Regional Mathematical Olympiad-2015
 क्षेत्रीय गणित ओलिंपियाड-2015

Time: 3 hours (समयः 3 घंटा)
December 06, 2015 (दिसम्बर 06, 2015)
Instructions (निर्देंश) :

- Calculators (in any form) and protractors are not allowed.

किसी भी तरह के गुणक (Calculators) तथा चांदा के प्रयोग की अनुमति नहीं है।

- Rulers and compasses are allowed.

पैमाना (Rulers) तथा परकार (compasses) के प्रयोग की अनुमति है।

- Answer all the questions. All questions carry equal marks. Maximum marks : 102 सभी प्रश्नों के उत्तर दीजिये। सभी प्रश्नों के अंक समान हैं, अधिकतम् अंक : 102
- Answer to each question should start on a new page. Clearly indicate the question number. प्रत्येक प्रश्न का उत्तर नए पेज से प्रारंभ कीजिये। प्रश्न क्रमांक स्पष्ट रूप से इंगित कीजिये।

1. In a cyclic quadrilateral $A B C D$, let the diagonals $A C$ and $B D$ intersect at X. Let the circumcircles of triangles $A X D$ and $B X C$ intersect again at Y. If X is the incentre of triangle $A B Y$, show that $\angle C A D=90^{\circ}$

Sol.

$A B C D$ is cyclic quadrilateral and X is incentre of $\triangle A B Y$
Let
$\angle Y A X=\angle B A X=\alpha$
$\angle Y B X=\angle A B X=\beta$
$\angle A Y X=\angle B Y X=\gamma$
So $\angle \mathrm{DBA}=\angle \mathrm{DCA}=\beta$
$\angle B A C=\angle B D C=\alpha$
$\angle A Y X=\angle A D X=\gamma$
(Angle is the same segment)
(Angle is the same segment)
(Angle is same segment)
Now is $\triangle A B Y$
$2 \alpha+2 \beta+2 \gamma=180^{\circ}$
$\alpha+\beta+\gamma=90^{\circ}$
In $\triangle C A D$
$\angle \mathrm{CAD}+\angle \mathrm{ADC}+\angle \mathrm{DCA}=180^{\circ}$
$\angle \mathrm{CAD}+\alpha+\gamma+\beta=180^{\circ}$
$\angle \mathrm{CAD}=90^{\circ}$
2. Let $P_{1}(x)=x^{2}+a_{1} x+b_{1}$ and $P_{2}(x)=x^{2}+a_{2} x+b_{2}$ be two quadratic polynomials with integer coefficients. Suppose $a_{1} \neq a_{2}$ and there exist integers $m \neq n$ such that $P_{1}(m)=P_{2}(n), P_{2}(m)=P_{1}(n)$. Prove that $a_{1}-a_{2}$ is even.

Sol. $\quad P_{1}(x)=x^{2}+a_{1} x+b_{1}$
$P_{2}(x)=x^{2}+a_{2} x+b_{2} \quad a_{1}, b_{1}, a_{2}, b_{2}$ are integers
$a_{1} \neq a_{2}$
$m \neq n$
$P_{1}(m)=P_{2}(n)$
$m^{2}+a_{1} m+b_{1}=n^{2}+a_{2} n+b_{2}$
$\left(m^{2}-n^{2}\right)+a_{1} m-a_{2} n+b_{1}-b_{2}=0$
$P_{2}(m)=P_{1}(n)$
$n^{2}+a_{1} n+b_{1}=m^{2}+a_{2} m+b_{2}$
$\left(m^{2}-n^{2}\right)+a_{2} m-a_{1} n+b_{2}-b_{1}=0$
from (1) \& (2)
$b_{2}-b_{1}=\left(m^{2}-n^{2}\right)+a_{1} m-a_{2} n=-\left(m^{2}-n^{2}\right)-a_{2} m+a_{1} n$
$2\left(m^{2}-n^{2}\right)+m\left(a_{1}+a_{2}\right)-n\left(a_{1}+a_{2}\right)=0$
$2\left(m^{2}-n^{2}\right)+\left(a_{1}+a_{2}\right)(m-n)=0$
$(m-n)\left[2(m+a)+a_{1}+a_{2}\right]=0$
$m-n \neq 0$ hence $\left[2(m+n)+a_{1}+a_{2}\right]=0$
$\therefore 2(m+n)+a_{1}+a_{2}=0$
$(m+n)=-\frac{a_{1}+a_{2}}{2}$
Now, as m, n are integers so $(m+n)$ is also an integer and $\frac{a_{1}+a_{2}}{2} \in I$
$\therefore \mathrm{a}_{1}+\mathrm{a}_{2}$ must be even integer. It is possible only when both a_{1} and a_{2} are even or odd. In both the cases we get $\left(a_{1}-a_{2}\right)$ always be even.
3. Find all fractions which can be written simultaneously in the forms $\frac{7 k-5}{5 k-3}$ and $\frac{6 l-1}{4 l-3}$, for some integers k, l.

