Hours

Financial Benefits*

- Upto ₹ 30000 + Saving on 1 Year Course Fee 50% Concession on Admission Form Fee Upto 90% Scholarship on Course Fee
- Test Dates 20" Nov 16 | 27" Nov 16 | 11" Dec 16 | 25" Dec 16 | 15" Jan 17
 - **Resonance Eduventures Limited**

CORPORATE OFFICE: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Rajasthan) - 324005 | Tel. No.: 0744-3012100, 3012222, 6635555 To Know more: sms RESO at 56677 | E-mail: contact@resonance.ac.in | Website: www.resonance.ac.in | CIN: U80302RJ2007PLC024029

Toll Free: 1800 258 5555 | Visit us: www.resonance.ac.in 🧃 💆

:: IMPORTANT INSTRUCTIONS ::

- Calculators (in any form) and protractors are not allowed.
- Rulers and compasses are allowed.
- Answer all the questions.
- All questions carry equal marks. Maximum marks: 102.

Answer to each question should start on a new page. Clearly indicate the question number.

1. Let ABC be a triangle and D be the mid-point of BC. Suppose the angle bisector of ∠ADC is tangent to the circumcircle of triangle ABD at D. Prove that $\angle A = 90^{\circ}$.

Given BD = DC, let the angle bisector of $\angle ADC$ meet AC at E, Further assume $\angle CDE = \angle ADE = \theta$.

Since the angle bisector is tangent at D,

 $\angle ABC = \theta$ (angle in alternate segment are equal)

Now $\angle ABD = \pi - 2\theta \implies \angle BAD = \theta \implies ABD$ is an isosceles triangle

So AD = BD = CD \Rightarrow D is equidistant from vertices A,B,C

 $\Rightarrow \Delta$ is circumcentre lies on triangle and is mid-point of BC $\Rightarrow \angle A = 90^{\circ}$

Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in RMO161016-2 Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029

2. Let a,b,c be three distinct positive real number such that abc = 1.

Prove that $\frac{a^3}{(a-b)(a-c)} + \frac{b^3}{(b-c)(b-a)} + \frac{c^3}{(c-a)(c-b)} \ge 3$ $-\left(\frac{a^{3}(b-c)+b^{3}(c-a)+c^{3}(a-b)}{(a-b)(b-c)(c-a)}\right)$ Sol. $= -\left(\frac{a^{3}b - a^{3}c + b^{3}c - b^{3}a + c^{3}a - c^{3}b}{(a-b)(b-c)(c-a)}\right)$ $= -\left(\frac{ab(a-b)(a+b) + c(b^{3} - a^{3}) + c^{3}(a-b)}{(a-b)(b-c)(c-a)}\right)$ $= -\left(\frac{ab(a+b) - c(a^{2} + b^{2} + ab) + c^{3}}{(b-c)(c-a)}\right)$ $= -\left(\frac{a^{2}b + ab^{2} - a^{2}c - b^{2}c - abc + c^{3}}{(b - c)(c - a)}\right)$ $= -\left(\frac{a^{2}(b-c) + ab(b-c) + c(c-b)(c+b)}{(b-c)(c-a)}\right)$ $= -\left(\frac{a^2 + ab - c(c+b)}{(c-a)}\right)$ $= -\left(\frac{a^2 + ab - c^2 - bc}{(c - a)}\right)$ $= -\left(\frac{(a-c)(a+c)+b(a-c)}{(c-a)}\right) = a+b+c$ $AM \ge GM$ $\frac{a+b+c}{3} \ge (abc)^{1/3}$ $a + b + c \ge 3$

3. Let a,b,c,d,e,f be positive integers such that

$$\frac{a}{b} < \frac{c}{d} < \frac{e}{f}$$

Suppose af -be = -1. show that $d \ge b + f$.

 $\frac{a}{b} < \frac{c}{d} < \frac{e}{f}$ Sol.

af -be = -1Now to show that $d \ge b + f$ ad + λ_1 = bc(1) λ_1 and $\lambda_2 \in I^+$ $cf + \lambda_2 = de$ (2) af + 1 = be(3) multiply the (1) equation by f bcf = afd + $\lambda_1 f$ $b(de - \lambda_2) = d(be - 1) + \lambda_1 f$ $bde - \lambda_2 b = bde - d + \lambda_1 f$ $d = \lambda_2 b + \lambda_1 f$ $d \ge b + f$

- 4. There are 100 countries participating in an olympiad. Suppose n is a positive integer such that each of the 100 countries is willing to communicate in exactly n languages. If each set of 20 countries can communicate in at least one common language, and no language is common to all 100 countries, what is the minimum possible value of n?
- Sol. Let there be 20 languages everybody speaks.

 $P_1 = \{L_1, L_2, \dots, L_{20}\}$ $P_2 = \{L_1, L_2, \dots, L_{20}\}$ $P_{80} = \{L_1, L_2, \dots, L_{20}\}$ $P_{81} = \{L_2, L_3, \dots, L_{20}, L_{21}\}$ $\mathsf{P}_{82} = \{\mathsf{L}_1 , \mathsf{L}_3 \dots \mathsf{L}_{20} , \mathsf{L}_{21}\}$

 $P_{100} = \{L_1, L_2, \dots, L_{19}, L_{21}\}$

Now a group of 20 selected from $P_1 - P_{80}$ will be able to communicate, while a group of 20 from $P_{81} - P_{100}$ will have common L_{21} . If some are chosen from $P_1 - P_{80}$ and some from $P_{81} - P_{100}$, then at maximum 19 persons will be chosen from $P_{81} - P_{100}$, \therefore at maximum 19 of L_1 L_{20} languages will be lost and one will still remain common with $P_1 - P_{80}$ in set L_1, L_2, \dots, L_{20} .

