Resonance (B) Educating for better tomorrow

REGIONAL MATHEMATICAL OLYMPIAD 2016

TEST PAPER WITH SOLUTION \& ANSWER KEY

REGION: MAHARASTRA | CENTRE: MUMBAI
Date: 09th October, 2016 | Duration: 3 Hours | Max. Marks: 102

Resonance's Forward Admission \& Scholarship Test (ResoFAST)

Enroll Now for Academic Session 2017-18 @ Coaching Fee of 2016-17

Academic Benefits*
More than $\mathbf{8 0 0}$ Academic Hours \& $\mathbf{5 0 0}$ Classes
More than 15000 Academic Questions
More than $\mathbf{1 0 0}$ Testing Hours

Financial Benefits*

Upto ₹ 30000 + Saving on 1 Year Course Fee $\mathbf{5 0 \%}$ Concession on Admission Form Fee
Upto $\mathbf{9 0 \%}$ Scholarship on Course Fee

Test Dates

Resonance Eduventures Limited

:: IMPORTANT INSTRUCTIONS ::

- Calculators (in any form) and protractors are not allowed.
- Rulers and compasses are allowed.
- Answer all the questions.
- All questions carry equal marks. Maximum marks: 102.

Answer to each question should start on a new page. Clearly indicate the question number.

1. Let $A B C$ be a right-angled triangle with $\angle B=90^{\circ}$. Let I be the incentre of $A B C$. Draw a line perpendicular to $A I$ at I. Let it intersect the line $C B$ at D. Prove that $C I$ is perpendicular to $A D$ and prove that $I D=\sqrt{b(b-a)}$ where $B C=a$ and $C A=b$

Sol.

Given : $A B C$ is right angled triangle, right angled at B.
I is incentre of $\triangle A B C$
ID is perpendicular to IA (D lies on $B C$)
$\mathrm{BC}=\mathrm{a}$ and $\mathrm{CA}=\mathrm{b}$,
Construction : Let CI cuts $A D$ at M
Join $B I$, Draw circumcircle $\left(C_{1}\right)$ of $\triangle A B D$
To prove : Cl is perpendicular to $A D$ and ID $=\sqrt{b(b-a)}$
Proof : $\angle \mathrm{AID}=\angle \mathrm{ABD}=90^{\circ}$
\Rightarrow Points A, I, B, D are concyclic
$\Rightarrow A, I, B, D$ lies on C_{1}
$\Rightarrow \angle A B I=45^{\circ}=\angle A D I$
(BI is angle bisector of $\angle \mathrm{ABC}$. $\angle \mathrm{ADI}$ and $\angle \mathrm{ABI}$ are angle in same segment subtend by chord AI) Now, $\quad \angle \mathrm{AIM}=\angle \mathrm{IAC}+\angle \mathrm{ICA}(\angle \mathrm{AIM}$ is exterior angle of $\angle \mathrm{AIC}$ in $\triangle \mathrm{AIC}$)
$\Rightarrow \angle \mathrm{AIM}=\frac{1}{2}(\angle \mathrm{BAC}+\angle \mathrm{BCA})=\frac{1}{2}\left(90^{\circ}\right)=45^{\circ}$
\{AI and CI are angled bisector of $\angle \mathrm{A}$ and $\angle \mathrm{C}$
Now $\quad \angle \mathrm{MID}=\angle \mathrm{AID}-\angle \mathrm{AIM}=90^{\circ}-45^{\circ}=45^{\circ}$
Now in $\angle \mathrm{MDI}, \angle \mathrm{DMI}=180^{\circ}-(\angle \mathrm{DIM}+\angle \mathrm{MDI})=180^{\circ}-\left(45^{\circ}+45^{\circ}\right)=90^{\circ}$
Hence proved
Now $\quad \mathrm{DI}=\mathrm{AI} \quad\{\Delta$ AID is right angled isosceles triangle $\}$

