

Regional Mathematical Olympiad-2015 क्षेत्रीय गणित ओलिंपियाड-2015

Time : 3 hours (समयः 3 घंटा)

December 06, 2015 (दिसम्बर 06, 2015)

Instructions (ंनिर्देश) :

- Calculators (in any form) and protractors are not allowed.
 किसी भी तरह के गुणक (Calculators) तथा चांदा के प्रयोग की अनुमति नहीं है।
- Rulers and compasses are allowed.
 पैमाना (Rulers) तथा परकार (compasses) के प्रयोग की अनुमति है।
- Answer all the questions. All questions carry equal marks. Maximum marks : 102 सभी प्रश्नों के उत्तर दीजिये। सभी प्रश्नों के अंक समान हैं, अधिकतम् अंक : 102
- Answer to each question should start on a new page. Clearly indicate the question number.
 प्रत्येक प्रश्न का उत्तर नए पेज से प्रारंभ कीजिये। प्रश्न क्रमांक स्पष्ट रूप से इंगित कीजिये।
- 1. In a cyclic quadrilateral ABCD, let the diagonals AC and BD intersect at X. Let the circumcircles of triangles AXD and BXC intersect again at Y. If X is the incentre of triangle ABY, show that \angle CAD = 90°

Sol.

ABCD is cyclic quadrilateral and X is incentre of $\triangle ABY$ Let $\angle YAX = \angle BAX = \alpha$

 $\angle YBX = \angle ABX = \beta$ $\angle AYX = \angle BYX = \gamma$ So $\angle DBA = \angle DCA = \beta$ (Angle is the same segment) $\angle BAC = \angle BDC = \alpha$ (Angle is the same segment) $\angle AYX = \angle ADX = \gamma$ (Angle is same segment)Now is $\triangle ABY$ $2\alpha + 2\beta + 2\gamma = 180^{\circ}$ $\alpha + \beta + \gamma = 90^{\circ}$...(1)In $\triangle CAD$ $\angle CAD + \angle ADC + \angle DCA = 180^{\circ}$ $\angle CAD + \alpha + \gamma + \beta = 180^{\circ}$ $\angle CAD = 90^{\circ}$

2. Let $P_1(x) = x^2 + a_1x + b_1$ and $P_2(x) = x^2 + a_2x + b_2$ be two quadratic polynomials with integer coefficients. Suppose $a_1 \neq a_2$ and there exist integers $m \neq n$ such that $P_1(m) = P_2(n)$, $P_2(m) = P_1(n)$. Prove that $a_1 - a_2$ is even.

Sol. $P_1(x) = x^2 + a_1 x + b_1$

 $P_{2}(x) = x^{2} + a_{2}x + b_{2}$ $a_{1}, b_{1}, a_{2}, b_{2}$ are integers $a_1 \neq a_2$ m ≠ n $P_1(m) = P_2(n)$ $m^2 + a_1m + b_1 = n^2 + a_2n + b_2$ $(m^2 - n^2) + a_1m - a_2n + b_1 - b_2 = 0$..(1) $P_{2}(m) = P_{1}(n)$ $n^{2} + a_{1}n + b_{1} = m^{2} + a_{2}m + b_{2}$ $(m^2 - n^2) + a_2m - a_1n + b_2 - b_1 = 0$..(2) from (1) & (2) $b_2 - b_1 = (m^2 - n^2) + a_1m - a_2n = -(m^2 - n^2) - a_2m + a_1n$ $2(m^2 - n^2) + m(a_1 + a_2) - n(a_1 + a_2) = 0$ $2(m^2 - n^2) + (a_1 + a_2) (m - n) = 0$ $(m - n) [2(m + a) + a_1 + a_2] = 0$ $m - n \neq 0$ hence $[2(m + n) + a_1 + a_2] = 0$ $\therefore 2(m + n) + a_1 + a_2 = 0$ $(m + n) = -\frac{a_1 + a_2}{2}$

Now, as m, n are integers so (m + n) is also an integer and $\frac{a_1 + a_2}{2} \in I$

 \therefore a₁ + a₂ must be even integer. It is possible only when both a₁ and a₂ are even or odd. In both the cases we get (a₁ - a₂) always be even.

3. Find all fractions which can be written simultaneously in the forms $\frac{7k-5}{5k-3}$ and $\frac{6l-1}{4l-3}$, for some integers k,l.

