入Ressonanceo

SCHOLASTIC APTITUDE TEST (SAT) HINTS \& SOLUTIONS

Ques.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	4	4	1	4	2	1	2	1	1	1	2	1	2	1	3
Ques.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	4	1	4	4	1	2	3	3	2	3	2	2	3	3	4
Ques.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	3	3	3	4	2	3	2^{*}	2	1	4	3	1	$B o n u s$	1	2
Ques.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	3	2	1	1	3	4	3	4	4	4	3	4	1	3	4
Ques.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Ans.	1	1	4	2	3	1	2	4	1	3	2	3	1	3	3
Ques.	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
Ans.	2	2	4	4	1	3	3	2^{*}	1	2	1	4	3	3	4
Ques.	91	92	93	94	95	96	97	98	99	100					
Ans.	2	3	3	2	3	1	2	2	2	4					

15. (3)

Since mass of Oxygen and Helium is same which is $=100 \mathrm{~g}$,
Number of moles of oxygen $=\frac{100}{32}=\frac{25}{8}$ mole
Number of moles of $\mathrm{He}=\frac{100}{4}=25$ mole
So helium contains more number of molecule than oxygen therefore helium exerts more pressure than oxygen.
16. (4)

$$
\text { Number of moles }=\frac{\text { GivenMass }}{\text { Gram Atomic } / \text { Molecular Mass }}
$$

Average molecular velocity $\propto \frac{1}{\sqrt{\text { Molecular mass }}}$ (Since mass of all gases is same)
then increasing order of molecular mass $=\mathrm{H}_{2}(2 \mathrm{u})<\mathrm{He}(4 \mathrm{u})<\mathrm{NH}_{3}(17 \mathrm{u})<\mathrm{O}_{2}(32 \mathrm{u})$
\therefore increasing order of average molecular velocity $=\mathrm{O}_{2}<\mathrm{NH}_{3}<\mathrm{He}<\mathrm{H}_{2}$
${ }^{\circledR}$
Corporate Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005
PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower, Contact : -91+0744-6635569
Website :www.pccp.resonance.ac.in | E-mail : pccp@resonance.ac.in
Toll Free : | 18002585555 |CIN: U80302RJ2007PLC024029
17.
(1)

According to give data $4.4 \mathrm{~g} \mathrm{CO}_{2}$ will produce along with 5.6 g of CaO due to decomposition of 10 gram of calcium carbonate CaCO_{3}.

Mass of CaCO_{3} along with test tube $=30.08 \mathrm{~g}$
Mass of CaCO_{3} taking in Reaction $=10 \mathrm{~g}$
So mass of empty test tube $=30.08 \mathrm{~g}-10 \mathrm{~g}=20.08 \mathrm{~g}$.
18. (4)

Petroleum product are separated by fractional distillation method
comphor and rock salt are separated by sublimation method because camphor is sublimable substance with changes is into gaseous state on direct heating.
Cream from milk is separated by centrifugation method.
Coloured component in a dye are separated by chromatography method.
\therefore A - IV, B-III, C-II, D-I
19. (4)
$\mathbf{a P b}\left(\mathrm{NO}_{3}\right)_{2}+\mathbf{b A l C l} 3 \longrightarrow \mathbf{c A l}\left(\mathrm{NO}_{3}\right)_{3}+\mathbf{d P b C l} \mathbf{D}_{2}$
Balance chemical equation :

$$
\begin{aligned}
& 3 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}+\underset{\text { a }}{3}+2 \mathrm{AlCl}_{3} \longrightarrow 2 \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}+3 \mathrm{PbCl}_{2} \\
& \begin{array}{c}
\text { (lead nitrate) } \\
\text { (Aluminium }
\end{array} \\
& \text { (Aluminium } \text { (Lead chloride) } \\
& \text { nitrate) }
\end{aligned}
$$

$\therefore a=3, b=2, c=2, d=3$
20. (1)

Since decreasing order of the size of atom or nucleus :
$\mathrm{Au}>\mathrm{Ag}>\mathrm{Cu}>\mathrm{Al}$
\therefore The correct order of increasing number of alpha particles passing undeflected through the foils of Au.
Ag . Cu and Al of 1000 atoms thickness each in a simulated alpha particle scattering experiment of Rutherford would be
$\mathrm{Au}<\mathrm{Ag}<\mathrm{Cu}<\mathrm{Al}$
Reason: As the size of nucleus increases, the deflection of alpha particles also increases for same thickness of foil.
21. (2)

