

Seat No : _____

Regional Mathematical Olympiad – 2015

Gujarat Diu, Daman & DNH Region

Time : 3 hours

December 06, 2015

Instructions :

(i) On the first page of your answer – sheet write your full name (in block letters),

School name and address, your residential address (including pin code and phone numbers) and email id.

- (ii) Calculators (in any form) and protectors are not allowed.
- (iii) Rulers and compasses are allowed.
- (iv) All questions carry equal marks. Maximum marks : 102.
- (v) Answer to each question should start on a new page. Clearly indicate the question number.

1. Let ABC be a triangle. Let B' denote the reflection of B in the internal angle bisector ℓ of $\angle A$. Show that the circumcentre of the triangle CB' I lies on the line ℓ , where I is the incentre of the triangle ABC.

Sol. In given ΔABC , Let I be the excentre and I_1 be the except corresponding to vertex A. As we know that $CI \perp CI_1$ (external and internal angle bisectors are perpendicular) Similarly $BI \perp BI_1$

 $\angle I$ b $I_1 = \angle I$ c $I_1 = 90^\circ$

 \Rightarrow quadrilateral $I\,$ B $\,I_1$ C is cyclic

Let us assume that circumcircle of quadrilateral $I \ge I_1$ C intersect side AC at point B" and let BB" intersect II_1 at point M

we have $\angle ICB'' = \angle IBB'' = \frac{C}{2}$ (i)

[Angle made by arc in same segment are equal and IC is the internal angle bisector of C]

Similarly
$$\angle ICB = \angle IBB'' = \frac{C}{2}$$
(ii)

From (i) and (ii), we have

$$\angle IBB'' = \angle IB''B = \frac{C}{2}$$
 (iii)

Also in $\triangle BCI_1$ we have $\angle BCI_1 = \frac{\pi}{2} - \frac{c}{2}$ $\left[\because \angle ICI_1 = 90^\circ\right]$

Also $\angle BCI_1 = \angle BII_1 = \frac{\pi}{2} - \frac{c}{2}$ (iv)

Now in ΔIBM , we have

$$\angle IBB'' = \angle IBM = \frac{c}{2}, \quad \angle BII_1 = \angle BIM = \frac{\pi}{2} - \frac{c}{2}$$
 [from (iii) & (iv)

$$\Rightarrow \angle IMB = 90^\circ$$

Similarly in $\Delta IB''M$

$$\angle IB''M = \frac{c}{2}$$
, $\angle B''IM = \frac{\pi}{2} - \frac{c}{2}$

and $\angle IMB'' = \frac{\pi}{2}$

$$\Rightarrow \Delta IBM \cong \Delta IB''M$$

 \Rightarrow B" is the mirror image $\,$ B' of B in line $\,I\!I_1$

Hence B" is the given reflection B' of point B in II_1

 \Rightarrow I, B' and C are concyclic with II_1 as diameter of their circum circle

i.e centre of circum circle of $\Delta \! I\!B'C$ lies on $I\!I_1$ i.e bisector $\ell\,$ of $\angle \!A$

2. Let $P(x) = x^2 + ax + b$ be a quadratic polynomial where a is real and $b \neq 2$ is rational. Suppose $P(0)^2$, $P(1)^2$, $P(2)^2$ are integers. Prove that a and b are integers.

Sol. As b is rational number and $(P(0))^2$ is integer hence b will be an integer

Now, Let
$$(P(1))^2 = (1 + a + b)^2 = I_1$$
 $(P(2))^2 = I_2 = 4 + 2a + b$
 $I_1 = 1 + a^2 + b^2 + 2ab + 2a + 2b$
 $(1 + b^2 + 2b) + (a^2 + 2ab + 2a) = integer + I_3$
 $I_2 = 16 + 4a^2 + b^2 + 4ab + 8b + 16a$
 $= (16 + b^2 + 8b) + (4a^2 + 4ab + 16a) = integer + I_4$
 $a^2 + 2a + 2ba = I_3$
 $4a^2 + 4ab + 16a = I_4 = 2I_5$
 $2I_5 - 2I_3 = 2a^2 + 12a = integer$
 $I_5 - I_3 = a^2 + 6a$
 $2(a + 3)^2 = integer - 18$
Hence a is an integer