$$
\begin{aligned}
\Rightarrow A I & =\sqrt{(s-a)^{2}+(s-b)^{2}} \\
& =\sqrt{\left(\frac{b+c-a}{2}\right)^{2}+\left(\frac{a+c-b}{2}\right)^{2}} \quad \quad\left\{\text { Let } A B=c a n d s=\frac{a+b+c}{2}\right\} \\
& =\sqrt{\frac{c^{2}+(b-a)^{2}}{2}} \\
& =\sqrt{\frac{b^{2}-a^{2}+b^{2}+a^{2}-2 a b}{2}} \\
& =\sqrt{b^{2}-a b} \quad \text { Hence Proved } \quad
\end{aligned}
$$

2. Let a, b, c be positive real number such that

$$
\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}=1
$$

Prove that $a b c \leq \frac{1}{8}$.
Sol. Let $\frac{a}{1+a}=x, \quad \frac{b}{1+b}=y, \quad \frac{c}{1+c}=z \quad(x, y, z>0)$
Now we have given $x+y+z=1$
And we have to prove $\left(\frac{x}{1-x}\right)\left(\frac{y}{1-y}\right)\left(\frac{z}{1-z}\right) \leq \frac{1}{8}$
Proof:

$$
\begin{array}{ll}
& \begin{array}{ll}
\frac{x+y}{2} \geq(x y)^{\frac{1}{2}} \quad \ldots \ldots . . \text { (i) } \\
& \frac{y+z}{2} \geq(y z)^{\frac{1}{2}} \quad \ldots \ldots . . \text { (ii) } \\
& \frac{z+x}{2} \geq(x y)^{\frac{1}{2}} \quad \ldots \ldots . \text { (iii) } \\
& \\
& \frac{(x+y)(y+z)(z+x)}{8} \geq x y z \\
& \frac{(1-z)(1-x)(1-y)}{8} \geq x y z \\
\Rightarrow \quad & \frac{x y z}{(1-x)(1-y)(1-z)} \leq \frac{1}{8} \Rightarrow
\end{array} \quad a b x \leq \frac{1}{8}
\end{array}
$$

Hence Prove
3. For any natural number n, expressed in base 10, let $S(n)$ denote the sum of all digits of n. Find all natural numbers n such that $n=2 S(n)^{2}$.
Ans. 50, 162, 392, 648
Sol. Let numbe is $a_{k} a_{k-1} \ldots \ldots . . a_{2} a_{1} a_{0}$ where $a_{0}, a_{1}, \ldots \ldots . . a_{k}$ are digits.
It is given $\left(a_{0}+10 a_{1}+100 a_{2}+\ldots \ldots+10^{k} a_{k}\right)=2\left(a_{0}+a_{1}+a_{2}+\ldots \ldots+a_{k}\right)^{2}$
Now $a_{0}+a_{1}+\ldots \ldots . .+a_{k} \leq 9(k+1)$
\{Equalty holds when all digit equals to 9 \}
$\Rightarrow 2\left(a_{0}+a_{1}+a_{2}+\ldots . .+a_{k}\right)^{2} \leq 162(k+1)^{2}$
From (i) and (ii) $\Rightarrow\left(\mathrm{a}_{0}+10 \mathrm{a}_{1}+\ldots . .+10^{\mathrm{k}} \mathrm{a}_{\mathrm{k}}\right) \leq 162(\mathrm{k}+1)^{2}$
which can holds only for $k=0,1,2$ and 3
\Rightarrow digits in the number are either 1 or 2 or 3 or 4
Case-I : When $\mathrm{k}=3$ (4 digit number)
If n is four digit number then $\mathrm{s}(\mathrm{n}) \leq 36$
$\Rightarrow\left(\mathrm{S}(\mathrm{n})^{2} \leq 1296 \Rightarrow \frac{\mathrm{n}}{2} \leq 1296 \Rightarrow \mathrm{n} \leq 2592\right.$
$\Rightarrow \max S(n)=28($ when $n=1999) \Rightarrow(S(n))^{2} \leq 784 \Rightarrow n \leq 1568$
$\Rightarrow \max . S(n)=23($ when $n=1499) \Rightarrow(S(n))^{2} \leq 529 \Rightarrow n \leq 1058$
\Rightarrow No four digit number is possible
Case-II : When $k=0,1,2$

