NATIONAL TALENT SEARCH EXAMINATION NTSE STAGE-II (2016)
 CLASS-X [SAT]

HINTS \& SOLUTIONS

ANSWER KEY

Ques.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans	3	2	1	3	4	4	2	3	3	1	4	2	2	4	2
Ques.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans	4	2	2	3	2	1	2	4	3	4	4	3	2	3	4
Ques.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans	1	3	3	1	2	1	4	3	3	1	1	4	1	4	4
Ques.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans	2	2	1	3	1	3	4	4	2	4	2	3	4	4	4
Ques.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Ans	Bonus	3	4	1	1	3	2	4	4	3	4	1	3	2	1
Ques.	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
Ans	2	3	3	3	4	4	4	1	3	2	3	4	2	4	2
Ques.	91	92	93	94	95	96	97	98	99	100					
Ans	4	3	1	1	2	3	3	2	2,3	3					

CHEMISTRY

15. Ans. (2)

Neutrons present in one molecule of water $=8$ $\left({ }_{8}^{16} \mathrm{O}\right)$
One mole of water contains $=8 \mathrm{~N}_{\mathrm{A}}$ neutrons
So in 5 moles of water $=5 \times 8 \times \mathrm{N}_{\mathrm{A}}$
$=5 \times 8 \times 6.023 \times 10^{23}$
$=2.409 \times 10^{25}$
16. Ans. (4)
$\mathrm{Na} \& \mathrm{Fe}$ both are more reactive than Cu but Fe is having more affinity to form sulphates so Fe is used to recover copper from copper sulphate solution.
$\mathrm{Fe}_{(\mathrm{s})}+\mathrm{CuSO}_{4(\mathrm{aq})} \square \square \mathrm{FeSO}_{4(\mathrm{aq)}}+\mathrm{Cu}_{(\mathrm{s})}$
17. Ans. (2)

In solution A path of light is visible and particles settle down at bottom, so it is suspension.
In solution \mathbf{B} \& \mathbf{D} light path is visible and particles do not settle at bottom so these are colloids.
In solution C light path is invisible and particles do not settle down at bottom, so it is a true solution.
18. Ans. (2)

Both (A) \& (R) are correct statement. But as Gold is most malleable, so it was used in α particle scattering experiment.
19. Ans. (3)

Magnesium gets corrode with the layer of oxide. In order to remove the layer of oxide, it is rubbed
$2 \mathrm{Mg}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{MgO}$
20. Ans. (2)
(i) $\mathrm{CaCO}_{3} \xrightarrow{\Delta} \mathrm{CaO}+\mathrm{CO}_{2}$
(ii) $2 \mathrm{Al}_{2} \mathrm{O}_{3} \xrightarrow{\text { electrolysis }} 4 \mathrm{Al}+3 \mathrm{O}_{2}$
(iii) $2 \mathrm{NaHCO}_{3} \xrightarrow{\Delta} \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
(iv) $2 \mathrm{HgO} \xrightarrow{\Delta} 2 \mathrm{Hg}+\mathrm{O}_{2}$

Eq.(i),(iii),(iv) are example of thermal decompostion but eq. (ii) is an example of electrolytic decompostion.
21. Ans. (1)

Oxide of X is amphoteric in nature so it can react with acids \& bases both. Only metals can form amphoteric oxides so X is electropositive in nature
22. Ans. (2)
$X \rightarrow 2,8,1 \Rightarrow \mathrm{Na}$
$\mathrm{Y} \rightarrow 2,8,7 \Rightarrow \mathrm{Cl}$
Compound $\Rightarrow \mathrm{NaCl} \Rightarrow$ It is good conductor of electricity in molten and fused state but not in solid state
23. Ans. (4)

Structure of $\mathrm{NH}_{4} \mathrm{Cl}$ is

$\mathrm{NH}_{4} \mathrm{Cl}$ contains, ionic, covalent bond \& coordinate bond.
24. Ans. (3)

Sulphur is a non metal so it does not have tendency to lose electrons so it can not be used as reducing agent.
25. Ans. (4)

Given no. of oxygen atoms $=9.033 \times 10^{23}$
(i) moles of oxygen atoms $=\frac{9.033 \times 10^{23}}{6.023 \times 10^{23}}$
$=1.499$ moles $\simeq 1.5 \mathrm{moles}$
(ii) mass of oxygen atoms
$=1.5$ moles $\times 16 \mathrm{gm}=24 \mathrm{grams}$
(iii) $2 \mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}$