3. Find the all integers a, b, c such that

$$a^2 = bc + 4$$
, $b^2 = ca + 4$

Sol. $a^2 = bc + 4$ (I)

 $b^{2} = 4c + 4$ (ii) Adding (i) and (ii) $a^{2} + b^{2} = c(a + b) + 8$ subtracting(i) and (ii) $a^{2} - b^{2} = c(b - a)$ (a - b) (a + b + c) = 0(iii)

Case I a = b

 $\Rightarrow a^2 - ac - 4 = 0$

 $D = c^2 + 16 = I^2$

$$I^2 - c^2 = 16$$

c = 0, ± 3

а	b	С
2	2	0
-2	-2	0
-1	-1	3
4	4	3
1	1	-3
-4	-4	-3

c = 3, $a^2 - 3a - 4$

$$a = -1, 4$$

 $c = -3$ $a^2 + 3a + 4 = 0$
 $a = 1, -4$

Case II a + b + c = 0

a≠b

 $a^2 + b^2 + c^2 = 8$ (From iii)

а	b	с
-2	2	0
2	-2	0
0	2	-2
0	-2	2
2	0	-2
-2	0	2

Total number of solution = 12

4. Suppose 40 objects are placed among a circle at equal distance. In how many ways can 3 objects be chosen from among them so that no two of the three objects are adjacent nor diametrically opposite ?

(let a_1 , a_2 , a_3 a_{40} are then if x = 19 then the objects selected becomes diametrically opposite.

5. Two circles Γ and Σ intersect at two distinct points A and B. A line through B intersects Γ and Σ again at C and D respectively. Suppose that CA = CD. Show that the entre of Σ lies on Γ .

O be the centre of the circle

- $\therefore \angle ADB = \theta$
- $\therefore \angle AOB = 2\theta$
- $\therefore AC = CD$
- $\Rightarrow \angle CDA = \angle CAD = \theta$
- $\therefore \angle ACD = \pi 2\theta$
- $\therefore \angle ACD + \angle AOB = \pi$
- $\therefore \angle ACB + \angle AOB = \pi$

And points A, C ,B are on the circle $\,\Gamma\,$

: Points A, C, B, O are concyclic

Hence the centre O, of the circle $\, \Sigma \,$ lies on the circle $\, \Gamma \,$.

How many integers m satisfy both the following properties : 6.

(i)
$$1 \le m \le 5000$$
 (ii) $\left[\sqrt{m}\right] = \left[\sqrt{m+125}\right]$?

(Here [x] denote the largest integer not exceeding x, for any real number x.)

Sol. Let
$$[\sqrt{m}] = p$$

 $p \le \sqrt{m}
 $p^2 \le m < (p+1)^2$ (i)
 $\Rightarrow p^2 \le m + 125 < (p+1)^2$ (ii)
 $\Rightarrow p^2 \le m$
 $(p+1)^2 > m + 125$
 $m < p^2 + 2p - 124$
 $p^2 + 2p - 124 < 5000$
 $(p+1)^2 < 5125$
 $1 + P < 71.59$
 $P < 70.59$
 $[\sqrt{m}] = p$
 $p^2 < m < (p+1)^2$
 $p^2 < m < (p+1)^2$
 $p^2 < m + 125 < (p+1)^2$
 $m < p^2 + 2p - 124$
 $2p + 1 > 125$
 $P > 62$
Hence total value of m$

$$= \sum_{63}^{70} (2p - 124) = 72$$

Note :

- (i) For any query for Mathematics Olympiad in Gujarat, Contact Coordinator, Regional Mathematical Olympiad after 31st December through email:gaint_spardha@yahoo.co.in
- (ii) For the result of RMO 2015 visit the website https:/sites.google.com/site/rmogujarat.
- (iii) If you Select for INMO 2015 you will be informed by email / phone.

z