REGIONAL MATHEMATICS OLYMPIAD - 2015

Centre - Delhi

Time: 3 Hours
December 06, 2015

Instructions:

- Calculators (in any form) and protractors are not allowed.
- Rulers and compasses are allowed.
- Answer all the questions.
- \quad All questions carry equal marks. Maximum marks: 102.
- Answer to each question should start on a new page. Clearly indicate the question number.

1. Two circles Γ and \sum, with centres O and O^{\prime}, respectively, are such that O^{\prime} lies on Γ. Let A be a point on Σ and M the midpoint of the segment $A O^{\prime}$. If B is a point on \sum different from A such that $A B$ is parallel to $O M$, show that the midpoint of $A B$ lies on Γ.

To prove $\mathrm{O}^{\prime} \mathrm{K} \perp \mathrm{AB}$ as $\mathrm{O}^{\prime} \mathrm{A}=\mathrm{O}^{\prime} \mathrm{B}$ (radii of circle Σ)

Also $\mathrm{OK}=\mathrm{OO}^{\prime}$ (radii of circle Γ)
$\Delta \mathrm{O}^{\prime} \mathrm{MK}_{1}$ and $\Delta \mathrm{O}^{\prime} \mathrm{AK}$ are similar

Triangles $\Rightarrow \mathrm{K}_{1} \mathrm{O}^{\prime}=\mathrm{KK}_{1} \Rightarrow \angle \mathrm{O}^{\prime} \mathrm{K}_{1} \mathrm{O}=90^{\circ}$

Which implies $\angle \mathrm{O}^{\prime} \mathrm{K} B=90^{\circ}$
or $K A=K B$
2. Let $P(x)=x^{2}+a x+b$ be a quadratic polynomial where a and b are real numbers. Suppose $\left\langle P(-1)^{2}, P(0)^{2}, P(1)^{2}\right\rangle$ is an arithmetic progression of integers. Prove that a and b are integers.

Sol. Given $[P(-1)]^{2}=(b-a+1)^{2} \in I$

$$
(P(0))^{2}=b^{2} \quad \in I
$$

$$
(P(1))^{2}=(b+a+1)^{2} \quad \in I
$$

$\because \quad[P(-1)]^{2},(P(0))^{2},(P(1))^{2}$ are in $A P$
$\Rightarrow \quad 2 b^{2}=(b-a+1)^{2}+(b+a+1)^{2}$
$\Rightarrow \quad a^{2}+2 b+1=0$
$a^{2}+b^{2}+1-2 a+2 b-2 a b=I_{1}$
$a^{2}+b^{2}+1+2 a+2 b+2 a b=I_{2}$
$(2)-(1) \quad 4 a(1+b)=I$
$b^{2} \in I$

Case-I $b \in Q$

So if b is any rational number then it can be integer only as its square is integer.
$\Rightarrow \quad b \in I$
$\because \quad(a+b+1)^{2}$ is integer
(i) $\mathrm{a} \in \mathrm{Q} \Rightarrow \mathrm{a} \in$ Integer
(ii) $\mathrm{a} \in \mathrm{Q}^{\mathrm{c}} \Rightarrow$ then $(\mathrm{b}-\mathrm{a}+1)^{2}$ can not be an integer

Case-II $b \notin Q$

$$
\begin{array}{ll}
& b^{2} \text { is integer } \\
\because & a^{2}+2 b+1=0 \quad \text { (from A.P. condition) } \\
\Rightarrow & 2 b=-\left(1+a^{2}\right) \\
\Rightarrow & b \text { is negative } \\
\text { Let } & b^{2}=m ; m \in I \\
\Rightarrow & b=-\sqrt{m} \\
& a^{2}=2 \sqrt{m}-1
\end{array}
$$

From Eqn (3) $4 \mathrm{a}(1+\mathrm{b})=\mathrm{I}$
on squaring
$16 a^{2}(1+b)^{2}=I^{2}$
$16(2 \sqrt{m}-1)(1-\sqrt{m})^{2}=I^{2}$
$16(2 \sqrt{m}-1)(1+m-2 \sqrt{m})=I^{2}$
$16[2 m \sqrt{m}+4 \sqrt{m}-5 m-1]=I^{2}$
$\Rightarrow \quad 2 m \sqrt{m}+4 \sqrt{m}-5 m-1$
should be rational which is not possible for any integer value of m
$\Rightarrow \quad \mathrm{b}$ can not be irrational.
3. Show that there are infinitely many triples (x, y, z) of integers such that $x^{3}+y^{4}=z^{31}$.