Rock salts (NaCl) - Neutral salt
Baking soda (NaHCO_{3}) - Basic salt
Washing soda $\left(\mathrm{Na}_{2} \mathrm{CO}_{3} .10 \mathrm{H}_{2} \mathrm{O}\right)$ - basic salt
Slaked lime $\left(\mathrm{Ca}(\mathrm{OH})_{2}\right)$ - Base
Increasing order of pH : Acid $<$ Salt < Base
\therefore correct order of increasing pH values of aqueous solution of :
Rock Salt < Baking soda < Washing soda < Slaked lime
22. (2)

Third member of alkyne series is Butyne $\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)$
$\mathrm{C}_{4} \mathrm{H}_{6}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ (Skeletal equation)
$2 \mathrm{C}_{4} \mathrm{H}_{6}+\mathbf{1 1 O}_{2} \rightarrow \mathbf{8 C O}+3 \mathrm{H}_{2} \mathrm{O}$ (Balance equation)
For complete combustion of two moles of butyne, 11 moles of oxygen gas are needed
\because Number of moles $=\frac{\text { GivenMass }}{\text { Gram Atomic } / \text { Molecular Mass }}$
\therefore mass of oxygen gas needed $=$ number of moles \times gram molecular mass of O_{2}

$$
=11 \times 32=352 \mathrm{~g}
$$

23. (3)

In metallurgical process metal is obtained from their ore on the basis of activity series of metal.
Metal present in the bottom of the activity series are least reactive therefore they are found in the native state.

The metal present in the lower regions of the activity series are less reactive therefore they are reduced by heating alone.

Metal present in the middle of the activity series are moderately reactive therefore they are reduced by using carbon or some other reducing agents.

Metals present in the top of the activity series are highly reactive therefore they cannot be reduced by using carbon or some other reducing agents or by heating. Such metals are reduced by using electrolysis.

Therefore, A - III, B-I, C-II, D-IV
24. (2)

Chemical properties of an elements is predicted by
-Position of element in the periodic table

- Atomic number of element
-Number of valance electrons in an atom
-Number of electrons in the outer most shell
Therefore correct option is (2)

25. (3)

Element	Atomic number	Symbol of element
A	6	C
B	7	N
C	14	Si
D	15	P

Nitrogen (Element B) will gain electron more easily than Silicon (Element C)
Silicon (Element C) has largest atomic size among them.
The electron negativity of Nitrogen (Element B) is highest among them.
\therefore (Option 3 is correct)
26. (2)

(A) (Substitution reaction)

Substitution, Substitution, dehydration, addition reaction
27. (2)

(A)
(B)
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{OH} \xrightarrow{\text { conc. } \mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{CH}_{3} \mathrm{COOCH}_{3}+\mathrm{H}_{2} \mathrm{O}$
(C)
$\mathrm{CH}_{3} \mathrm{COOCH}_{3}+\mathrm{NaOH} \longrightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{CH}_{3} \mathrm{OH}$
(E) (D)

Product (D) methanol is poisonous in nature which effect optic nerve and causes blindness, its intake in small amount can also lead to death.
$\therefore A=$ Ethanol, $B=$ Ethanoic acid, $C=$ Methyl Ethanoate, $D=$ Methanol, $\mathrm{E}=$ Sodium acetate.
$28 . \quad$ Ans.
Given
$\ell_{A}=\ell_{B}$
$\mathrm{r}_{\mathrm{A}}=1 \mathrm{~cm}$
$r_{B}=3 \mathrm{~cm}$
Now from Ohm's Law $\mathrm{V}_{\mathrm{A}}=\mathrm{IR}_{\mathrm{A}}=\frac{\mathrm{I} \rho \ell_{\mathrm{A}}}{\pi\left(\mathrm{r}_{\mathrm{A}}\right)^{2}}$
and $V_{B}=\frac{\rho \ell_{B}}{\pi\left(r_{B}\right)^{2}}$
So $\frac{\mathrm{V}_{\mathrm{A}}}{\mathrm{V}_{\mathrm{B}}}=\frac{\mathrm{I} \rho \ell_{\mathrm{A}}}{\pi\left(\mathrm{r}_{\mathrm{A}}\right)^{2}} \times \frac{\pi\left(\mathrm{r}_{\mathrm{B}}\right)^{2}}{\mathrm{I} \rho \ell_{\mathrm{B}}}\left(\because \ell_{\mathrm{A}}=\ell_{\mathrm{B}}\right)$
$=\frac{\left(r_{B}\right)^{2}}{\left(r_{\mathrm{A}}\right)^{2}}$
$=\frac{9}{1}$
29. Ans. 3