2 moles of oxygen atoms requires
$=4 \mathrm{gm}$ of H_{2}
1.5 moles of oxygen atoms requires $=\frac{1.5 \times 4}{2}$
$=3$ moles of Hydrogen atom
26. Ans. (4)
$\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{O}_{2}, \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}, \mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{2} \longrightarrow$ Acids Contain (C-C) Single Bond ($\mathrm{C}_{n} \mathrm{H}_{2 n} \mathrm{O}_{2}$)
$\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{2} \longrightarrow$ This acid contains $(\mathrm{C}=\mathrm{C})$ double bond. $\left(\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n-2} \mathrm{O}_{2}\right)$
27. Ans. (3)

Foam of soap is a large bunch of bubbles which are made of very thin film of soap solution and some air. Bubbles allow some light to pass through them and scatter the rest. If no specific colour is reflected, we consider this state of colourlessness as white.

PHYSICS

28. Ans. (2)
$\left(4.8 \times 10^{18}+x\right) 1.6 \times 10^{-19}=1.12$
$\left(4.8 \times 10^{18}+x\right)=\frac{1.12}{1.6 \times 10^{-19}}$
$4.8 \times 10^{18}+x=7 \times 10^{18}$
$x=7 \times 10^{18}-4.8 \times 10^{18}$
$=2.2 \times 10^{18}$
29. Ans. (3)
30. Ans. (4)

$R_{\text {eff }}=\frac{30 \times 15}{3 \times 15}=\frac{30 \times 15}{45}=10 \Omega$
$i=3 A$
In branch CA current $=1 \mathrm{~A}$
In branch CB current $=2 \mathrm{~A}$
$\therefore \mathrm{V}_{\mathrm{C}}-\mathrm{V}_{\mathrm{A}}=10 \mathrm{~V}$
$\& V_{C}-V_{B}=20 \mathrm{~V}$
Subtracting (i) from (ii)
$V_{A}-V_{B}=10 \mathrm{~V}$
31. Ans. (1)
32. Ans. (3)
33. Ans. (3)

$r_{1}=r_{2} \therefore$ min deviation condition
$\mu=\frac{\sin \left(\frac{A\left(\delta_{m}\right)}{2}\right)}{\sin \frac{A}{2}}$ \qquad
$\mu=\frac{\sin \left(\frac{60+60}{2}\right)}{\sin \frac{60}{2}}=\frac{\sin 60}{\sin 30}=\sqrt{3}$
34. Ans. (1)
35. Ans. (2)

$i+r=90^{\circ}$
${ }_{d} \mu_{r}=\frac{\sin i}{\sin r}$
$\sqrt{3}=\frac{\mu_{\mathrm{d}}}{\mu_{\mathrm{r}}}=\frac{\sin \mathrm{i}}{\sin (90-i)}$
$\sqrt{3}=\tan i$
$\mathrm{i}=60^{\circ} \quad \therefore \mathrm{r}=30^{\circ}$
36. Ans. (1)
(i) $V=-300$

Case : u = $-\infty$
$\mathrm{f}=$?
$\frac{1}{f}=\frac{1}{v}-\frac{1}{u}$
$\frac{1}{f}=-\frac{1}{300}-0$
$\mathrm{f}=-300 \mathrm{~cm}$
Case: II
$\frac{1}{f}=\frac{1}{v}-\frac{1}{u}$
$-\frac{1}{300}=\frac{-1}{50}-\frac{1}{u}$
$\frac{1}{u}=\frac{-1}{50}+\frac{1}{300}$
$\frac{1}{u}=\left(\frac{-6+1}{300}\right)$
$\frac{1}{u}=-\frac{1}{60}$
$u=-60 \mathrm{~cm}$
37. Ans. (4)
38. Ans. (3)
$\square \infty$ $\rightarrow \square$

$V d_{\text {Solid }} g=\frac{V}{4} 2 d g+\frac{V}{2} d g$
$d_{\text {solid }}=d$

$\mathrm{Vd}_{\text {Solid }} \mathrm{g}=\mathrm{V}_{1} 2 \mathrm{dg}$
Ahdg $=A h_{1}$ 2dg
$\therefore \mathrm{h}_{1}=\frac{\mathrm{h}}{2}$
39. Ans. (3)
40. Ans. (1)
$w=K_{f}-K_{i}=F x$
since K_{f} and K_{i} are same in both case and stopping force is also so x will be same for both.

