NATIONAL BOARD FOR HIGHER MATHEMATICS

 AND HOMI BHABHA CENTRE FOR SCIENCE EDUCATION TATA INSTITUTE OF FUNDAMENTAL RESEARCH
Pre-REGIONAL MATHEMATICAL OLYMPIAD, 2017

TEST PAPER WITH SOLUTION \& ANSWER KEY

Date: 20th August, 2017 | Duration: 3 Hours

After a wait of 15 LONG YEARS, Rajasthan finally gets its BRONZE MEDAL in IMO 2017.

FEW OF HIS OTHER > RMO Qualified in 2015
ACHIEVEMENT ARE
> RMO Qualified in 2015
> NTSE Scholar in 2016
> INJSO Qualified in 2016
> INAO Qualified in 2016
> KVPY Scholar in 2017 (Class XI)
> NSEP, NSEA Qualified in 2017

To Know more: sms RESO at $\mathbf{5 6 6 7 1}$ | E-mail: contact@resonance.ac.in | Website: www.resonance.ac.in

- There are 30 questions in this question paper. Each question carries 5 marks.
- Answer all questions.
- Time allotted: 2.5 hours.

1. How many positive integers less than 1000 have the property that the sum of the digits of each such number is divisible by 7 and the number itself is divisible by 3 ?
Ans. 28
Sol. coefficient of $x^{21}:\left(x^{0}+x^{1}+x^{2}+\right.$ $\left.+x^{9}\right)^{3}$
$: \frac{\left(1-x^{10}\right)^{3}}{(1-x)^{3}}$
$\left(1-3 x^{10}+3 x^{20}+\ldots ..\right)(1-x)^{-3}$
: ${ }^{3+21-1} \mathrm{C}_{21}-3 .{ }^{3+11-1} \mathrm{C}_{11}+3.3$
$={ }^{23} \mathrm{C}_{21}-3 .{ }^{13} \mathrm{C}_{11}+9=\frac{23 \times 22}{2}-\frac{3 \times 13 \times 12}{2}+9$
$=23 \times 11-39 \times 6+9$
$=253-234+9=28$ Ans.
2. Suppose a, b are positive real numbers such that $a \sqrt{a}+b \sqrt{b}=183, a \sqrt{b}+b \sqrt{a}=182$.

Find $\frac{9}{5}(a+b)$.
Ans. 73
Sol. $a \sqrt{a}+b \sqrt{b}=183$ and $a \sqrt{b}+b \sqrt{a}=182$ we have to find $\frac{9}{5}(a+b)$
Let $a=A^{2}, b=B^{2}$
$A^{3}+B^{3}=183$
$A^{2} B+B^{2} A=182$.
(1) $+(2)$
$A^{3}+B^{3}+3 A B(A+B)=183+3 \times 182$
$(A+B)^{3}=183+546$
$(A+B)^{3}=729$
$\Rightarrow A+B=9$
from $(2) \rightarrow A B(A+B)=182$
$A B=\frac{182}{9}$
$a+b=A^{2}+B^{2}=(A+B)^{2}-2 A B$
$=81-\frac{364}{9}=\frac{365}{9}$
$\frac{9}{5} \times \frac{365}{9}=73$

Educating for better tomorrow
3. A contractor has two teams of workers: team A and team B. Team A can complete a job in 12 days and team B can do the same job in 36 days. Team A starts working on the job and team B joins team A after four days. The team A withdraws after two more days. For how many more days should team B work to complete the job ?
Ans. 16
Sol. Let total worker in team A be x
Let total worker in team B be y
Given $12 \mathrm{x}=36 \mathrm{y}$
$x=3 y$
Per worker work done per day be W.
total work $36 \times \mathrm{W} \times \mathrm{y}$
$36 \mathrm{Wy}=6 \times \mathrm{Wx}+\mathrm{MWy}$
$\mathrm{M}=2+$ Number of more days.
$36 y=18 y+M y$
$M=18 y+M y$
$M=18$
Hence 16 more days
4. Let a, b be integers such that all the roots of the equation $\left(x^{2}+a x+20\right)\left(x^{2}+17 x+b\right)=0$ are negative integers. What is the smallest possible value of $a+b$?
Ans. 25
Sol. $\quad\left(x^{2}+a x+20\right)\left(x^{2}+17 x+b\right)=0$

