

REGIONAL MATHEMATICAL OLYMPIAD 2016

TEST PAPER WITH SOLUTION \& ANSWER KEY

REGION: RAJ ASTHAN, CHHATTISGARH, J HARKHAND, ORRISA, MADHYA PRADESH
CENTRE: JAIPUR, RAIPUR, RANCHI, BHUVNESWAR, INDORE
Date: 16th October, 2016 | Duration: 3 Hours | Max. Marks: 102
Resonance's Forward Admission \& Scholarship Test (ResoFAST)

For Classes: V to XII
Target: JEE (Main + Advanced) \| JEE (Main) AIIMS/ NEET | BOARD/ IJSO/ NTSE

Enroll Now for Academic Session 2017-18 @ Coaching Fee of 2016-17

Academic Benefits*

More than $\mathbf{8 0 0}$ Academic Hours \& $\mathbf{5 0 0}$ Classes
More than 15000 Academic Questions
More than $\mathbf{1 0 0}$ Testing Hours

Financial Benefits*
Upto ₹ 30000 + Saving on 1 Year Course Fee $\mathbf{5 0 \%}$ Concession on Admission Form Fee

Upto 90\% Scholarship on Course Fee

Test Dates

$20^{\text {th }}$ Nov $16 \mid 27^{\text {tm }}$ Nov $16 \mid 11^{\text {tm }}$ Dec $16 \mid 25^{\text {tm }}$ Dec $16 \mid 15^{\text {th }}$ Jan 17
Resonance Eduventures Limited
CORPORATE OFFICE: CG Tower, A-46 \& 52, IPIA. Near City Mall, Jhalawar Road, Kota (Rajasthan) - 324005 | TeI. No.: 0744-3012100, 3012ఇ22, 6635555
To Know more: sms RESO at $\mathbf{5 6 6 7 7 \text { | E-mail: contact@resonance.ac.in | Website: www.resonance.ac.in | CIN: U80302RJ2007PLCO24029 }}$

:: IMPORTANT INSTRUCTIONS ::

- Calculators (in any form) and protractors are not allowed.
- Rulers and compasses are allowed.
- Answer all the questions.
- All questions carry equal marks. Maximum marks: 102.

Answer to each question should start on a new page. Clearly indicate the

 question number.1. Let $A B C$ be a triangle and D be the mid-point of $B C$. Suppose the angle bisector of $\angle A D C$ is tangent to the circumcircle of triangle $A B D$ at D. Prove that $\angle A=90^{\circ}$.
Sol.

Given $\mathrm{BD}=\mathrm{DC}$, let the angle bisector of $\angle \mathrm{ADC}$ meet AC at E ,
Further assume $\angle \mathrm{CDE}=\angle \mathrm{ADE}=\theta$.
Since the angle bisector is tangent at D,
$\angle A B C=\theta$ (angle in alternate segment are equal)
Now $\angle A B D=\pi-2 \theta \Rightarrow \angle B A D=\theta \Rightarrow A B D$ is an isosceles triangle
So $A D=B D=C D \Rightarrow D$ is equidistant from vertices A, B, C
$\Rightarrow \Delta$ is circumcentre lies on triangle and is mid-point of $B C \Rightarrow \angle A=90^{\circ}$
2. Let a, b, c be three distinct positive real number such that $a b c=1$.

Prove that $\frac{a^{3}}{(a-b)(a-c)}+\frac{b^{3}}{(b-c)(b-a)}+\frac{c^{3}}{(c-a)(c-b)} \geq 3$
Sol. $\quad-\left(\frac{a^{3}(b-c)+b^{3}(c-a)+c^{3}(a-b)}{(a-b)(b-c)(c-a)}\right)$
$=-\left(\frac{a^{3} b-a^{3} c+b^{3} c-b^{3} a+c^{3} a-c^{3} b}{(a-b)(b-c)(c-a)}\right)$
$=-\left(\frac{a b(a-b)(a+b)+c\left(b^{3}-a^{3}\right)+c^{3}(a-b)}{(a-b)(b-c)(c-a)}\right)$
$=-\left(\frac{a b(a+b)-c\left(a^{2}+b^{2}+a b\right)+c^{3}}{(b-c)(c-a)}\right)$
$=-\left(\frac{a^{2} b+a b^{2}-a^{2} c-b^{2} c-a b c+c^{3}}{(b-c)(c-a)}\right)$
$=-\left(\frac{a^{2}(b-c)+a b(b-c)+c(c-b)(c+b)}{(b-c)(c-a)}\right)$
$=-\left(\frac{a^{2}+a b-c(c+b)}{(c-a)}\right)$
$=-\left(\frac{a^{2}+a b-c^{2}-b c}{(c-a)}\right)$
$=-\left(\frac{(a-c)(a+c)+b(a-c)}{(c-a)}\right)=a+b+c$
$A M \geq G M$
$\frac{a+b+c}{3} \geq(a b c)^{1 / 3}$
$a+b+c \geq 3$