MATHEMATICS

41. When Divided by 13 leaves remainder 3 When Divided by 21 leaves remainder 3
$13-3=21-11=10=k$
$\operatorname{LCM}(13,21)-\mathrm{k}=546-10=536$
$536=19 \times 8+4 \therefore$ remainder $=4$
42. $0 . \overline{3} \overline{4}+0.3 \overline{4}$
$0.343434 \ldots+0.34444 \ldots$
0.6878787....
$0.6 \overline{8} \overline{7}$
43. Quadratic polynomial $p(-2)=k(x+1)^{2}$
$\mathrm{p}(-2)=\mathrm{k}(-2+1)^{2}=2$
$\mathrm{k}=2$
$p(x)=2(x+1)^{2}$
$p(2)=2(2+1)^{2}=2 \times 3 \times 3=18$
44. $x-y=2$
$k x+y=3$
by adding (1) and (2)
$k x+x=5$
$x(k+1)=5$
$x=\frac{5}{k+1}$
putting value of x in equation (1)
$\frac{5}{k+1}-y=2$
$\frac{5}{k+1}-2=y$
$\frac{5-2 k-2}{k+1}=y$
$y=\frac{3-2 k}{k+1}$
y should be positive as they intersect in 1st quadrant therfore
$y>0$
$\frac{3-2 k}{k+1}>0 \Rightarrow \frac{2 k-3}{k+1}<0$
$+\quad-\quad+$
$\therefore \mathrm{k}$ should lie between -1 and $3 / 2$
\therefore Ans 4
45. $x^{2}-6 x-2=0$
$\alpha^{2}-2=6 \alpha$
$\beta^{2}-2=6 \beta$
$\alpha+\beta=6 \alpha \beta=-2$
$\mathrm{d}_{\mathrm{n}}=\alpha^{\mathrm{n}}-\beta^{\mathrm{n}}$
$\frac{\mathrm{a}_{10}-2 \mathrm{a}_{8}}{2 \mathrm{a}_{9}}=\frac{\alpha^{10}-\beta^{10}-2\left(\alpha^{8}-\beta^{8}\right)}{2\left(\alpha^{9}-\beta^{9}\right)}$
$\frac{\alpha^{10}-\beta^{10}+\alpha \beta\left(\alpha^{8}-\beta^{8}\right)}{2\left(\alpha^{9}-\beta^{9}\right)}$
$\frac{\alpha^{10}+\alpha^{9} \beta-\left(\alpha \beta^{9}+\beta^{10}\right)}{2\left(\alpha^{9}-\beta^{9}\right)}$
$\frac{\alpha^{9}(\alpha+\beta)-\beta^{9}(\alpha+\beta)}{2\left(\alpha^{9}-\beta^{9}\right)}$
$\frac{(\alpha+\beta)\left(\alpha^{9}-\beta^{9}\right)}{2\left(\alpha^{9}-\beta^{9}\right)}$
$\frac{6}{2}=3$
46. $\quad S_{1}=\frac{n}{2}[2(1)+(n-1)(1)]$
$S_{2}=\frac{\mathrm{n}}{2}[2(2)+(\mathrm{n}-1)(3)]$
$S_{3}=\frac{n}{2}[2(3)+(n+1)(5)]$
$S_{r}=\frac{n}{2}[2(r)+(n-1)(2 r-1)]$
(+)
(+)
$S_{1}+S_{2}+\ldots . .+S_{r}=\frac{n}{2}$
$\left[(2) \frac{r(r+1)}{2}+(n-1) \frac{r}{2}[1+2 r-1]\right]$
$=\frac{n}{2}\left\lfloor r(r+1)+(n-1) r^{2}\right\rfloor$
$=\frac{n r}{2}[r+1+n r-r]$
$=\frac{n \mathrm{r}}{2}[\mathrm{nr}+1]$
47.