so $\mathrm{a}>0$ and $\mathrm{b}>0$ since sum of roots <0 and product >0
(since $20=(1 \times 20) \times(2 \times 10)$ or (4×5)
$\min \mathrm{a}=9$
$-17=\alpha+\beta \Rightarrow(\alpha \beta) \equiv(-1,-16),(-2,-15),(-8,-9)$
$\min b=16$
$(a+b)_{\text {min }}=a_{\text {min }}+b_{\text {min }}=9+16=25$
5. Let u, v, w be real numbers in geometric progression such that $u>v>w$. Suppose $u^{40}=v^{n}=w^{60}$. Find the value of n.
Ans. 48
Sol. $u=a$
$v=a r$
$w=a r^{2}$
$a^{40}=(a r)^{n}=\left(a r^{2}\right)^{60}$
$a^{20}=r^{-120} \Rightarrow a=r^{-6}$
$r^{-240}=r^{-5 n} \quad \Rightarrow \quad 5 n=240$
$n=\frac{240}{5}=48$

Corporate Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005
6. Let the sum $\sum_{n=1}^{9} \frac{1}{n(n+1)(n+2)}$ written in its lowest terms be $\frac{p}{q}$. Find the value of $q-p$.

Ans. 83
Sol. $\quad \sum_{n=1}^{9} \frac{1}{2} \frac{n+2-n}{n(n+1)(n+2)}$
$=\frac{1}{2} \sum_{n=1}^{9}\left(\frac{1}{n(n+1)}-\frac{1}{(n+1)(n+2)}\right)$
$=\frac{1}{2}\left(\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+\ldots \ldots \ldots+\left(\frac{1}{9 \times 10}-\frac{1}{10 \times 11}\right)\right)$
$=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{110}\right)$
$=\frac{1}{2}\left(\frac{55-1}{110}\right) \Rightarrow \frac{27}{110} \Rightarrow q-p=110-27=83$
7. Find the number of positive integers n such that $\sqrt{n}+\sqrt{n+1}<11$.

Ans. 29
Sol. $\sqrt{\mathrm{N}}+\sqrt{\mathrm{N}+1}<11$
$N=1,2,3,4,5,6,7,8 \ldots \ldots . .16 \ldots . . .25$
$\sqrt{\mathrm{N}+1}+\sqrt{\mathrm{N}}=11$
$\frac{1}{\sqrt{\mathrm{~N}+1}-\sqrt{\mathrm{N}}}=11$
$\sqrt{\mathrm{N}+1}-\sqrt{\mathrm{N}}=\frac{1}{11}$
$2 \sqrt{\mathrm{~N}+1}=\frac{122}{11} \Rightarrow \sqrt{\mathrm{~N}+1}=\frac{61}{11} \Rightarrow \mathrm{~N}+1=\frac{3721}{121}$
$N=\frac{3600}{121}=29.75$
So 29 values
8. A pen costs ₹ 11 and a notebook costs ₹ 13 . Find the number of ways in which a person can spend exactly ₹ 1000 to buy pens and notebooks.
Ans. 7
Sol. Cost of a pen is ₹ 11
Cost of a notebook is ₹ 13
$11 x+13 y=1000$
$y=\frac{1000-11 x}{13} \in I$
$\frac{12-11 x}{13} \in I \Rightarrow \frac{(13-1)-(13 x-2 x)}{13} \in I$
$\frac{2 x-1}{13} \in I \Rightarrow \frac{12 x-6}{13} \in I$
$\frac{13 x-(x+6)}{13} \in I \Rightarrow \frac{x+6}{13} \in I$
$x=13 \lambda-6 \quad(1 \leq x \leq 90)$
$x \in\{7,20, \ldots \ldots ., 85\}\{\lambda=\{1,2, \ldots ., 3\}\}$
9. There are five cities A, B, C, D, E on a certain island. Each city is connected to every other city by road. In how many ways can a person starting from city A come back to A after visiting some cities without visiting a city more than once and without taking the same road more than once ? (The order in which he visits the cities also matters. e.g., the routes $A \rightarrow B \rightarrow C \rightarrow A$ and $\mathrm{A} \rightarrow \mathrm{C} \rightarrow \mathrm{B} \rightarrow \mathrm{A}$ are different.)
Ans. 60