Sol. $x^{3}+y^{4}=z^{11}$

Corporate Office : CG Tower, A-46 \& 52,IPIA, Near City Mall, Jhalawar Road, Kota (Raj) - 324005

Let $x=0 \Rightarrow y^{4}=z^{11} \Rightarrow y=z^{\frac{11}{4}}$ (many values of z of the form (integer) ${ }^{4}$ will give integral values of y. so infinite sets.
4. Suppose 36 objects are placed along a circle at equal distances. In how many ways can 3 objects be chosen from among them so that no two of the three chosen objects are adjacent nor diametrically opposite?
Sol. ${ }^{36} \mathrm{C}_{3}-36-36(32)-18 \times 30$
Total ways of 3 selections $={ }^{36} \mathrm{C}_{3}$
Three at adjacent positions $=36$
Exactly two at consecutive positions $=36 \times 32$
Diametrically opposite but not adjacent $=\frac{36 \times 30}{2}$
So

$$
\begin{aligned}
& { }^{36} C_{3}-36-36 \times 32-18 \times 30 \\
& =5412
\end{aligned}
$$

5. Let ABC be a triangle with circumcircle Γ and incentre I. Let the internal angle bisectors of $\angle \mathrm{A}, \angle \mathrm{B}$, and $\angle \mathrm{C}$ meet Γ in A^{\prime}, B^{\prime} and C^{\prime} respectively. Let $B^{\prime} C^{\prime}$ intersect $A A^{\prime}$ in P and $A C$ in Q, and let $B B^{\prime}$ intersect $A C$ in R. Suppose the quadrilateral PIRQ is a kite; that is $I P=I R$ and $Q P=Q R$. Prove that $A B C$ is an equilateral triangle.

Sol.

I R Q P is a kite
$\angle \mathrm{PQA}=\angle \mathrm{RQB}$ (vertically opposite)
$\angle \mathrm{QPI}=\angle \mathrm{QRI}$ (kite) $\quad \Rightarrow \angle \mathrm{APQ}=\angle \mathrm{QRB}$
$\Rightarrow \quad \Delta \mathrm{APQ} \cong \Delta \mathrm{B}^{\prime} \mathrm{RQ}$ (ASA)
$\Rightarrow \quad \frac{\mathrm{A}}{2}=\frac{\mathrm{C}}{2} \Rightarrow \angle \mathrm{~A}=\angle \mathrm{C}$

```
\(\Rightarrow \quad \Delta \mathrm{ABC}\) is isosceles, i.e. \(\mathrm{AB}=\mathrm{BC}\) and also \(\Delta \mathrm{IAC}\) is isosceles
    so \(I A=I C\) and \(\Delta A\) I \(Q \cong \Delta B^{\prime} I Q\)
\(\Rightarrow \quad A I=B^{\prime} I=C I\)
```

i.e. I circumcentre as well incentre $\triangle A B C$ is equilateral
6. Show that there are infinitely many positive real numbers a which are not integers such that $a(a-3\{a\}$ is an integer.
(Here $\{a\}$ denotes the fractional part of a. For example $\{1.5\}=0.5 ;\{-3.4\}=0.6$.).
Sol. Let $\quad a=I+f$
$\Rightarrow \quad(I+f)(I-2 f) \quad$ should be an integer
$\Rightarrow \quad I^{2}-I f-2 f^{2} \quad$ should be an integer
$\Rightarrow \quad I^{2}-f(I+2 f) \quad$ should be an integer
$\mathrm{f}(\mathrm{I}+2 \mathrm{f}) \quad$ should be an integer $($ Let $=K)$
$2 f^{2}+I f-K=0$
$\Rightarrow \quad f=\frac{-I \pm \sqrt{I^{2}+8 K}}{4} \quad$ (ignore $-\operatorname{sign}$ as $0<f<1$)
$\Rightarrow \quad \sqrt{\mathrm{I}^{2}+8 \mathrm{~K}}-\mathrm{I}<4$
$\sqrt{\mathrm{I}^{2}+8 \mathrm{~K}}<4+\mathrm{I}$
$\mathrm{I}^{2}+8 \mathrm{~K}<16+\mathrm{I}^{2}+8 \mathrm{I}$
$8 \mathrm{~K}-8 \mathrm{I}<16$
$\mathrm{K}<\mathrm{I}+2$
For any I, we get possible values of K which makes given expression an integer.