Corporate Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005
3. Let a, b, c, d, e, f be positive integers such that

$$
\frac{a}{b}<\frac{c}{d}<\frac{e}{f}
$$

Suppose af - be $=-1$. show that $d \geq b+f$.
Sol. $\frac{a}{b}<\frac{c}{d}<\frac{e}{f}$
af $-\mathrm{be}=-1$
Now to show that $d \geq b+f$
$\mathrm{ad}+\lambda_{1}=\mathrm{bc} \ldots \ldots .$. (1) $\quad \lambda_{1}$ and $\lambda_{2} \in \mathrm{I}^{+}$
$\mathrm{cf}+\lambda_{2}=\mathrm{de} \quad \ldots \ldots$. (2)
af $+1=$ be(3)
multiply the (1) equation by f
$b c f=a f d+\lambda_{1} f$
$b\left(d e-\lambda_{2}\right)=d(b e-1)+\lambda_{1} f$
bde $-\lambda_{2} b=b d e-d+\lambda_{1} f$
$d=\lambda_{2} b+\lambda_{1} f$
$d \geq b+f$
4. There are 100 countries participating in an olympiad. Suppose n is a positive integer such that each of the 100 countries is willing to communicate in exactly n languages. If each set of 20 countries can communicate in at least one common language, and no language is common to all 100 countries, what is the minimum possible value of n ?
Sol. Let there be 20 languages everybody speaks.
$P_{1}=\left\{L_{1}, L_{2} \ldots \ldots \ldots . L_{20}\right\}$
$P_{2}=\left\{L_{1}, L_{2} \ldots \ldots \ldots . L_{20}\right\}$
\vdots
\vdots
$P_{80}=\left\{L_{1}, L_{2} \ldots \ldots \ldots . L_{20}\right\}$
$P_{81}=\left\{L_{2}, L_{3} \ldots \ldots \ldots \ldots L_{20}, L_{21}\right\}$
$P_{82}=\left\{L_{1}, L_{3} \ldots \ldots \ldots \ldots L_{20}, L_{21}\right\}$
\vdots
$P_{100}=\left\{L_{1}, L_{2} \ldots \ldots \ldots . L_{19}, L_{21}\right\}$

Now a group of 20 selected from $P_{1}-P_{80}$ will be able to communicate, while a group of 20 from $P_{81}-P_{100}$ will have common L_{21}. If some are chosen from $P_{1}-P_{80}$ and some from $P_{81}-P_{100}$, then at maximum 19 persons will be chosen from $P_{81}-P_{100}, \because$ at maximum 19 of $L_{1} \ldots . . L_{20}$ languages will be lost and one will still remain common with $P_{1}-P_{80}$ in set $L_{1}, L_{2} \ldots . L_{20}$.
Now to understand why $\mathrm{N}<20$ in not possible.
Consider N = 19.
Assume $P_{1}-P_{99}$ speaks $L_{1}, L_{2} \ldots \ldots L_{19}$
So P_{100} speaks ($L_{20} \ldots . . L_{38}$)
Obviously in a group of 20 when P_{100} is selected they don't have common language.
$P_{1} \ldots \ldots . . P_{98}$ speaks ($\left.L_{1} \ldots \ldots . L_{19}\right)$
$P_{99} \& P_{100}$ have 9 and 10 languages
$P_{99} \equiv\left\{L_{1} \ldots \ldots . L_{9}, L_{20} \ldots \ldots L_{29}\right\}$
$P_{100} \equiv\left\{L_{10} \ldots \ldots . L_{19}, L_{20} \ldots \ldots L_{28}\right\}$
whenever $\mathrm{P}_{99} \& \mathrm{P}_{100}$ are chosen in group of 20 no common language will be there.
$P_{1} \ldots \ldots . P_{97}$ speak ($L_{1} \ldots \ldots L_{19}$)