Sol.


```
    E
ways = }\mp@subsup{}{}{4}\mp@subsup{\textrm{C}}{2}{}2!+\mp@subsup{}{}{4}\mp@subsup{\textrm{C}}{3}{}3!+\mp@subsup{}{}{4}\mp@subsup{\textrm{C}}{4}{}4
= 12 + 24 + 24 = 12+48=60
```

10. There are eight rooms on the first floor of a hotel, with four rooms on each side of the corridor, symmetrically situated (that is each room is exactly opposite to one other room). Four guests have to be accommodated in four of the eight rooms (that is, one in each) such that no two guests are in adjacent rooms or in opposite rooms. In how many ways can the guests be accommodated?
Ans. 48
Sol.

11. Let $f(x)=\sin \frac{x}{3}+\cos \frac{3 x}{10}$ for all real x. Find the least natural number n such that $f(n \pi+x)=f(x)$ for all real x.
Ans. 60
Sol. $f(x)=\sin \frac{x}{3}+\cos \frac{3 x}{10}$
period of $\sin \frac{x}{3}$ is $\frac{6 \pi}{1}$ and period of $\cos \frac{3 x}{10}$ is $\frac{2 \pi}{3 / 10}=\frac{20 \pi}{3}$
LCM is $\frac{60 \pi}{1} \Rightarrow n=60$
12. In a class, the total numbers of boys and girls are in the ratio $4: 3$. On one day it was found that 8 boys and 14 girls were absent from the class and that the number of boys was the square of the number of girls. What is the total number of students in the class?
Ans. 42
Sol. Ratio is $4: 3$ therefore
Boys are $4 x$
Girls are $3 x$
given $(4 x-8)=(3 x-14)^{2}$
$9 x^{2}+196-84 x=4 x-8$
$9 x^{2}-88 x+204=0$
$x=\frac{88 \pm \sqrt{88^{2}-4 \times 9 \times 204}}{18}$
$=\frac{2\left(22 \pm \sqrt{22^{2}-9 \times 51}\right)}{9}$
$=\frac{2(22 \pm 5)}{9}=2 \times \frac{27}{9}$ or $2 \times \frac{17}{9}$
$x=6$ or $\frac{34}{9}$
$7 x=42$ or non integer $\Rightarrow 42$ students
Corporate Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005

Corporate Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jha
Website : www.resonance. ac.in \| E-mail : contact@resonance.ac.in

13. In a rectangle $A B C D, E$ is the midpoint of $A B: F$ is point on $A C$ such that $B F$ is perpendicular to $A C$ and $F E$ perpendicular to $B D$. Suppose $B C=8 \sqrt{3}$. Find $A B$.
Ans. 24
Sol. $\sin \theta=\frac{8 \sqrt{3}}{2 x}=\frac{4 \sqrt{3}}{x}$