For lens A
$\frac{1}{f}=\frac{1}{v}-\frac{1}{u}$
$\frac{1}{30}=\frac{1}{v}-\left(-\frac{1}{40}\right)$
$\frac{1}{30}=\frac{1}{v}+\frac{1}{40}$
$\frac{1}{v}=\frac{1}{30}-\frac{1}{40}$
$\frac{1}{v}=\frac{40-30}{1200}=\frac{10}{1200}$
$\mathrm{v}=120 \mathrm{~cm}$.
For lens B
$u=90 \mathrm{~cm}$
$\mathrm{f}=30 \mathrm{~cm}$
$\frac{1}{f}=\frac{1}{v}-\frac{1}{u}$
$\frac{1}{30}=\frac{1}{v}-\frac{1}{90}$
$\frac{1}{v}=\frac{1}{30}+\frac{1}{90}$
$=\frac{3+1}{90}$
$\mathrm{v}=22.5 \mathrm{~cm}$
Which is positive so that it is 22.5 cm from Lens B.
30. Ans. 4

From A to B
speed is u so time $t_{A B}=\frac{L}{4} \ldots$ (i)
From B to C
By conservation of momentum
$\mathrm{Mu}=\left(\mathrm{M}+\frac{\mathrm{M}}{2}\right) \mathrm{u}_{1} \Rightarrow \mathrm{u}_{1}=\frac{2}{3} \mathrm{u}$
So time from B to C is $t_{B C}=\frac{L}{\left(\frac{2}{3} u\right)}$
From C to D
By conservation of momentum
$\frac{3}{2} \mathrm{Mu}_{1}=2 \mathrm{Mu}_{2}$
$\frac{3}{2} \mathrm{M} \times \frac{2}{3 \mathrm{u}}=2 \mathrm{Mu}_{2}$
$\mathrm{u}_{2}=\mathrm{u} / 2$
Time C to D
$\mathrm{t}_{\mathrm{CD}}=\frac{\mathrm{L}}{\left(\frac{\mathrm{u}}{2}\right)}$
From D to E
By conservation of momentum
$2 \mathrm{Mu}_{2}=\frac{5 \mathrm{M}}{2} \mathrm{u}_{3}$
$2 M \frac{u}{2}=\frac{5 M}{2} u_{3} \quad \Rightarrow u_{3}=\frac{2}{5} u$
Time from D to E
$t_{D E}=\frac{L}{\left(\frac{2 u}{5}\right)}$
(iv)

From E to F
By conservation of momentum
$\frac{5 \mathrm{M}}{2} \mathrm{u}_{3}=3 \mathrm{Mu}_{4}$
$\frac{5 \mathrm{M}}{2} \times \frac{2 \mathrm{u}}{5}=3 \mathrm{Mu}_{4} \Rightarrow \mathrm{u}_{4}=\mathrm{u} / 3$
Time taken from E to F
$\mathrm{t}_{\mathrm{EF}}=\frac{\mathrm{L} / 2}{\mathrm{u}_{4}}=\frac{\mathrm{L}}{2(\mathrm{u} / 3)}$ PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower, Contact : 91+0744-6635569

Total time $t=t_{A B}+t_{B C}+t_{C D}+t_{D E}+t_{E F}$

$$
t=\frac{L}{u}+\frac{3 L}{2 u}+\frac{2 L}{u}+\frac{5 L}{2 u}+\frac{3 L}{2 u}=\frac{17 L}{2 u}
$$

Second Method

30.

By conservation of momentum
Final velocity $=\frac{M}{M^{\prime}} u$
Since M and u are const. so
Final velocity $\alpha \frac{1}{\mathrm{M}^{\prime}}$
That mean

So From speed $=\frac{\text { dist }}{\text { time }} \Rightarrow$ time $=\frac{\text { dist }}{\text { speed }}$

$$
t\left[\frac{L}{u}+\frac{3 L}{2 u}+\frac{2 L}{u}+\frac{5 L}{2 u}+\frac{3 L}{2 u}\right]=\frac{17 L}{2 u}
$$

31.