$\mathrm{S}(\mathrm{n})$	$(\mathrm{S}(\mathrm{n}))^{2}=\mathrm{n}$	$2\left(\mathrm{~S}(\mathrm{n})^{2}=\mathrm{n}\right.$	$\mathrm{S}(\mathrm{n})$	$(\mathrm{S}(\mathrm{n}))^{2}=\mathrm{n}$	$2\left(\mathrm{~S}(\mathrm{n})^{2}=\mathrm{n}\right.$
1	1	2	12	144	288
2	4	8	13	169	338
3	9	18	14	196	392 (accept)
4	16	32	15	225	450
5	25	50 (accept)	16	256	512
6	36	72	17	289	578
7	49	98	18	324	648 (accept)
8	64	128	19	361	722
9	81	162 (accept)	20	400	800
10	100	200	21	441	882
11	121	242	22	484	968

n can be 50, 162, 392, 648
4. Find the number of all 6-digit natural numbers having exactly three odd digits and three even digits.

Ans. 281250
Sol. Total number of 6 digit natural number formed (zero can be in $I^{\text {st }}$ place) having exactly three odd digit and three even digit equal to ${ }^{6} \mathrm{C}_{3} 5^{6}$
Total number of 5 digit natural number formed (zero can be in first place) having exactly 3 odd digit and 2 even digit equals to ${ }^{5} \mathrm{C}_{3} 5^{5}$
Total number of 6 digit natural number (zero cannot be in $I^{\text {st }}$ place) having exactly three odd digit and three odd digit and three even digits equals to
${ }^{6} \mathrm{C}_{3} 5^{6}-{ }^{5} \mathrm{C}_{3} 5^{5}=(100-10) 5^{5}=281250$

Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
Toll Free: 18002002244 | 18002585555 |CIN: U80302RJ2007PLC024029
5. Let $A B C$ be a triangle with centroid G. Let the circumcircle of triangle $A G B$ intersect the line $B C$ in X different from B; and the circumcircle of triangle $A G C$ intersect the line $B C$ in Y different from C. Prove that G is the centroid of triangle AXY.
Sol.

Given : Let D in mid point of side $B C$
Let C_{1} is circumcircle of $\triangle A B G$ which cuts $B C$ at X
C_{2} is circumcircle of $\triangle A G C$ which cuts $B C$ at Y
Where G is centroid at $\triangle A B C$
To prove : G is centroid of $\triangle A X Y$
Proof : For circle C_{1}, chord $A G$ and $B X$ intersect at point D
So, (DX) $(D B)=(D G)(D A)$.
For circle C_{2}, chord $A G$ and $C Y$ intersect at point D
so (DY) (DC) = (DG) (DA)
From (i) and (ii)
$(D G)(D A)=(D X)(D B)=(D Y)(D C)$
Because DB = DC so, DX = DY
$\Rightarrow D$ is mid point of $X Y \Rightarrow A D$ is median from A to $\triangle A X Y$
$\Rightarrow G$ is centroid of $\Delta A X Y$
6. Let $\left\langle\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \ldots ..\right\rangle$ be a strictly increasing sequence of positive integers in an arithmetic progression. Prove that there is an infinite subsequence of the given sequence whose terms are in a geometric progression.
Sol. 6 Let $a_{1}=a, a_{2}=a+d, a_{3}=a+2 d$, \qquad and so on where $a, d \in N$ and $A=\left\{a_{1}, a_{2}, \ldots.\right\}$
Let there exist a G.P. with first term equal to ' b ' and integral common ratio equals to ' r ' and whose terms are elements of set A.