Sol. $\frac{7 \mathrm{k}-5}{5 \mathrm{k}-3}=\frac{6 \ell-1}{4 \ell-3}$
$28 \mathrm{k} \ell-21 \mathrm{k}-20 \ell+15=30 \mathrm{k} \ell-5 \mathrm{k}-18 \ell+3$
$2 k \ell+16 k+2 \ell-12=0$
$\mathrm{k} \ell+8 \mathrm{k}+\ell-6=0$
$\mathrm{k} \ell+8 \mathrm{k}+\ell=6$
$\mathrm{k}(\ell+8)+\ell+8=14$
$(k+1)(\ell+8)=14$
$(k+1)(\ell+8)=14=14 \times 1=7 \times 2=-14 \times-1=-7 \times-2$
if $\mathrm{k}+1=14$ and $\ell+8=1$ or $\mathrm{k}+1=1$ and $\ell+8=14$
$(k=13, \ell=-7) \quad(k=0, \ell=6)$
in the same way we can find the other solution
$(k, \ell)=(13,-7),(-15,-9),(0,6),(-2,-22),(6,-6),(-8,-10),(1,-1),(-3,-15)$
so total 8 solutions
Ans. $\frac{43}{31}, \frac{55}{39}, \frac{5}{3}, \frac{19}{13}, \frac{37}{27}, \frac{61}{43}, 1, \frac{13}{9}$
4. Suppose 28 objects are placed along a circle at equal distances, In how many ways can 3 objects be chosen from among them no two of the three chosen objects are adjacent not diametrically opposite?
Sol. $\quad 1^{\text {st }}$ point can be selected in 28 ways.
Total number of ways of selecting three point from which no two are adjacent $=\frac{{ }^{28} \mathrm{C}_{1}\left({ }^{25} \mathrm{C}_{2}-24\right)}{3}=2576$
Number of ways in which points are diametrically opposite $=14 \times 22=308$
Required number of ways $=2576-308=2268$
5. Let $A B C$ be a right triangle with $\angle B=90^{\circ}$. Let E and F be respectively the mid-points of $A B$ and $A C$. Suppose the incentre I of triangle $A B C$ lies on the circumcircle of triangle $A E F$. Find the ratio $B C / A B$.

Ans. $\frac{4}{3}$

Sol.

$\angle \mathrm{AEF}=\angle \mathrm{ABC}=90^{\circ} \quad \angle \mathrm{EF} \| \mathrm{BC}>$ and $\mathrm{EF}=\frac{\mathrm{BC}}{2}$
So AF is diameter of the circumcircle of $\triangle A E F$
$\Rightarrow \angle \mathrm{AIF}=\angle \mathrm{AEF}=90^{\circ}$
$\angle \mathrm{CIF}=\angle \mathrm{AIC}-\angle \mathrm{AIF}$
$=135^{\circ}-90^{\circ}=45^{\circ} \quad(\angle \mathrm{AIC}=135$ as I is the incentre of $\triangle \mathrm{ABC})$
Now, $A F=F C=\frac{1}{2} A C$ (F is the mid point of $A C$)
Let $\angle \mathrm{FCl}=\angle \mathrm{BCl}=\theta$
So, $\angle \mathrm{IAC}=180-(\angle \mathrm{AIC}+\angle \mathrm{ICA})$
$=180-(135+\theta)$
$=45-\theta$
Apply sin rule is Δ CIF
$\frac{\sin \theta}{\mathrm{IF}}=\frac{\sin 45^{\circ}}{\mathrm{CF}} \Rightarrow \mathrm{IF}=\mathrm{CF} \sin \theta \sqrt{2}$
In Δ AIF
$\frac{\sin (45-\theta)}{I F}=\frac{\sin 90^{\circ}}{A F} \Rightarrow I F=\sin (45-\theta) A F$
From Equation (1) and (2)
$\sqrt{2} C F \sin \theta=\sin (45-\theta) A F$
$\sqrt{2}=\frac{\sin (45-\theta)}{\sin \theta}$
$\sqrt{2}=\frac{\cos \theta-\sin \theta}{\sqrt{2} \sin \theta} \Rightarrow \tan \theta=\frac{1}{3}$

Now, $\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}=\frac{2 \times \frac{1}{3}}{1-\frac{1}{9}}=\frac{2}{3} \times \frac{9}{8}=\frac{3}{4}$
In $\triangle A B C \quad \tan \angle A B C=\tan 2 \theta=\frac{3}{4}=\frac{A B}{B C} \Rightarrow \frac{B C}{A B}=\frac{4}{3}$
6. Find all real numbers a such that $3<a<4$ and $a(a-3\{a\})$ is an integer (Here $\{a\}$ denotes the fractional part of a. For example $\{1.5\}=0.5 ;\{-3.4\}=0.6$).
Sol. $3<a<4$
Let $a=3+f$
$a(a-3\{a\})=I$
$(3+f)(3+f-3 f)=I$
$(3+f)(3-2 f)=I$
$9-3 f-2 f^{2}=I$
$2 f^{2}+3 f=I^{\prime}$

as $0<\mathrm{f}<1 \quad \therefore \quad 0<\mathrm{I}^{\prime}<5 \Rightarrow \quad \mathrm{I}^{\prime}=1,2,3,4$
$3 f+2 f^{2}=1,2,3,4$.
Case-1: $2 f^{2}+3 f=1$
$f=\frac{-3+\sqrt{17}}{4} \Rightarrow a=3+f=\frac{9+\sqrt{17}}{4}$
in the same way we can find other value of a
$a=\frac{9+\sqrt{17}}{4}, \frac{7}{2}, \frac{9+\sqrt{33}}{4}, \frac{9+\sqrt{41}}{4}$
Total 4 solutions.