$v=u^{\prime}-g(T / 2)$
$u^{\prime}=\frac{g T}{2}$
$\because v^{2}=u^{2}+2 g H$
$\left(u^{\prime}\right)^{2}=u^{2}-2 g H$
$\frac{g^{2} T^{2}}{4}+2 g H=u^{2}$
$u=\sqrt{\frac{g^{2} T^{2}}{4}+2 g H}$

$u=\frac{\sqrt{g^{2} T^{2}+8 g H}}{2}$
32.

$\mu=\frac{\sin 45^{\circ}}{\sin 30^{\circ}}=\frac{2}{\sqrt{2}}=\sqrt{2}$ (Doesn't change means incident at 90° on another surface, so $\angle \mathrm{r}=30^{\circ}$)
33. Ans. 3
$B=A d g \rho$
I, A, g \& ρ are constant
So $B \propto d$
when it is dipped completely then B becomes constant
34. Let u is the initial velocity at height H.

By conservation of Mechanical energy between height \& ground
For $A: \frac{1}{2} m u^{2}+m g h=\frac{1}{2} m v_{A}{ }^{2} \quad \Rightarrow \quad V_{A}=\sqrt{u^{2}+2 g H}$
For $B: \frac{1}{2} m u^{2}+m g H=\frac{1}{2} m v_{B}{ }^{2} \quad \Rightarrow \quad V_{B}=\sqrt{u^{2}+2 g H}$
For $C: \frac{1}{2} m u^{2}+m g H=\frac{1}{2} m v_{C}{ }^{2} \quad \Rightarrow \quad V_{C}=\sqrt{u^{2}+2 g H}$

$$
\text { or } \mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{C}}
$$

35. $\mathrm{a}=\frac{36}{1+2+1+5}=4 \mathrm{~m} / \mathrm{s}^{2}$

For body 1

$F=m \times a$
$F=1 \times 4$
$\mathrm{F}=4 \mathrm{~N}$
36. Ans. 3

Slope of car A is constant and slope of car B will be same between origion to t_{0}
37. $40 \mathrm{~W}-200 \mathrm{~V}, 50 \mathrm{~W}-200 \mathrm{~V}, 100 \mathrm{~W}-200 \mathrm{~V}$

$$
\mathrm{R}_{40}=\frac{\mathrm{V}^{2}}{\mathrm{P}_{40}}=\frac{200 \times 200}{40}=1000 \Omega
$$

$$
\mathrm{R}_{50}=\frac{200 \times 200}{50}=800 \Omega
$$

$$
\mathrm{R}_{100}=\frac{200 \times 200}{100}=400 \Omega
$$

$$
I=\frac{600}{100+800+400}=\frac{600}{2200}=0.2727 \mathrm{~A}
$$

$$
I_{40}=\frac{P_{1}}{V}=\frac{40}{200}=0.2 \mathrm{~A}
$$

$$
I_{50}=\frac{P_{2}}{V}=\frac{50}{200}=\frac{5}{20}=0.25 \mathrm{~A}
$$

$$
I_{100}=\frac{P_{3}}{V}=\frac{100}{200}=.5 \mathrm{~A}
$$

0.27 amp current is flowing but current capacity of 40 W and 50 W is low. Hence first of all 40 W will gets fused.
38. Ans. 2

Speed of sound is more in solids
39. Ans. 1
$\frac{F}{\ell}=\frac{\mu_{0} I_{a} l_{b}}{2 \pi d}$
$F_{1}=F_{2}$ So, they will repel each other.
40. (i) When K_{1} is closed and K_{2} is open
than $R_{e q}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}=\frac{3 \times 12}{3+12}=\frac{12}{5}$

So $I_{1}=\frac{12}{\frac{12}{5}}=5 \mathrm{~A}$
(ii) When K_{2} is closed and K_{1} is open
than $R_{\text {eq }}=\frac{4 \times 12}{16}=3 \Omega$

So $I_{2}=\frac{12}{3}=4 \mathrm{~A}$

So $\frac{I_{1}}{I_{2}}=\frac{5}{4}$
41. $\frac{1}{7}=0 . \overline{142857}$
$\frac{1}{13}=0 . \overline{076923}$
$\frac{1}{21}=0 . \overline{047619}$
So values of $x=7,13,21$
Sum $=7+13+21=41$
42. $12^{n}+1$