$\mathrm{FA}=2 \mathrm{x} \cos \theta$
$F B=2 x \sin \theta$
$M B=F B x \sin 2 \theta=2 x \sin \theta \sin 2 \theta$
$M E^{2}+M B^{2}=B E^{2}=x^{2}$
$x^{2} \sin ^{2} \theta+4 x^{2} \sin ^{2} \theta \sin ^{2} 2 \theta=x^{2}$
$\sin ^{2} \theta+4 \sin ^{2} \theta \sin ^{2} 2 \theta=1$
$4 \sin ^{2} \theta \sin ^{2} 2 \theta=\cos ^{2} \theta$
$16 \sin ^{4} \theta=1$
$\sin ^{2} \theta=\frac{1}{4} \quad \Rightarrow \quad \sin \theta=\frac{1}{2}$
$\frac{4 \sqrt{3}}{x}=\frac{1}{\sqrt{3}} \Rightarrow x=12 \Rightarrow 2 x=A B=24$ Ans.
14. Suppose x is a positive real number such that $\{x\} .[x]$ and x are in the geometric progression. Find the least positive integer n such that $x^{n}>100$. (Here $[x]$ denotes the integer part of x and $\{x\}=x-[x])$
Ans. 10
Sol. $[x]^{2}=x\{x\}$
$\{x\}=a$
$[x]=a r$
$\mathrm{x}=\mathrm{ar}^{2}$
$a+a r=a r^{2}$
$r^{2}-r-1=0$
$r=\frac{1 \pm \sqrt{5}}{2} \Rightarrow r=\frac{1+\sqrt{5}}{2}$
ar $=\mathrm{I}$
$a=\frac{2 I}{(1+\sqrt{5})}$
$a=\frac{\mathrm{I}(\sqrt{5}-1)}{2}$
$0<a<1$
$0<\frac{\mathrm{I}(\sqrt{5}-1)}{2}<1$
$0<\mathrm{I}<\frac{2}{\sqrt{5}-1}$
$0<\mathrm{I}<\frac{\sqrt{5}+1}{2}$
$\mathrm{I}=1$
Corporate Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
$a r=1 \Rightarrow a=\frac{2}{1+\sqrt{5}}=\frac{\sqrt{5}-1}{2}$
$x=a r^{2}=r=\frac{\sqrt{5}+1}{2}$
$\left(\frac{\sqrt{5}+1}{2}\right)^{N}>100 \Rightarrow N \log _{10}\left(\frac{\sqrt{5}+1}{2}\right)>2$
$\mathrm{N}>9.5 \Rightarrow \mathrm{~N}_{\text {min }}=10$
15. Integers $1,2,3 \ldots \ldots . n$ where $n>2$, are written on a board. Two numbers m, k such that $1<\mathrm{m}<\mathrm{n} .1<\mathrm{k}<\mathrm{n}$ are removed and the average of the remaining numbers is found to be 17 . What is the maximum sum of the two removed numbers ?
Ans. 51

Sol.
$\frac{\frac{n(n+1)}{2}-(2 n-1)}{n-2}<17<\frac{\frac{n(n+1)}{2}-3}{n-2}$
$\frac{n^{2}+n-4 n+2}{2(n-2)}<17<\frac{n^{2}+n-6}{2(n-2)}$
$\frac{n^{2}+3 n+2}{2(n-2)}<17<\frac{(n+3)(n-2)}{2(n-2)}$
$\frac{\mathrm{n}-1}{2}<17<\frac{\mathrm{n}+3}{2}$
$\mathrm{n}<35$ and $\mathrm{n}>31$
$n=32,33,34$
case-1, $\mathrm{n}=32$
$\frac{\frac{n(n+1)}{2}-p}{(n-2)}=17 \Rightarrow \frac{n(n+1)}{2}-17(n-2)=p$
$p=18$
case-2, $n=33 \Rightarrow p=34$
case-3, $n=34 \Rightarrow p=51$
Maximum sum $=51$
16. Five distinct 2-digit numbers are in a geometric progression. Find the middle term.

Ans. 36
Sol. Let the numbers be a ar $\mathrm{ar}^{2} a r^{3} a r^{4}$
since all are 2 digit number $r=\frac{2}{3}$ or $\frac{3}{2}$ (as fourth power of integers greater than 3 are 3 digit numbers)
Hence the five numbers are (16, $24,36,54,81$)
Hence middle term is 36 .
17. Suppose the altitudes of a triangle are 10,12 and 15 . What is its semi-perimeter ?