Corporate Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005
$\mathrm{P}_{98}, \mathrm{P}_{99}, \mathrm{P}_{100}$ will has these 19 languages : No language is common among there in these 19 languages.
$\mathrm{P}_{98} \equiv\left\{\mathrm{~L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{20} \ldots . . . \mathrm{L}_{36}\right\}$
$P_{99} \equiv\left\{L_{3}, L_{4}, L_{5}, L_{20} \ldots . . . L_{35}\right\} \quad$ In set of 20, when P_{98}, P_{99}, P_{100} are selected common language
$P_{100} \equiv\left\{L_{6}, L_{7}, L_{20} \ldots \ldots . L_{36}\right\}$
Likewise $\mathrm{P}_{1} \ldots . . \mathrm{P}_{81}$ speaks ($\mathrm{L}_{1} \ldots \ldots . \mathrm{L}_{19}$)
$P_{82}=\left\{L_{1}, L_{20} \ldots \ldots . L_{37}\right\}$
$P_{83}=\left\{L_{2}, L_{20} \ldots \ldots . L_{37}\right\}$
\vdots
$P_{100}=\left\{L_{19}, L_{20} \ldots \ldots . L_{37}\right\} \quad$ Now when these 19 persons are chosen i-group of 20 , common language will exist.
Hence Answer is 20
5. Let $A B C$ be a right-angled triangle with $\angle B=90^{\circ}$. Let I be the incentre of $A B C$. Extend $A I$ and $C I$, let them intersect $B C$ in D and $A B$ in E respectively. Draw a line perpendicular to $A I$ at I to meet $A C$ in J, draw a line perpendicular to $C I$ at I to meet $A C$ in K. Suppose $D J=E K$. Prove that $B A=B C$.

Sol.

Now given DJ = EK
$D J^{2}=E K^{2}$
In \triangle IKC
$\tan \frac{\mathrm{C}}{2}=\frac{\mathrm{IK}}{\mathrm{IC}}$
$\mathrm{ID}^{2}+\mathrm{IJ}^{2}=E \mathrm{I}^{2}+\mathrm{IK}^{2}$
$\mathrm{IE}^{2}+\mathrm{IC}^{2} \tan ^{2} \frac{\mathrm{C}}{2}=(\mathrm{ID})^{2}+(\mathrm{IA})^{2} \tan ^{2} \frac{\mathrm{~A}}{2} \Rightarrow \tan \frac{\mathrm{~A}}{2}=\frac{\mathrm{IJ}}{\mathrm{IA}} \quad$ (since $\ln \Delta \mathrm{AIJ}$)
Now IE $=\frac{c}{a+b+c}$ EC (I divide CA in the ratio $a+b: c$)
IC $=\frac{a+b}{a+b+c} E C$
and $I D=\frac{a}{a+b+c} A D$ and $A I=\frac{b+c}{a+b+c} A D$

Corporate Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005

Now $c^{2}(E C)^{2}+(a+b)^{2} E C^{2} \tan ^{2} \frac{C}{2}=a^{2}(A D)^{2}+(b+c)^{2} A D^{2} \tan ^{2} \frac{A}{2}$
Now in $\triangle E B C \quad \tan \frac{C}{2}=\frac{E B}{a}=\frac{a c}{a+b} \cdot \frac{1}{a} \Rightarrow(a+b) \tan \frac{C}{2}=c$
In $\triangle A B D$

$$
\tan \frac{A}{2}=\frac{B D}{c}=\frac{a c}{(b+c) c} \Rightarrow(b+c) \tan \frac{A}{2}=a
$$