By cydieety (12) ${ }^{\mathrm{n}}$ always gives
Unit digit 2, 4, 6, 8
So $12^{n}+1$ will given out digit $3,5,7,9$
So 1 cannot be unit digit of $12^{n}+1$
44. General Term $=\mathrm{n}(2 \mathrm{n})^{2}$
(For sum)
$=4 n \times n^{2}=4 n^{3}$
\therefore In 10 th group sum $=4 \times 10^{3}=4000$
$x^{3}-4 x+(8-k)$

$$
\begin{aligned}
x^{\prime}-2 x+k & \begin{array}{l}
\begin{array}{l}
x^{\prime}-0 x^{\prime}+10 x^{\prime}-25 x+10 \\
x^{\prime}-2 x^{\prime}+k x^{\prime}
\end{array} \\
-++-4 x^{\prime}+(16-k) x^{2}-25 x
\end{array} \\
\frac{-4 x^{\prime}+8 x^{\prime}-4 k x}{} & \begin{array}{l}
\left(8-k x^{\prime}+(4(-25) x+10\right. \\
-8-k k+(-10)+2 k) x+k(8-k)
\end{array}
\end{aligned}
$$

45.

$$
(4-25+16-2 k) x+10-k(8-k)
$$

$$
\begin{aligned}
& 2 k-9=1 \\
& 2 k=10 \\
& k=5 \\
& 10-k(8-k)=a \\
& 10-5(3)=a \\
& -15=a
\end{aligned}
$$

$$
\begin{aligned}
& 2^{2}+k-5=0 \\
& 2^{2}-6-8=0
\end{aligned}
$$

46.

$$
\frac{+\quad+}{(\mathrm{k}+6)+3=0}
$$

$$
\alpha=\frac{-3}{k+6}
$$

$$
2\left(\frac{-3}{k+6}\right)^{2}+k\left(\frac{-3}{k+6}\right)-5=0
$$

$$
\frac{18}{(k+6)^{2}}+\frac{-3}{k+6}-5=0
$$

$$
18-3 k(k+6)-5(k+6)^{2}=0
$$

$$
18-3 k^{2}-18 k-5 k^{2}-180-60 k=0
$$

$$
-8 k^{2}-78 k-162=0
$$

$$
8 k^{2}+78 k+162=0
$$

$$
4 k^{2}+39 x+81=0
$$

$$
4 k^{2}+27 k+12 k+81=0
$$

$$
k(4 k+27)+3(4 k+27)=0
$$

$$
(k+3)(4 k+27)=0
$$

$$
x=-3,-\frac{27}{4}
$$ PCCP Head Office: Plot No. A-51 [A], IPIA, Near Resonance CG Tower, Contact : 91+0744-6635569

47.

From the graph we conclude that $\cos x>\sin x$ when $0 \leq x<45^{\circ}$
$\therefore \cos x-\sin x>0$
48.

$\triangle \mathrm{ACE}$
$\tan 30^{\circ}=\frac{10}{\mathrm{AC}}$

$$
\frac{1}{\sqrt{3}}=\frac{10}{A C}
$$

$$
\sqrt{\ell^{2}+\mathrm{b}^{2}}=\mathrm{AC}=10 \sqrt{3}
$$

$$
\begin{equation*}
\ell^{2}+b^{2}=100 \times 3=300 \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& \ln \triangle D C E \\
& \tan 60^{\circ}=\frac{10}{D C} \\
& \sqrt{3}=\frac{10}{D C} \\
& D C=\frac{10}{\sqrt{3}}=\ell \\
& \ell^{2}=\frac{100}{3} \tag{2}
\end{align*}
$$

$b^{2}=300-\frac{100}{3}=\frac{800}{3}$
$\ell^{2} \mathrm{~b}^{2}=\frac{100}{3} \times \frac{800}{3}=\frac{80000}{9}$
$\ell b=\sqrt{\frac{80000}{9}}=\frac{200 \sqrt{2}}{3}$

49.

Radius of inner circle $=$ half of side square $=\frac{a}{2}$.