Ans. Bonus

Sol. $\quad h_{a}: h_{b}: h_{c}=10: 12: 15$
a, b, c= $\frac{1}{10}: \frac{1}{12}: \frac{1}{15}$
$\mathrm{a}: \mathrm{b}: \mathrm{c}=6: 5: 4$
$(a, b, c)=(6 k, 5 k, 4 k)$
$2 \mathrm{~s}=15 \mathrm{k}$
$\Delta=\sqrt{s(s-a)(s-b)(s-c)}$
$\Delta=\sqrt{\frac{15 \mathrm{k}}{2}\left(\frac{15 \mathrm{k}}{2}-6 \mathrm{k}\right)\left(\frac{15 \mathrm{k}}{2}-5 \mathrm{k}\right)\left(\frac{15 \mathrm{k}}{2}-4 \mathrm{k}\right)}$
$\Delta=\sqrt{\frac{15 \mathrm{k}}{2} \cdot \frac{3 \mathrm{k}}{2} \cdot \frac{5 \mathrm{k}}{2} \cdot \frac{7 \mathrm{k}}{2}}$
$\Delta=\frac{1}{4} \sqrt{15^{2} .7 \mathrm{k}^{2}}=\frac{15}{4} \sqrt{7 \mathrm{k}^{2}}$
$\mathrm{h}_{\mathrm{a}}=10=\frac{2 \times \frac{15}{4} \sqrt{7} \mathrm{k}^{2}}{6 \mathrm{k}}$
$60 \mathrm{k}=\frac{15}{2} \sqrt{7} \mathrm{k}^{2}$
$8=\sqrt{7} k \Rightarrow k=\frac{8}{\sqrt{7}}$
$s=\frac{15}{2} \times \frac{8}{\sqrt{7}}=\frac{60}{\sqrt{7}}$
18. If the real numbers x, y, z are such that $x^{2}+4 y^{2}+16 z^{2}=48$ and $x y+4 y z+2 z x=24$. what is the value of $x^{2}+y^{2}+z^{2}$?
Ans. 21
Sol. $\quad x^{2}+4 y^{2}+16 z^{2}=48$

$$
(x)^{2}+(2 y)^{2}+(4 z)^{2}=48
$$

$2 x y+8 y z+4 z x=48$
now we can say that
$(x)^{2}+(2 y)^{2}+(4 z)^{2}-(2 x y)-(8 y z)-(4 z x)=0$
$\left.\left[(x-2 y)^{2}+(2 y-4 z)^{2}+(x-4 y)^{2}\right)\right]=0$
$x=2 y=4 z \Rightarrow \frac{x}{4}=\frac{y}{2}=z$
$(x, y, z)=(4 \lambda, 2 \lambda, \lambda)$
$x^{2}+4 y^{2}+16 z^{2}=48$
$16 \lambda^{2}+16 \lambda^{2}+16 \lambda^{2}=48$
so $\lambda^{2}=1$
$x^{2}+y^{2}+z^{2}=21 \lambda^{2}=21$
19. Suppose $1,2,3$ are the roots of the equation $x^{4}+a x^{2}+b x=c$. Find the value of c.

Ans. 36
Sol. $1,2,3$ are roots of $x^{4}+a x^{2}+b x-c=0$
since sum of roots is zero and fourth root is -6
Hence c $=36$
20. What is the number of triples (a, b, c) of positive integers such that (i) $a<b<c<10$ and (ii) a, b, c, 10 form the sides of a quadrilateral?
Ans. 73
Sol. $a+b+c>10$
$\therefore(a, b, c)$ can be

a	b	c
1	2	8,9

$1 \quad 3 \quad 7,8,9$
$1 \quad 4 \quad 6,7,8,9$
$1 \quad 5 \quad 6,7,8,9$
$1 \quad 7 \quad 8,9$
189
$3 \quad 6,7,8,9$
$24 \quad 5,6,7,8,9$
$25 \quad 6,7,8,9$
7,8,9
8,9
9
5,6,7,8,9
6,7,8,9
7,8,9
8,9
9
6,7,8,9
7,8,9
8,9
9

