

REGIONAL MATHEMATICS OLYMPIAD – 2015

Centre - Delhi

Time: 3 Hours		December	06, 2015
Instru	uctions:		
•	Calculators (in	any form) and protractors are not allowed.	
•	Rulers and co	mpasses are allowed.	
•	Answer all the	questions.	
•	All questions o	arry equal marks. Maximum marks: 102.	
	A now or to one	h superior should start as a new new Olevely indicate the superior sur	- h - u

- Answer to each question should start on a new page. Clearly indicate the question number.
- **1.** Two circles Γ and Σ , with centres O and O', respectively, are such that O' lies on Γ . Let A be a point on Σ and M the midpoint of the segment AO'. If B is a point on Σ different from A such that AB is parallel to OM, show that the midpoint of AB lies on Γ .

To prove O' K \perp AB as O'A = O'B (radii of circle Σ)

n ®	Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005		
Kesonance	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	RM0061215-1	
Educating for better tomorrow	Toll Free : 1800 200 2244 1800 258 5555 <u>CIN: U80302RJ2007PLC024029</u>	KW0001213-1	

Also OK = OO' (radii of circle Γ)

 $\Delta O'MK_1$ and $\Delta O'$ AK are similar

Triangles \Rightarrow K₁O' = KK₁ $\Rightarrow \angle$ O' K₁O = 90°

Which implies $\angle O' \text{ K B} = 90^{\circ}$

2. Let $P(x) = x^2 + ax + b$ be a quadratic polynomial where a and b are real numbers. Suppose $\langle P(-1)^2, P(0)^2, P(1)^2 \rangle$ is an arithmetic progression of integers. Prove that a and b are integers.

Sol. Given
$$[P(-1)]^2 = (b - a + 1)^2 \in I$$

 $(P(0))^2 = b^2 \in I$
 $(P(1))^2 = (b + a + 1)^2 \in I$
 $\therefore [P(-1)]^2, (P(0))^2, (P(1))^2 \text{ are in } AP$
 $\Rightarrow 2b^2 = (b - a + 1)^2 + (b + a + 1)^2$
 $\Rightarrow a^2 + 2b + 1 = 0$
 $a^2 + b^2 + 1 - 2a + 2b - 2ab = I_1 \qquad \dots \dots \dots (1)$
 $a^2 + b^2 + 1 + 2a + 2b + 2ab = I_2 \qquad \dots \dots (2)$
 $(2) - (1) \qquad 4a (1 + b) = I \qquad \dots \dots (3)$
 $b^2 \in I$

 $\textbf{Case-I} \ b \in Q$

 $b \in I$

So if b is any rational number then it can be integer only as its square is integer.

 \Rightarrow

Resonance®

 $(a + b + 1)^2$ is integer ÷ (i) $a \in Q \Rightarrow a \in Integer$ (ii) $a \in Q^c \Rightarrow$ then $(b - a + 1)^2$ can not be an integer Case-II b∉Q b² is integer $a^2 + 2b + 1 = 0$ (from A.P. condition) ··· $2b = -(1 + a^2)$ \Rightarrow b is negative \Rightarrow $b^2 = m; m \in I$ Let $b = -\sqrt{m}$ \Rightarrow $a^2 = 2\sqrt{m} - 1$ From Eqn (3) 4a(1 + b) = Ion squaring $16a^2 (1 + b)^2 = I^2$ 16 $(2\sqrt{m}-1)(1-\sqrt{m})^2 = I^2$ 16 $(2\sqrt{m}-1)(1+m-2\sqrt{m}) = I^2$ $16\left\lceil 2m\sqrt{m} + 4\sqrt{m} - 5m - 1 \right\rceil = I^2$ $2m\sqrt{m} + 4\sqrt{m} - 5m - 1$ \Rightarrow should be rational which is not possible for any integer value of m

 \Rightarrow b can not be irrational.

3. Show that there are infinitely many triples (x, y, z) of integers such that $x^3 + y^4 = z^{31}$.

Sol. $x^3 + y^4 = z^{11}$

Let $x = 0 \Rightarrow y^4 = z^{11} \Rightarrow y = z^{\frac{11}{4}}$ (many values of z of the form (integer)⁴ will give integral values of y. so infinite sets.

4. Suppose 36 objects are placed along a circle at equal distances. In how many ways can 3 objects be chosen from among them so that no two of the three chosen objects are adjacent nor diametrically opposite?

Sol.
$${}^{36}C_3 - 36 - 36 (32) - 18 \times 30$$

Total ways of 3 selections = ${}^{36}C_3$
Three at adjacent positions = 36
Exactly two at consecutive positions = 36×32
Diametrically opposite but not adjacent = $\frac{36 \times 30}{2}$
So ${}^{36}C_3 - 36 - 36 \times 32 - 18 \times 30$
= 5412

5. Let ABC be a triangle with circumcircle Γ and incentre *I*. Let the internal angle bisectors of ∠A, ∠B, and ∠C meet Γ in A', B' and C' respectively. Let B'C' intersect AA' in P and AC in Q, and let BB' intersect AC in R. Suppose the quadrilateral PIRQ is a kite; that is IP = IR and QP = QR. Prove that ABC is an equilateral triangle.

 $\angle QPI = \angle QRI$ (kite) $\Rightarrow \angle APQ = \angle QRB$

 $\Rightarrow \quad \Delta \mathsf{APQ} \cong \Delta \mathsf{B'RQ} \text{ (ASA)}$

$$\Rightarrow \qquad \frac{A}{2} = \frac{C}{2} \Rightarrow \angle A = \angle C$$

 \Rightarrow \triangle ABC is isosceles, i.e. AB = BC and also \triangle IAC is isosceles

so IA = IC and $\Delta A I Q \cong \Delta B' I Q$

 \Rightarrow AI = B' I = C I

i.e. I circumcentre as well incentre $\triangle ABC$ is equilateral

6. Show that there are infinitely many positive real numbers a which are not integers such that $a(a-3{a})$ is an integer. (Here {a} denotes the fractional part of a. For example {1.5} = 0.5; {-3.4} = 0.6.).

Sol. Let
$$a = I + f$$

 \Rightarrow $(I + f) (I - 2 f)$ should be an integer
 \Rightarrow $I^2 - I f - 2 f^2$ should be an integer
 $f (I + 2 f)$ should be an integer (Let = K)
 $2 f^2 + I f - K = 0$
 \Rightarrow $f = \frac{-I \pm \sqrt{I^2 + 8K}}{4}$ (ignore - sign as 0 < f < 1)
 \Rightarrow $\sqrt{I^2 + 8K} - I < 4$
 $\sqrt{I^2 + 8K} < 4 + I$
 $I^2 + 8K < 16 + I^2 + 8 I$
 $8K - 8 I < 16$
 $K < I + 2$

For any I, we get possible values of K which makes given expression an integer.