Area of inner circle $=\frac{\mathrm{a}^{2}}{4}$
Radius of outer circle $=$ half of diagonal of square $=\frac{\sqrt{2} a}{2}$
Area of Outer Circle $=\frac{2 \mathrm{a}^{2}}{4}$
ratio $\rightarrow \frac{\mathrm{a}^{2}}{4}: \frac{2 \mathrm{a}^{2}}{4}$
1 : 2

Volume of water in swimming pool $=$ Area of cross section \times Speed \times Time

$$
\begin{aligned}
& {\left[\frac{1}{2}(1+1.75) \times 36\right] \quad 10.5=\frac{22}{7} \times \frac{7}{100} \times \frac{7}{100} \times 5000 \times T} \\
& T=\frac{27}{4}=6 \frac{3}{4} \mathrm{Hr} .
\end{aligned}
$$

51. \quad Vertical angle $=60^{\circ}$

$$
\begin{aligned}
& \mathrm{h}=\frac{\sqrt{3}}{2} \ell \\
& \Rightarrow \quad \ell=\frac{2 \mathrm{~h}}{\sqrt{3}}
\end{aligned}
$$

$\angle O A D=30^{\circ}$
$\therefore \quad \ln \triangle \mathrm{OAD}$
$A D=\frac{\ell}{2}=\frac{h}{\sqrt{3}}$
$\therefore \frac{\mathrm{OD}}{\mathrm{AD}}=\tan 30^{\circ}$
$\Rightarrow \frac{\mathrm{OD}}{\mathrm{AD}}=\frac{1}{\sqrt{3}}$
$\Rightarrow O D=\frac{A D}{\sqrt{3}}=\frac{h}{\sqrt{3} \sqrt{3}}=\frac{h}{3}$
\therefore Volume of sphere $=\frac{4}{3} \pi r^{3}$
$=\frac{4}{3} \pi\left(\frac{\mathrm{~h}}{3}\right)^{3}=\frac{4 \pi \mathrm{~h}^{3}}{81} \quad$ Option (4) Ans.

52.
$\pi(2 r)^{2} h+\pi r^{2}(15-H)$
$=\pi r^{2} h+\pi(2 r)^{2}(24-h)$
$4 \mathrm{H}+15-\mathrm{H}=\mathrm{h}+4(24-\mathrm{h})$
$3 \mathrm{H}+15=\mathrm{h}+96-4 \mathrm{~h}$
$3 H+15=96-3 h$
$\mathrm{H}+5=32-\mathrm{h}$
$\mathrm{H}+\mathrm{h}=27$

53.
$\mathrm{B}_{1}=2 \sqrt{\ell^{2}-\mathrm{h}^{2}} \quad \mathrm{~B}_{2}=2 \sqrt{4 \ell^{2}-\mathrm{h}^{2}}$
$\mathrm{~B}_{2}^{2}-\mathrm{B}_{1}^{2}=4\left(4 \ell^{2}-\mathrm{h}^{2}\right)-4\left(\ell-\mathrm{h}^{2}\right)$
$=4\left[4 \ell^{2}-\mathrm{h}^{2}-\ell^{2}+\mathrm{h}^{2}\right]$
$=4\left[3 \ell^{2}\right]=12 \ell^{2}$
54.

In $\Delta \mathrm{C}_{1} \mathrm{C}_{2} \mathrm{R}$
$\cos \theta=\frac{2}{4}=\frac{1}{2}$
$\theta=60^{\circ}$

Similary

$$
\begin{aligned}
& \angle \mathrm{P}^{\prime} \mathrm{C}_{1} \mathrm{C}_{2}=60^{\circ} \\
& \text { So } \quad \angle \mathrm{RC}_{1} \mathrm{P}_{1}{ }_{1}=360-(60+60+90)=150 \\
& \therefore \quad \angle B A C=180-150=30 \\
& \\
& \quad \angle \mathrm{RAC}_{1}=15^{\circ}
\end{aligned}
$$

In \triangle RAC
$\tan 15^{\circ}=\frac{3}{\mathrm{AR}}$
$\frac{\sqrt{3}-1}{\sqrt{3}-1}=\frac{3}{\mathrm{AR}}$
$A R=\frac{\sqrt{3}+1}{\sqrt{3}-1} \times 3=\left(\frac{4+2 \sqrt{3}}{2}\right) \times 3=(2+\sqrt{3})=6+3 \sqrt{3}$
So, $\quad A B=A R+B R$

$$
=6+3 \sqrt{3}+3=9+3 \sqrt{3}
$$

55. In $\triangle \mathrm{ABC}$

$$
A B=A C
$$

$$
\begin{equation*}
\Rightarrow \quad y+2 x=180^{\circ} \tag{1}
\end{equation*}
$$

In \triangle QPB
$\Rightarrow \quad \angle \mathrm{QPB}=180-4 y$
$\Rightarrow \quad$ Since 'APC' is a
Straight line
$\Rightarrow \quad 180-4 y+x+y=180^{\circ}$
$\Rightarrow \quad x=3 y$
From (1) \& (2)

$$
\begin{align*}
& y+2(3 y)=180^{\circ} \tag{2}\\
& y=\frac{180^{\circ}}{7}=\frac{\pi}{7}
\end{align*}
$$

$$
\angle \mathrm{AQP}=180^{\circ}-2\left(\frac{180}{7}\right)=\frac{5}{7} \pi
$$

56.