$\ln \triangle \mathrm{DBC}$
$\tan 60^{\circ}=\frac{x}{y}$
$x=\sqrt{3} y$
In \triangle ADC
$\tan 30^{\circ}=\frac{x}{20+y}$
$\frac{1}{\sqrt{3}}=\frac{\sqrt{3} y}{20+y}$
$y+20=3 y$
$2 \mathrm{y}=20$
$y=10$
48. $\operatorname{cosec} x-\sin x=a ; \sec x-\cos x=b$
$\operatorname{cosec} x-\frac{1}{\operatorname{cosec} x}=a ; \sec x-\frac{1}{\sec x}=b$
$\Rightarrow \frac{\operatorname{cosec}^{2} x-1}{\operatorname{cosec} x}=a ; \frac{\sec ^{2} x-1}{\sec x}=b$
$\Rightarrow \frac{\cot ^{2} x}{\operatorname{cosec} x}=a ; \frac{\tan ^{2} x}{\sec x}=b$
$\frac{\cos ^{2} x}{\sin x}=a ; \frac{\sin ^{2} x}{\cos x}=b$
$a^{2} b=\frac{\cos ^{4} x}{\sin ^{2} x} \cdot \frac{\sin ^{2} x}{\cos x}=\cos ^{3} x$
$\Rightarrow \cos x=\left(a^{2} b\right)^{1 / 2}$
$\cos ^{2} x=\left(a^{2} b\right)^{2 / 3}$
Similarly, $\sin ^{2} x=\left(a b^{2}\right)^{2 / 3}$
$\therefore \sin ^{2} x+\cos ^{2} x=1 \Rightarrow\left(a b^{2}\right)^{2 / 3}+\left(a^{2} b\right)^{2 / 3}=1$
49.

> increase in area
$\frac{\theta}{360^{\circ}} \times \pi(23)^{2}-\frac{\theta}{360^{\circ}} \times \pi(12)^{2}$
$\theta=90^{\circ}$
$=\frac{90^{\circ}}{360^{\circ}} \times \pi\left[(23)^{2}-(12)^{2}\right]$
$=\frac{121 \times 5}{2}$
$=\frac{605}{2}=302.5$
50.

Area of $\Delta=\sqrt{77(42)(24)(11)}=924$
$\pi r^{2}=2(924)$

$r^{2}=\frac{2 \times 924 \times 7}{22}$
$r^{2}=588$
$r=14 \sqrt{3}$

$\frac{\text { Area of sec tor ADB }}{\text { Area of sec tor ACD }}=\frac{\frac{\theta}{360^{\circ}} \times \pi r^{2}}{\frac{360^{\circ}-\theta}{360^{\circ}} \times \pi r^{2}}$
$\Rightarrow \frac{1}{2}=\frac{\theta}{360^{\circ}-\theta}$
$\Rightarrow \mathrm{q}=120^{\circ}$
$\therefore \widehat{\mathrm{ADB}}=\frac{\theta}{360^{\circ}} \times 2 \pi \mathrm{r}=\frac{2 \pi \mathrm{r}}{3}$
$\Rightarrow \widehat{\mathrm{ACB}}=\frac{4 \pi \mathrm{r}}{3}$

$\widehat{\mathrm{ADB}}=$ circumference of base $=2 \pi r_{1}$
$\frac{2 \pi r}{3}=2 \pi r_{1} \Rightarrow r_{1}=\frac{r}{3}$
Similarly $r_{2}=\frac{2 r}{3}$
$h_{1}=\sqrt{r^{2}-r_{1}^{2}}=\sqrt{r^{2}-\frac{r^{2}}{9}}=\frac{2 \sqrt{2 r}}{3}$
Similarly，$h_{2}=\frac{\sqrt{5} r}{3}$
$\frac{V_{1}}{V_{2}}=\frac{\frac{1}{3} \pi r_{1}^{2} h_{1}}{\frac{1}{3} \pi r_{2}^{2} h_{2}}=\left(\frac{r_{1}}{r_{1}}\right)^{2}\left(\frac{h_{1}}{h_{2}}\right)^{2}=\frac{1}{4} \times \frac{2 \sqrt{2}}{\sqrt{5}}$
$=\frac{1}{\sqrt{10}}$

52．Volume of metallic block $=I m^{3}$
let the side of the square base is $x \mathrm{~m}$
so，volume of the rectangular bar $=x^{2} \times 9 . .(2)$
$9 x^{2}=1 \Rightarrow x^{2}=\frac{1}{9} \Rightarrow x=\frac{1}{3} m$
side of cube possible $=\frac{1}{3} m$
so，weight of the cube $=$ weight of block $\times\left(\frac{1}{3}\right)^{3}$
$=90 \times \frac{1}{27}=\frac{10}{3} \mathrm{~kg}=3 \frac{1}{3} \mathrm{~kg}$
53.