$\Rightarrow c^{2}(E C)^{2}+c^{2}(E C)^{2}=a^{2}(A D)^{2}+a^{2}(A D)^{2}$
$\mathrm{CEC}=\mathrm{aAD} \Rightarrow \frac{\mathrm{ac}}{\cos \frac{\mathrm{C}}{2}}=\frac{\mathrm{ac}}{\cos \frac{A}{2}} \quad\left(\cos \frac{\mathrm{C}}{2}=\frac{\mathrm{a}}{\mathrm{EC}}\right)$
$\Rightarrow \cos \frac{C}{2}=\cos \frac{A}{2} \Rightarrow \frac{C}{2}=\frac{A}{2} \Rightarrow C=A$
6. (a) Given any natural number N, prove that there exists a strictly increasing sequence of N positive integers in harmonic progression.

Sol. Consider the sequence

$$
\begin{aligned}
& \frac{N!}{N}, \frac{N!}{N-1}, \frac{N!}{N-2}, \frac{N!}{N-3}, \ldots \ldots . \frac{N!}{N-(N-1)} \\
\Rightarrow & \frac{N!}{N}, \frac{N!}{N-1}, \frac{N!}{N-2}, \ldots \ldots \ldots . \frac{N!}{1} \text { are in H.P. }
\end{aligned}
$$

Hence \forall natural numbers N , we get a strictly increasing H.P. of N positive integers.
(b) Prove that there cannot exist a strictly increasing infinite sequence of positive integers which is in harmonic progression.

Sol. Consider a harmonic progression whose first term, $\mathrm{T}_{1}=\mathrm{p}$
second term $\mathrm{T}_{2}=\mathrm{q}$ where $\mathrm{q}>\mathrm{p}, \mathrm{p}, \mathrm{q} \in \mathrm{N}$ and all terms are positive integers.
Now for this H.P. $T_{r}=\frac{1}{\frac{1}{p}+(r-1)\left(\frac{1}{q}-\frac{1}{p}\right)}$
$\Rightarrow T_{r}=\frac{p q}{2 q-p+r(p-q)}$
Now for $r>\frac{2 q-p}{q-p}$, term of H.P. are negative,
Which is a contradiction
Hence the proof.

ADMISSION ANNOUNCEMENT

 Enroll Now for Academic Session 2017-18 @ Coaching Fee of 2016-17
Classroom Contact Programs for Class V to XII

Target: JEE (Main+Advanced) | JEE (Main) | AIIMS/ NEET | Pre-foundation

Academic Benefits*

More than $\mathbf{8 0 0}$ Academic Hours \& $\mathbf{5 0 0}$ Classes
More than $\mathbf{1 5 0 0 0}$ Academic Questions
More than $\mathbf{1 0 0}$ Testing Hours

Financial Benefits*
Upto ₹ 30000 + Saving on 1 Year Course Fee $\mathbf{5 0 \%}$ Concession on Admission Form Fee

Upto 90\% Scholarship on Course Fee

> | Test Cities for ResoFAST - 2017 |
| :--- |
| Test Dates: 27.11.2016, 11.12.2016 |

Study Center Cities (291: Rajasthan: Kota, Jaipur, Jodhpur, Udaipur; Aimer, Sikar; Bihar: Petna; Chattisgarh: Raipur; Delhi; Gujarat: Ahmedabad, Surat, Rajkot; Vadodara; Jharkhand: Ranch;; Madhya Pradesh: Bhopal. Gwelior: Indore, Jabalpur: Maharashtra: Aurangabad, Mumbai. Nagpur. Nanded, Nashik, Chandrapur: Ddisha: Bhubaneswar: Uttar Pradesh: Agra، Allahabad. Lucknow West Bengal: Kolkata:

$$
\text { Test Dates: } 20.11 .2016,25.12 .2016,15.01 .2017
$$

Study Center Cities (27): Rajasthan: Kota, Jaipur; Jodhpur; Udaipur; Bihar: Patna; Chattisgarh: Raipur: Delht;; Gujarat: Ahmedabad, Surat, Rajkot, Vadodara; Jharkhand: Ranchi; Madhya Pradesh: Bhopal, Gwalior, Indore, Jabalpur; Maharashtra: Aurangabad, Mumbai, Nagpur, Nanded, Nashik, Chandrapur; Odisha: Bhubaneswar; Uttar Pradesh: Agra, Allahabad, Lucknow; West Bengal: Kolkata; Other Test Cities (74): Rajasthan: Aimer, Sikar, Sri Ganganagar; Alwar; Bhiwara, Bikaner; Bharatpur; Churu, Abu Road, Barmer; Bihar: Arah, Bhagalpur, Purnia, Samastipur; Gaya, Sitamari, Nalanda, Begu Sarai, Macthubani, Muzzafarpur; Delhi NCR: Noida, Gurgaon, Faridabad, Ghaziabad; Haryana: Bhiwani, Rewari, Hisar, Kaithal, Mahendargarh; Jharkhand: Jamshedpur, Bokaro, Dhanbad; Jdik: Jammu: Madhya Pradesh: Satna. Singhroli, Guna, Sahdol, Chattarpur: Maharashtra: Pune, Latur, Akola, Jalgoon, Sanghli; North East: Guwahati, Jalpaiguri; Odisha: Rourkela, Sambhalpur: Punjab: Amritsar, Jhalandhar, Bhatinda; Uttarkhand: Dehradun, Haldwani; Uttar Pradesh: Kanpur, Varanasi, Jhansi, Jaunpur; Bareily, Rai barely, Sultanpur, Saharanpur, Aligarh, Gorakhpur; Mathura, Rampur; West Bengal: Durgapura; Gujrat: Gendhinagar, Anand, Jamnogar, Vapi, Mehsona; Chattisgarh: Blaspur; Bhilai; Himachal Pradesh: Mandi; Chandigerh;

HOW TO GET ADMISSION PACKET: (a) Online: Visit www, resonance.ac.in, and buy ONLINE by paying through Credit/DebitCard \& Net Banking, | (b) In Person: Through Cash/DD made in favour of 'Resonance'. payable at Kota submit at any of the Resonance Study Centres. | (c) By Post/ Courier: Make a DD/Pay Order of required amount in favour of 'Resonance', payable at Kota and send it to at Kota only. | (d) COD (sms RESO Your City Name to 56677).

Resonance Eduventures Limited

CORPDRATE OFFICE: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Rajasthan) - 324005
Reg. Office: J-2, Jawahar Nagar Main Road, Kota (Raj.) - 05 | Tel. No.: 0744-3012100, 3012222, 6635555 | CIN: U80302RJ2007PLC024029
To know more: sms RESO at 56677 | e-mail: contact@resonance.ac.in Toll Free: 18002585555 | Visit us: www.resonance.ac.in f \square (i)

Result @ Resonance

JEE (Adv.) 2016

JEE (Main) 2016
2089

AIIMS 2016

NEET 2016

Resonance's Forward Admission \& Scholarship Test (ResoFAST)

For Classes: V to XII
Target: JEE (Main + Advanced) \| JEE (Main) AIIMS/ NEET \| BOARD/ IJSO/ NTSE

Academic Benefits*
More than $\mathbf{8 0 0 0}$ Academic Hours \& $\mathbf{5 0 0}$ Classes
More than $\mathbf{1 5 0 0 0}$ Academic Questions
More than 100 Testing Hours

Financial Benefits*

Upto ₹ $\mathbf{3 0 0 0 0}+$ Saving on 1 Year Course Fee $\mathbf{5 0 \%}$ Concession on Admission Form Fee Upto $9 \mathbf{9 0} \%$ Scholarship on Course Fee

Test Dates

$20^{\text {m }}$ Nov $16 \mid 27^{1 \mathrm{~m}}$ Nov $16 \mid 11^{\text {m }}$ Dec $16 \mid 25^{\mathrm{m}}$ Dec $16 \mid 15^{\mathrm{m}}$ Jan 17

Resonance Eduventures Limited

CORPORATE OFFICE: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Rajasthan) - 324005 | Tel. No.: 0744-3012100, 301२२२2, 6635555 To Know more: sms RESD at 56671 | E-mail: contact@resonance.ac.in | Website: www.resonance.ac.in | CIN: U80302RJ2007PLCO24029

Toll Free: 18002585555 | Visit us: www.resonance.ac.in $\subset \subset \approx @$