We know that $\frac{1}{P Q}=\frac{1}{B Q}+\frac{1}{C Q}$
$=\frac{1}{4}+\frac{1}{3}=\frac{3+4}{12}=\frac{7}{12}$
$\therefore \mathrm{PQ}=\frac{12}{7}$
57. $\quad(x-1)^{2}+(y-2)^{2}=4$

It is possible only

Case I

$(x-1)^{2}=0$ and $(y-2)^{2}=4$
$\Rightarrow x=1$ and $y=0,4$
so the points are $(1,0),(1,4)$

Case II

$(x-1)^{2}=4$ and $(y-2)^{2}=0$
$\Rightarrow x=3,-1$ and $y=2$
so the points are $(3,2),(3,-1)$
So total four points are
58. Let the vertex be ($\mathrm{x}_{\mathrm{r}}, \mathrm{y}_{\mathrm{r}}$) $\mathrm{r}=1,2,3$, where both x_{r} and y_{r} are integers. Hence its area
$=\frac{1}{2} \Sigma x_{1}\left(y_{2}-y_{3}\right)=$ rational number
Also if a be its side then
$a^{2}=\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}=$ a positive integer.
But the area of an equilateral triangle $=\frac{\sqrt{3}}{4} a^{2}$
\therefore Area $=\left(\frac{\sqrt{3}}{4}\right) a^{2}$, which is irrational, since a^{2} is a positive integer.
Thus the two statements (1) and (2) for area are contradictory. Therefore if the vertices are integers, then that triangle cannot be an equilateral triangle.
59. Possible products are $1,4,9,16,2,8,18,32,3,12,27,48,4,16,36,64$

So required probability $=\frac{6}{16}=\frac{3}{8}$
60. $\frac{a+a+1+\ldots \ldots+a+10}{11}=m$
$11 a+55=11 m$
$a+5=m \quad a=m-5$
$\frac{a+a+1+\ldots \ldots+a+16}{17}=m^{\prime}$
$17 \mathrm{a}+\frac{16 \times 17}{2}=17 \mathrm{~m}^{\prime}$
$17 \mathrm{a}+8 \times 17=17 \mathrm{~m}^{\prime}$
$m-5+8=m^{\prime}$
$m^{\prime}=m+3$
$\%$ change $=\frac{m^{\prime}-m}{m} \times 100=\frac{m+3-m}{m} \times 100=\frac{300}{m} \%$

रेजोनेंस के विद्यार्थी ने जेईई-मेन (JEE-MAIN) में लगातार दूसरे वर्ष देश भर में उच्चतम अंक (350) प्राप्त किये।

AIR 6
 PAWAN GOYAL
 Reso Roll No.: 13401293
 Classroom student since class VIII
 350/360

Result at Resonance

Total Students Qualified for JEE (Advanced)

Classroom: 9425 | DLP+ELP: 3189

Total Students selected in JEE (Main)

Reson=T Dates

$27^{\text {th }}$ MAY \& $10^{\text {th }}$ JUN 2018
Test Timings: 9 AM to 12 Noon

ADMISSIONS OPEN FOR 2018-19

Classes: V to XII \& XII+
Target: JEE (Main+Advanced) | JEE (Main) | AlIMS/ NEET | Pre-foundation | Commerce \& CLAT

Resonance Eduventures Limited

Registered \& Corporate Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Rajasthan) - 324005 Tel. No.: 0744-6607777, 6635555 | CIN: U80302RJ2007PLC024029
To know more: sms RESO at 56677 | website: www.resonance.ac.in | e-mail: contact@resonance.ac.in ff facebook.com/ResonanceEdu twitter.com/ResonanceEdu www.youtube.com/resowatch E blog.resonance.ac.in

Toll Free 18002585555