Now let $b=a+k_{1} d, b r=a+k_{2} d$

$$
\Rightarrow r=\frac{a+k_{2} d}{a+k_{1} d} \Rightarrow k_{2}=\frac{a(r-1)}{d}+k_{1} r
$$

$\Rightarrow r$ can be taken of the form $m d+1$ (where $m \in N$)
Now, we have to proof first that all terms of this G.P. belongs to set A.
\Rightarrow we have to proof that b^{n} also belongs to set $A \forall n \in N$.
\Rightarrow we have to proof that $b r^{n}$ is also of the form $a+k d \forall n \in N$ where $K \in N$
Now br $\left.{ }^{n}=b(m d+1)^{n}=b\left({ }^{n} c_{0}(m d)^{n}+{ }^{n} c_{1}(m d)\right)^{n-1}+\ldots \ldots .+{ }^{n} c_{n-1} m d+{ }^{n} c_{n}\right)$
$=b(\lambda d+1)$, where $\lambda \in N$
$=b+b \lambda d=a+k_{1} d+b \lambda d=a+\left(k_{1}+b \lambda\right) d$
$\Rightarrow b r^{n}$ is also element of set A
Because m is variable and can take any natural value so infinite ratios (r) exist
\Rightarrow Infinite G.P(s) exist of infinite length.
Resonence ${ }^{\circledR}$
Educating for better tomorrow

EARLY START MORE BENEFITS BETTER RESULTS/

ADMISSION ANNOUNCEMENT

Enroll Now for Academic Session 2017-18 @ Coaching Fee of 2016-17

Classroom Contact Programs for Class V to XII

Target: JEE (Main+Advanced) | JEE (Main) | AIIMS/ NEET | Pre-foundation

Academic Benefits*
More than $\mathbf{8 0 0}$ Academic Hours \& $\mathbf{5 0 0}$ Classes
More than $\mathbf{1 5 0 0 0}$ Academic Questions
More than $\mathbf{1 0 0}$ Testing Hours

Financial Benefits*

> Upto ₹ $\mathbf{3 0 0 0 0}+$ Saving on 1 Year Course Fee $\mathbf{5 0 \%}$ Concession on Admission Form Fee
> Upto $\mathbf{9 0} \%$ Scholarship on Course Fee

Test Cifies for ResoFAST - 2017
 Test Dates: 27.11.2016, 11.12.2016

Study Center Cities (291: Rajasthan: Kota, Jaipur, Jodhpur; Udaipur; Aimer, Skar; Bihar: Patna; Chattisyarh: Raipur; Delhi; Gujarat: Ahmedabad, Surat, Rakot; Vadodara; Jharkhand: Ranchi Madhya Pradesh: Bhopal. Gwelior, Indore, Jabalour: Maharashtra: Aurangabad, Mumbai. Nagpur. Nanded, Nashik, Chandrapur: Odisha: Bhubaneswar: Uttar Pradesh: Agra, Allahabad. Lucknow West Bengal: Kolkata;