Sol. $\frac{7k-5}{5k-3} = \frac{6\ell-1}{4\ell-3}$

 $28k\ell - 21k - 20\ell + 15 = 30k\ell - 5k - 18\ell + 3$ $2k\ell + 16k + 2\ell - 12 = 0$ $k\ell + 8k + \ell = 6$ $k(\ell + 8) + \ell + 8 = 14$ $(k + 1)(\ell + 8) = 14 = 14 \times 1 = 7 \times 2 = -14 \times -1 = -7 \times -2$ if k + 1 = 14 and $\ell + 8 = 1$ or k + 1 = 1 and $\ell + 8 = 14$ $(k = 13, \ell = -7)$ $(k = 0, \ell = 6)$ in the same way we can find the other solution $(k, \ell) = (13, -7), (-15, -9), (0, 6), (-2, -22), (6, -6), (-8, -10), (1, -1), (-3, -15)$ so total 8 solutions $43 \ 55 \ 5 \ 19 \ 37 \ 61 \ 13$

Ans. $\frac{43}{31}$, $\frac{55}{39}$, $\frac{5}{3}$, $\frac{19}{13}$, $\frac{37}{27}$, $\frac{61}{43}$, 1, $\frac{13}{9}$

- 4. Suppose 28 objects are placed along a circle at equal distances, In how many ways can 3 objects be chosen from among them no two of the three chosen objects are adjacent not diametrically opposite?
- **Sol.** 1st point can be selected in 28 ways.

Total number of ways of selecting three point from which no two are adjacent = $\frac{{}^{28}C_1({}^{25}C_2 - 24)}{3}$ =2576

Number of ways in which points are diametrically opposite = $14 \times 22 = 308$ Required number of ways = 2576 - 308 = 2268

5. Let ABC be a right triangle with $\angle B = 90^{\circ}$. Let E and F be respectively the mid-points of AB and AC. Suppose the incentre I of triangle ABC lies on the circumcircle of triangle AEF. Find the ratio BC/AB.

Ans.
$$\frac{4}{3}$$

Sol.
 $\angle AEF = \angle ABC = 90^{\circ} \langle EF || BC \rangle$ and $EF = \frac{BC}{2}$
So AF is diameter of the circumcircle of $\triangle AEF$
 $\Rightarrow \angle AIF = \angle AEF = 90^{\circ}$
 $\angle CIF = \angle AIC = -\angle AIF$
 $= 135^{\circ} - 90^{\circ} = 45^{\circ}$ ($\angle AIC = 135$ as I is the incentre of $\triangle ABC$)
Now, $AF = FC = \frac{1}{2}AC$ (F is the mid point of AC)
Let $\angle FCI = \angle BCI = 0$
So, $\angle IAC = 180 - (\angle AIC + \angle ICA)$
 $= 1380 - (135 + 0)$
 $= 45 - 0$
Apply sin rule is $\triangle CIF$
 $\frac{\sin \theta}{IF} = \frac{\sin 45^{\circ}}{CF} \Rightarrow IF = CF \sin \theta \sqrt{2}$..(1)
In $\triangle AIF$
 $\frac{\sin (45 - \theta)}{IF} = \frac{\sin 90^{\circ}}{AF} \Rightarrow IF = \sin(45 - \theta) AF$..(2)
From Equation (1) and (2)
 $\sqrt{2}$ CF sin $\theta = \sin(45 - \theta) AF$

$$\sqrt{2} = \frac{\sin(45 - \theta)}{\sin \theta}$$

$$\sqrt{2} = \frac{\cos \theta - \sin \theta}{\sqrt{2} \sin \theta} \Rightarrow \tan \theta = \frac{1}{3}$$
Now, $\tan 2\theta = \frac{2\tan \theta}{1 - \tan^2 \theta} = \frac{2 \times \frac{1}{3}}{1 - \frac{1}{9}} = \frac{2}{3} \times \frac{9}{8} = \frac{3}{4}$
In $\triangle ABC$ $\tan \angle ABC = \tan 2\theta = \frac{3}{4} = \frac{AB}{BC} \Rightarrow \frac{BC}{AB} = \frac{4}{3}$

6. Find all real numbers a such that 3 < a < 4 and $a(a - 3\{a\})$ is an integer (Here $\{a\}$ denotes the fractional part of a. For example $\{1.5\} = 0.5$; $\{-3.4\} = 0.6$).

