\qquad

Regional Mathematical Olympiad - 2015

Gujarat Diu, Daman \& DNH Region

Time : 3 hours
December 06, 2015
Instructions :
(i) On the first page of your answer - sheet write your full name (in block letters),

School name and address, your residential address (including pin code and phone numbers) and email id.
(ii) Calculators (in any form) and protectors are not allowed.
(iii) Rulers and compasses are allowed.
(iv) All questions carry equal marks. Maximum marks : 102.
(v) Answer to each question should start on a new page. Clearly indicate the question number.

1. Let ABC be a triangle. Let B ' denote the reflection of B in the internal angle bisector ℓ of $\angle A$. Show that the circumcentre of the triangle CB' I lies on the line ℓ, where I is the incentre of the triangle ABC .

Sol. In given $\triangle A B C$, Let I be the excentre and I_{1} be the except corresponding to vertex A .

As we know that $C I \perp C I_{1}$ (external and internal angle bisectors areperpendicular)

Similarly $B I \perp B I_{1}$
$\angle I$ В $I_{1}=\angle I$ С $I_{1}=90^{\circ}$
\Rightarrow quadrilateral I B $I_{1} \mathrm{C}$ is cyclic

Let us assume that circumcircle of quadrilateral $I \mathrm{~B} I_{1} \mathrm{C}$ intersect side AC at point B " and let BB" intersect $I I_{1}$ at point M
we have $\angle I C B^{\prime \prime}=\angle I B B^{\prime \prime}=\frac{C}{2}$
[Angle made by arc in same segment are equal and IC is the internal angle bisector of C]

Similarly $\angle I C B=\angle I B B^{\prime \prime}=\frac{C}{2}$

From (i) and (ii), we have
$\angle I B B^{\prime \prime}=\angle I B^{\prime \prime} B=\frac{C}{2}$ \qquad

Also in $\triangle B C I_{1}$ we have $\angle B C I_{1}=\frac{\pi}{2}-\frac{c}{2} \quad\left[\because \angle I C I_{1}=90^{\circ}\right]$

Also $\angle B C I_{1}=\angle B I I_{1}=\frac{\pi}{2}-\frac{c}{2}$ \qquad (iv)

Now in $\triangle I B M$, we have
$\angle I B B^{\prime \prime}=\angle I B M=\frac{c}{2}, \quad \angle B I I_{1}=\angle B I M=\frac{\pi}{2}-\frac{c}{2} \quad$ [from (iii) \& (iv)
$\Rightarrow \angle I M B=90^{\circ}$
Similarly in $\Delta I B^{\prime \prime} M$
$\angle I B^{\prime \prime} M=\frac{c}{2}, \angle B^{\prime \prime} I M=\frac{\pi}{2}-\frac{c}{2}$
and $\angle I M B^{\prime \prime}=\frac{\pi}{2}$
$\Rightarrow \Delta I B M \cong \Delta I B^{\prime \prime} M$
$\Rightarrow \mathrm{B}^{\prime \prime}$ is the mirror image B^{\prime} of B in line $I I_{1}$

Hence $\mathrm{B}^{\prime \prime}$ is the given reflection B^{\prime} of point B in $I I_{1}$
$\Rightarrow \mathrm{I}, \mathrm{B}^{\prime}$ and C are concyclic with II_{1} as diameter of their circum circle
i.e centre of circum circle of $\Delta I B^{\prime} C$ lies on $I I_{1}$ i.e bisector ℓ of $\angle A$
2. Let $P(x)=x^{2}+a x+b$ be a quadratic polynomial where a is real and $b \neq 2$ is rational. Suppose $P(0)^{2}, P(1)^{2}, P(2)^{2}$ are integers. Prove that a and b are integers.

Sol. As b is rational number and $(P(0))^{2}$ is integer hence b will be an integer

```
Now, Let \((P(1))^{2}=(1+a+b)^{2}=I_{1}\)
\(I_{1}=1+a^{2}+b^{2}+2 a b+2 a+2 b\)
\(\left(1+b^{2}+2 b\right)+\left(a^{2}+2 a b+2 a\right)=\) integer \(+I_{3}\)
\(I_{2}=16+4 a^{2}+b^{2}+4 a b+8 b+16 a\)
\(=\left(16+b^{2}+8 b\right)+\left(4 a^{2}+4 a b+16 a\right)=\) integer \(+I_{4}\)
\(a^{2}+2 a+2 b a=I_{3}\)
\(4 a^{2}+4 a b+16 a=I_{4}=2 I_{5}\)
\(2 I_{5}-2 I_{3}=2 a^{2}+12 a=\) integer
\(I_{5}-I_{3}=a^{2}+6 a\)
\(2(a+3)^{2}=\) integer -18
``` \((P(2))^{2}=I_{2}=4+2 a+b\)

Hence \(a\) is an integer
3. Find the all integers \(a, b, c\) such that
\[
a^{2}=b c+4, b^{2}=c a+4
\]

Sol. \(\quad a^{2}=b c+4\) \(\qquad\)
\(b^{2}=4 c+4\)