5	6	$7,8,9$
5	7	8,9

$5 \quad 8 \quad 9$
$6 \quad 7 \quad 8,9$
$\begin{array}{ll}6 & 8 \\ 7 & 9\end{array}$
$7 \quad 8 \quad 9$
Total 73 cases
21. Find the number of ordered triples (a, b, c) of positive integers such that $a b c=108$.

Ans. 60
Sol. $\quad a b c=3^{3} .2^{2}$
$a=3^{\alpha_{1}} .2^{\beta_{1}}, b=3^{\alpha_{2}} .2^{\beta_{2}}, c=3^{\alpha_{3}} .2^{\beta_{3}}$
$\alpha_{1}+\alpha_{2}+\alpha_{3}=3$ and $\beta_{1}+\beta_{2}+\beta_{3}=3$
${ }^{5} \mathrm{C}_{2}$ and ${ }^{4} \mathrm{C}_{2}$
Total $={ }^{4} \mathrm{C}_{2} \times{ }^{5} \mathrm{C}_{2}=10 \times 6=60$
22. Suppose in the plane 10 pair wise nonparallel lines intersect one another. What is the maximum possible number of polygons (with finite areas) that can be formed?
Ans. 46
Sol. Number of non-overlapping polygons $=56-20=46$
1 line divide plane into 2 regions
2 lines divide plane into 4 regions
3 lines divide plane into 7 regions
4 lines divide plane into 11 regions
5 lines divide plane into 16 regions
6 lines divide plane into 22 regions
7 lines divide plane into 29 regions
8 lines divide plane into 37 regions
9 lines divide plane into 46 regions
Corporate Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in

10 lines divide plane into 56 regions
Now open regions for 3 lines are 6

Similarly for 10 lines are 20
Note : If we consider overlapping polygons then maximum possible number of polygons $={ }^{10} \mathrm{C}_{3}+{ }^{10} \mathrm{C}_{4}+\ldots .+{ }^{10} \mathrm{C}_{10}=2^{10}-1-10-45=968$
23. Suppose an integer r, a natural number n and a prime number p satisfy the equation $7 x^{2}-44 x+12=p^{n}$. Find the largest value of p.
Ans. 47
Sol. $\quad 7 x^{2}-44 x+12=p^{n}$
$7 x^{2}-42 x-2 x+12=p^{n}$
$(7 x-2)(x-6)=p^{n}$
$7 x-2=p^{\alpha}$ and $x-6=p^{\beta}$
$(7 x-2)-7(x-6)=p^{\alpha}-7 p^{\beta}$
$40=p^{\alpha}-7 p^{\beta}$
If $\alpha, \beta \in N, p$ is divisors of $40 \Rightarrow p=2$ or 5
If $p=2,40=2^{\alpha}-7.2^{\beta}$ $\Rightarrow 2^{3} .5=2^{\alpha}-7.2^{\beta}$
$\Rightarrow \beta=3$ and $2^{\alpha}=40+56 \quad \Rightarrow \alpha \notin Z$ hence not possible
If $p=5$ then $40=5^{\alpha}-7.5^{\beta} \quad \Rightarrow 2^{3} .5=5^{\alpha}-7.5^{\beta}$
$\Rightarrow \beta=1$ and $5^{\alpha}=40+35 \quad \Rightarrow \alpha \notin Z$ hence not possible
so $\beta=0 \Rightarrow p^{\alpha}=47 \quad \Rightarrow p=47$ and $\alpha=1$
24. Let P be an interior point of a triangle $A B C$ whose side lengths are 26, 65, 78. The line through P parallel to $B C$ meets $A B$ in K and $A C$ in L. The line through P parallel to $C A$ meets $B C$ in M and $B A$ in N. The line through P parallel to $A B$ meets $C A$ in S and $C B$ in T. If $K L, M N, S T$ are of equal lengths, find this common length.