Now to understand why N < 20 in not possible.

Consider N = 19.

Assume $P_1 - P_{99}$ speaks $L_1, L_2 \dots L_{19}$

So P₁₀₀ speaks (L₂₀.....L₃₈)

Obviously in a group of 20 when P₁₀₀ is selected they don't have common language.

 P_1 P_{98} speaks (L_1 L_{19})

P₉₉ & P₁₀₀ have 9 and 10 languages

 $P_{99} \equiv \{L_1, \dots, L_9, L_{20}, \dots, L_{29}\}$

 $P_{100} \equiv \{L_{10}, L_{19}, L_{20}, L_{28}\}$

whenever P₉₉ & P₁₀₀ are chosen in group of 20 no common language will be there.

P₁P₉₇ speak (L₁.....L₁₉)

kesonand

Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005 R Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in RMO161016-4 Educating for better tomorrow Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029

Resonance[®] REGIONAL MATHEMATICAL OLYMPIAD - 2016 | 16-10-2016

P₉₈, P₉₉, P₁₀₀ will has these 19 languages : No language is common among there in these 19 languages. $P_{98} \equiv \{L_1, L_2, L_{20}, \dots, L_{36}\}$ $P_{99} \equiv \{L_3, L_4, L_5, L_{20}, \dots, L_{35}\}$ In set of 20, when P₉₈, P₉₉, P₁₀₀ are selected common language $P_{100} \equiv \{L_6, L_7, L_{20}, \dots, L_{36}\}$ Likewise P₁.....P₈₁ speaks (L₁.....L₁₉) $P_{82} = \{L_1, L_{20}, \dots, L_{37}\}$ $P_{83} = \{L_2, L_{20}, L_{37}\}$ $P_{100} = \{L_{19}, L_{20}, \dots, L_{37}\}$ Now when these 19 persons are chosen i -group of 20, common language will exist.

Hence Answer is 20

5. Let ABC be a right-angled triangle with $\angle B = 90^{\circ}$. Let I be the incentre of ABC. Extend AI and CI, let them intersect BC in D and AB in E respectively. Draw a line perpendicular to AI at I to meet AC in J, draw a line perpendicular to CI at I to meet AC in K. Suppose DJ = EK. Prove that BA = BC.

Sol.

REGIONAL MATHEMATICAL OLYMPIAD - 2016 | 16-10-2016
Now
$$c^{2}(EC)^{2} + (a + b)^{2} EC^{2} tan^{2} \frac{C}{2} = a^{2}(AD)^{2} + (b + c)^{2} AD^{2} tan^{2} \frac{A}{2}$$

Now in $\triangle EBC$ tan $\frac{C}{2} = \frac{EB}{a} = \frac{ac}{a+b} \cdot \frac{1}{a} \Rightarrow (a + b)tan \frac{C}{2} = c$
In $\triangle ABD$ tan $\frac{A}{2} = \frac{BD}{c} = \frac{aC}{(b+c)c} \Rightarrow (b + c)tan \frac{A}{2} = a$
 $\Rightarrow c^{2}(EC)^{2} + c^{2}(EC)^{2} = a^{2}(AD)^{2} + a^{2}(AD)^{2}$
 $cEC = aAD \Rightarrow \frac{ac}{cos\frac{C}{2}} = \frac{ac}{cos\frac{A}{2}}$ $\left(cos\frac{C}{2} = \frac{a}{EC}\right)$
 $\Rightarrow cos\frac{C}{2} = cos\frac{A}{2} \Rightarrow \frac{C}{2} = \frac{A}{2} \Rightarrow C = A$

- 6. (a) Given any natural number N, prove that there exists a strictly increasing sequence of N positive integers in harmonic progression.
- **Sol.** Consider the sequence

$$\frac{N!}{N}, \frac{N!}{N-1}, \frac{N!}{N-2}, \frac{N!}{N-3}, \dots, \frac{N!}{N-(N-1)}$$

 $\Rightarrow \ \ \frac{N!}{N}\,,\ \frac{N!}{N-1}\,,\ \frac{N!}{N-2}\,,.....\,\,\frac{N!}{1} \ \ \text{are in H.P.}$

Hence \forall natural numbers N, we get a strictly increasing H.P. of N positive integers.

(b) Prove that there cannot exist a strictly increasing infinite sequence of positive integers which is in harmonic progression.

Sol. Consider a harmonic progression whose first term, $T_1 = p$

second term $T_2 = q$ where q > p, $p, q \in N$ and all terms are positive integers.

Now for this H.P.
$$T_r = \frac{1}{\frac{1}{p} + (r-1)(\frac{1}{q} - \frac{1}{p})}$$

$$\Rightarrow T_r = \frac{pq}{2q - p + r(p - q)}$$

Now for $r > \frac{2q-p}{q-p}$, term of H.P. are negative,

Which is a contradiction

Hence the proof.

R	Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar	& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005	
Ň	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	RMO161016-6	
/	Toll Free : 1800 200 2244 1800 258 5555 CIN: U80302RJ2007PLC024029		