Adding (i) and (ii)
\(a^{2}+b^{2}=c(a+b)+8\)
subtracting(i) and (ii)
\(a^{2}-b^{2}=c(b-a)\)
\((a-b)(a+b+c)=0\)

Case I \(\mathrm{a}=\mathrm{b}\)
\(\Rightarrow a^{2}-a c-4=0\)
\(\mathrm{D}=\mathrm{c}^{2}+16=I^{2}\)
\(I^{2}-\mathrm{c}^{2}=16\)
\(c=0, \pm 3\)
\begin{tabular}{|c|c|c|}
\hline & & \\
\hline a & b & c \\
\hline 2 & 2 & 0 \\
\hline-2 & -2 & 0 \\
\hline-1 & -1 & 3 \\
\hline 4 & 4 & 3 \\
\hline 1 & 1 & -3 \\
\hline-4 & -4 & -3 \\
\hline
\end{tabular}
\[
c=3, \quad a^{2}-3 a-4
\]
\[
a=-1,4
\]
\(c=-3 \quad a^{2}+3 a+4=0\)
\[
a=1,-4
\]

Case II \(a+b+c=0\)
\(a \neq b\)
\(a^{2}+b^{2}+c^{2}=8\)
(From iii)
\begin{tabular}{|c|c|c|}
a & b & c \\
\hline-2 & 2 & 0 \\
\hline 2 & -2 & 0 \\
\hline 0 & 2 & -2 \\
\hline 0 & -2 & 2 \\
\hline 2 & 0 & -2 \\
\hline-2 & 0 & 2
\end{tabular}

Total number of solution \(=12\)
4. Suppose 40 objects are placed among a circle at equal distance. In how many ways can 3 objects be chosen from among them so that no two of the three objects are adjacent nor diametrically opposite?

Sol. \(\quad x+y+z=37\)
\(x \geq 1, y \geq 1, z \geq 1\)
\(\Rightarrow x=x^{\prime}+1, y=y^{\prime}+1, z=z^{\prime}+1\)
\(x^{\prime}+y^{\prime}+z^{\prime}=34\)

No of solution of ways \(=\frac{{ }^{36} C_{2}-18 \times 3}{3!}+18-9=105\)
(let \(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}\) \(\qquad\) \(a_{40}\) are then if \(x=19\) then the objects selected becomes diametrically opposite.
5. Two circles \(\Gamma\) and \(\Sigma\) intersect at two distinct points \(A\) and \(B\). A line through \(B\) intersects \(\Gamma\) and \(\Sigma\) again at \(C\) and \(D\) respectively. Suppose that \(C A=C D\). Show that the entre of \(\Sigma\) lies on \(\Gamma\).

O be the centre of the circle

\(\because \angle A D B=\theta\)
\(\therefore \angle A O B=2 \theta\)
\(\because A C=C D\)
\(\Rightarrow \angle C D A=\angle C A D=\theta\)
\(\therefore \angle A C D=\pi-2 \theta\)
\(\therefore \angle A C D+\angle A O B=\pi\)
\(\therefore \angle A C B+\angle A O B=\pi\)
And points \(\mathrm{A}, \mathrm{C}, \mathrm{B}\) are on the circle \(\Gamma\)
\(\therefore\) Points A, C, B, O are concyclic
Hence the centre O , of the circle \(\sum\) lies on the circle \(\Gamma\).
6. How many integers \(m\) satisfy both the following properties :
(i) \(1 \leq m \leq 5000\)
(ii) \(\lfloor\sqrt{m}\rfloor=\lfloor\sqrt{m+125}\rfloor\) ?
(Here \([\mathrm{x}]\) denote the largest integer not exceeding x , for any real number x .)
Sol. Let \(\mid \sqrt{m}\rfloor=p\)
\[
\begin{align*}
& p \leq \sqrt{m}<p+1 \\
& p^{2} \leq m<(p+1)^{2} \ldots \ldots \ldots \ldots \ldots \tag{i}\\
& \Rightarrow p^{2} \leq m+125<(p+1)^{2} \\
& \Rightarrow p^{2} \leq m \tag{ii}
\end{align*}
\]
\(\qquad\)
\((p+1)^{2}>m+125\)
\(m<p^{2}+2 p-124\)
\(p^{2}+2 p-124<5000\)
\((p+1)^{2}<5125\)
\(1+\mathrm{P}<71.59\)
\(\mathrm{P}<70.59\)
\(\lfloor\sqrt{m}\rfloor=p\)
\(p^{2}<m<(p+1)^{2}\)
\(p^{2}<m+125<(p+1)^{2}\)
\(m<p^{2}+2 p-124\)
\(2 p+1>125\)
P>62
Hence total value of \(m\)
\(=\sum_{63}^{70}(2 p-124)=72\)

Note :
(i) For any query for Mathematics Olympiad in Gujarat, Contact Coordinator, Regional Mathematical Olympiad after \(31^{\text {st }}\) December through email:gaint_spardha@yahoo.co.in
(ii) For the result of RMO - 2015 visit the website https:/sites.google.com/site/rmogujarat.
(iii) If you Select for INMO - 2015 you will be informed by email / phone.```