Ans. Bonus

Sol.

Let $\mathrm{MN}=\mathrm{ST}=\mathrm{KL}=\ell$
$\frac{\ell}{26}=\sqrt{\frac{(b+c)^{2}}{(a+b+c)^{2}}}$
$\frac{\ell}{26}=\frac{b+c}{a+b+c}$
$\frac{\ell}{65}=\frac{a+c}{a+b+c}$
$\frac{\ell}{78}=\frac{\ell}{26}=2$
$\frac{\ell}{26}+\frac{\ell}{65}+\frac{\ell}{78}=2$
$\ell=30$ which is not possible as ℓ has to be less than 26
25. Let $A B C D$ be a rectangle and let E and F be points on $C D$ and $B C$ respectively such that area $(A D E)=16$, area $(C E F)=9$ and area $(A B F)=25$. What is the area of triangle AEF ?
Ans. 30
Sol.

$x a=32 \quad \Rightarrow \quad x a=32$
$b(y-a)=18 \quad \Rightarrow \quad b y-a b=18$
$y(x-b)=50 \quad \Rightarrow \quad x y-b y=50$
by $-\frac{32 b}{x}=18 \Rightarrow \quad b=\frac{18 b}{x y-32}$
$x y-\frac{18 x y}{x y-32}=50$
$x y=t$

$$
\frac{t^{2}-32 t-18 t}{t-32}=50
$$

$t^{2}-50 t=50 t-1600$
$t^{2}-100 t+1600=0$
$\mathrm{t}=80,20$
Now xy = 80
Area of $\triangle A E F=80-(16+9+25)=30$
26. Let $A B$ and $C D$ be two parallel chords in a circle with radius 5 such that the centre O lies between these chords. Suppose $A B=6, C D=8$. Suppose further that the area of the part of the circle lying between the chords $A B$ and $C D$ is $(m \pi+n) / k$, where m, n, k are positive integers with $\operatorname{gcd}(m, n, k)=1$. What is the value of $m+n+k$?
Ans. 75
Sol.

$A=2\left[\frac{1}{2} \times 25 \times \theta\right]+\frac{1}{2} \times 3 \times 8+\frac{1}{2} \times 4 \times 6$
$\theta=\left[\pi-\left(\theta_{1}+\theta_{2}\right)\right]=\left[\pi-\left(\tan ^{-1} \frac{4}{3}+\tan ^{-1} \frac{3}{4}\right)\right]$
$\theta=\frac{\pi}{2}$
$A=24+\frac{25 \pi}{2} \Rightarrow A=\frac{48+25 \pi}{2}$
$(m+n+k)=(48+2+25)=75$

Corporate Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005
27. Let Ω_{1} be a circle with centre O and let AB be diameter of Ω_{1}. Let P be a point on the segment OB different from O . Suppose another circle Ω_{2} with centre P lies in the interior of Ω_{1}. Tangents are drawn from A and B to the circle Ω_{2} intersecting Ω_{1} again at A_{1} and B_{1} respectively such that A_{1} and B_{1} are on the opposite sides of $A B$. Given that $A_{1} B=5, A B_{1}=15$ and $O P=10$, find the radius of Ω_{1}.
Ans. 20
Sol.