$$
\text { Test Dates: } 20.11 .2016,25.12 .2016,15.01 .2017
$$

Study Center Cities (27): Rajasthan: Kota, Jaipur, Jodhpur; Udaipur; Bihar: Patna; Chattisgarh: Raipur: Delhi;; Gujarat: Ahmedebad, Surat, Rajkot, Vadodara; Jharkhand: Ranchi; Madhya Pradesh; Bhopal, Gwalior, Indore, Labalpur; Mahrarashtra: Aurangabad, Mumbai, Nagpur, Nanded, Nashik, Chandrapur; Odisha: Bhubaneswar; Uttar Pradesh: Agra, Allahabad, Lucknow; West Bengal: Kolkata; Other Test Cities (74): Rajasthan: Aimer, Sikar, Sri Ganganagar; Alwar; Bhiwara, Bikaner; Bharatpur; Churu, Abu Road, Barmer; Bihar: Arah, Bhagalpur, Purnia, Samastipur; Gaya, Sitamari, Nalanda, Begu Sarai, Madhubani, Muzzafarpur; Delhi NCR: Noida, Gurgaon, Faridabad, Ghaziabad; Haryana: Bhiwani, Rewari, Hisar, Kaithal, Mahendargarh; Jharkhand: Jamshedpur, Bokaro, Dhanbad; J\&iK: Jammu: Madhya Pradesh: Satna. Singhroli, Guna, Sahdol, Chattarpur; Maharashtra: Pune, Latur, Akola, Jalgaon, Sanghli; North East: Guwahati, Jalpaiguri; Odisha: Rourkela, Sambhalpur: Punjabh: Amritsar, Jhalandhar, Bhatinda; Uttarkhand: Dehradun, Haldwani; Uttar Pradesh: Kanpur, Varanasi, Jhansi, Jaunpur, Bereily, Rai barely, Sultanpur, Saharanpur, Aligarh, Gorakhpur, Mathura, Rampur: West Bengal: Durgapura; Gujrat: Gendhinagor, Anand, Jamnagar, Vapi, Mehsena; Chattisgarh: Blaspur, Bhillai; Himachal Pradesh: Mandi; Chandigerh;

HOW TO GET ADMISSION PACKET: (a) Daline:Visit www, resonance.ac.in, and buy ONLINE by paying through Credit/DebitCard \& Net Banking, | (b) In Person: Through Cash/DD made in favour of 'Resonance'. payable at Kota submit at any of the Resonance Study Centres. | (c) By Post/ Courier: Make a DD/Pay Order of required amount in favour of 'Resonance', payable at Kota and send it to at Kota only. | (d) COD (sms RESO Your City Name to 56677).

Resonance Eduventures Limited

CORPORATE OFFICE: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Rajasthan) - 324005
Reg. Office: J-2, Jawahar Nagar Main Road, Kota (Raj.) - 05 | Tel. No.: 0744-3012100, 3012222, 6635555 | CIN: U80302RJ2007PLC024029

$$
\text { To know more: sms RESO at } 56677 \text { | e-mail: contact@resonance.ac.in }
$$

Toll Free: 18002585555 | Visit us: www.resonance.ac.in f \square (i)

Result @ Resonance

AIIMS 2016
NeEt 2016

Resonance's Forward Admission \& Scholarship Test (ResoFAST)

Reso

 Be FASI to be the FIISSI

 For Classes: V to XII
 Target: JEE (Main + Advanced) | JEE (Main) AIIMS/ NEET | BOARD/ IJSO/ NTSE Enroll Now for Academic Session 2017-18 @ Coaching Fee of 2016-17

Academic Benefits*
More than $\mathbf{8 0 0}$ Academic Hours \& $\mathbf{5 0 0}$ Classes
More than 15000 Academic Questions
More than $\mathbf{1 0 0}$ Testing Hours

Financial Benefits*

Upto ₹ $\mathbf{3 0 0 0 0}+$ Saving on 1 Year Course Fee $\mathbf{5 0 \%}$ Concession on Admission Form Fee Upto $9 \mathbf{0 \%}$ Scholarship on Course Fee

Test Dates

$20^{\text {th }}$ Nov $16 \mid 27^{\text {th }}$ Nov $16 \mid 11^{\text {th }}$ Dec $16 \mid 25^{\text {th }}$ Dec $16 \mid 15^{\text {th }}$ Jan 17

Resonance Eduventures Limited

CORPORATE DFFICE: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Rajasthan) - 324005 | Tel. No.: 0744-3012100, 3012222,6635555 To Know more: sms RESD at $\mathbf{5 6 6 7 7}$ | E-mail: contact@resonance.ac.in | Website: www.resonance.ac.in | CIN: U80302RJ2007PLCO24029

Toll Free: 18002585555 | Visit us: www.resonance.ac.in $\mathrm{f} \times \underset{\sim}{\circ}$ (1)