28. Let p, q be prime numbers such that $n^{3 p q}-n$ is a multiple of $3 p q$ for all positive integers n. Find the least possible value of $p+q$.
Ans. 28
29. For each positive integer n, consider the highest common factor h_{n} of the two numbers $n!+1$ and $(n+1)!$. For $n<100$, find the largest value of h_{n}.
Ans. 97
Sol. $n!+1$ is not divisible by $1,2, \ldots, n$
$(n+1)$! is divisible by $1,2, \ldots, n$
so $\mathrm{HCF} \geq \mathrm{n}+1$
also $(n+1)$! is not divisible by $n+2, n+3 \ldots$.
so HCF can be $\mathrm{n}+1$ only
Let us start by taking $\mathrm{n}=99$
$\Rightarrow 99$! +1 and 100 !
HCF $=100$ is not possible as 100 divides 99!
composite number will not be able to make it
so let us take prime i.e. $\mathrm{n}=97$
now $96!+1$ and 97 ! are both divisible by 97
so HCF $=97$
(by Wilson's theorem $(p-1)!+1$) is divisible by p)
30. Consider the areas of the four triangles obtained by drawing the diagonals $A C$ and $B D$ of a trapezium $A B C D$. The product of these areas, taken two at time, are computed. If among the six products so obtained, two product are 1296 and 576 , determine the square root of the maximum possible area of the trapezium to the nearest integer.
Ans. 13
Sol.

Case-1 $\quad a^{2} r^{2}=1296$

$$
\mathrm{ar}^{2}=576
$$

$$
r=\left(\frac{36}{24}\right)^{2}=\frac{9}{4}
$$

$a^{2}=24 \times 24 \times \frac{4}{9} \Rightarrow a=24 \times \frac{2}{3}$
$a=16$
Case-2 $a^{2} r=576$

$$
a^{2} r^{3}=1296
$$

$$
r^{2}=\frac{1296}{576}
$$

$r^{2}=\left(\frac{3}{2}\right)^{2} \Rightarrow r=\frac{3}{2}$
$a^{2}=576 \times \frac{2}{3}$
$\mathrm{a}^{2}=192 \times 2$
$a^{2}=384$
Case-3 $a^{2} r^{3}=1296$

$$
a^{2} r^{2}=576
$$

$$
r^{2}=\frac{1296}{576}
$$

$r=\frac{9}{4}$
$a^{2}=\frac{576 \times 16}{81}$
$a=\frac{32}{3}$
area $=a(r+1)^{2}$
Case-1 : area $=16\left(1+\frac{9}{4}\right)^{2}=169 \Rightarrow$ square root is 13
Case-2 : area $=\left(1+\frac{3}{2}\right)^{2}=122.47$
Case-3 : area $=\frac{32}{3}\left(1+\frac{9}{4}\right)^{2} \quad$ so maximum area is 13

Educating for better tomorrow

BEHIND EVERY CHAMPION, THERES A TEAM THAT PREPARED HIM TO BE ONE. RESONANGE IS PROUD TO BE THE TEAM BEHIND THESE CHAMPIONS.

Total No. of Selections in 2017

JEE MAIN 24519

Classrooms - 17800 | DLPD + ELPD - 6719

Jee advanced 6241
Classrooms - 4095| DLPD + ELPD - 2146

NEET 2975

Classrooms - 1724 | DLPD + ELPD - 1251

AIIMS
4 ?
Classrooms - 29 | DLPD + ELPD-113

RESONANCE EDUVENTURES LIMITED

Corporate Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Rajasthan)- 324005 Tel. No.: 0744-3012100, 3012222, 6635555 | CIN: U80302RJ2007PLCO24029

10 DAYS EXCLUSIVE WORKSHOP

FOR RMO 2017

For Students of Classes: $09^{\text {th }}, 10^{\text {th }} \& 11^{\text {th }}$

Classes will be taken by subject Experts

TOPICS TO BE GOVERED

$>$ Combinatorics
$>$ Geometry
> Inequalites
$>$ Number Theory
> Algebra
> Functional Equations

WORKSHOP HIGHLIEHTS

- Daily Assignments \& Discussions
- Comprehensive course content
- Simplistic approach
- Individual Attention
- Mock Tests

FEE: ₹2500/(including Boarding \& lodging

FOR REGISTRATION sms RMO to 56677 or visit: www.resonance.ac.in