$\angle 1=\angle 2$
（V．O．A．）
（Same radius）
（Same radius）
$\angle 2=\angle 4$
（V．O．A．）
\square（Same radius）
（Same radius）
$\therefore \angle 3=\angle 4$
As alternate interior angles are equal
$\therefore \mathrm{PT} \| \mathrm{RS}$

54.

Draw $B L$ perpendicular to $A C$ and join L to D. Since $\angle \mathrm{BCL}=30^{\circ}$. we get $\angle \mathrm{CBL}=60^{\circ}$. Since $B L C$ is a right triangle with $\angle \mathrm{BCL}=30^{\circ}$, we have $B L=B C / 2=B D$. Thus in triangle BLD, we observe that $\mathrm{BL}=\mathrm{BD}$ and $\angle \mathrm{DBL}=60^{\circ}$ and $\angle A D B=45^{\circ}$, we get $\angle A D L=15^{\circ}$
But $\angle \mathrm{DAL}=15^{\circ}$. Thus LD $=\mathrm{LA}$. We hence have $L D=L A=L B$. This implies that L is the circumcentre of the triangle BDA. Thus
$\angle \mathrm{BAD}=\frac{1}{2} \angle \mathrm{BLD}=\frac{1}{2} \times 60^{\circ}=30^{\circ}$
$30^{\circ}+45^{\circ}+\angle \mathrm{ABC}=180^{\circ}$
hence $\angle A B C=105^{\circ}$
55. $\quad \mathrm{PR}=\sqrt{\left(\mathrm{R}_{1}+r\right)^{2}-\left(R_{1}-r\right)^{2}}=\sqrt{4 \mathrm{R}_{1} r}$

$$
\begin{equation*}
R Q=\sqrt{4 R_{2} r} \tag{1}
\end{equation*}
$$

$P Q=\sqrt{4 R_{1} R_{2}}$
$P Q=P R+R Q$
$\Rightarrow \sqrt{4 R_{1} R_{2}}=\sqrt{4 R_{1} r}+\sqrt{4 R_{2} r}$

$$
\sqrt{R_{1} R_{2}}=\sqrt{R_{1} r}+\sqrt{R_{2} r}
$$

$$
\frac{1}{\sqrt{\mathrm{r}}}=\frac{1}{\sqrt{\mathrm{R}_{2}}}+\frac{1}{\sqrt{\mathrm{R}_{1}}}
$$

56.

Perimeter of triangle $A B C=A B+B C+C A$ $15=(A Q-B Q)+(B P+P C)+(A R-C R)$ $15=2 A Q$
($\mathrm{BQ}=\mathrm{BP}, \mathrm{PC}=\mathrm{RC}, \mathrm{AQ}=\mathrm{AR}$ as tangent from extternal point to a circle are equal)

$$
\mathrm{AQ}=7.5 \mathrm{~cm}
$$

57. $(x-6)^{2}+(y+6)^{2}=(x-3)^{2}+(y+7)^{2}$
..(1)
$(x-3)^{2}+(y-3)^{2}=(x-3)^{2}+(y+7)^{2}$
$y^{2}-6 y+9=y^{2}+14 y+49$
$-20 y=40$
put $y=-2$ in equation (1)
$(x-6)^{2}+(4)^{2}=(x-3)^{2}+(5)^{2}$
$x^{2}-12 x+36+16=x^{2}-6 x+9+25$
$-6 x=-18$
$x=3$
58.

$a=\frac{-3+8}{3+4}=\frac{5}{7}$
$b=\frac{6+12}{7}=\frac{18}{7}$
$x+2 y=k$
$\frac{5}{7}+2 \times \frac{18}{7}=k$
$\frac{5}{7}+\frac{36}{7}=k$
$\frac{41}{7}=k$
59. $a>b>c$
$\frac{a+b+c}{3}=c+10=a-15=k$
$\mathrm{b}=5 \quad \mathrm{c}=\mathrm{k}-10$
$a=k+15$
$a+b+c=3 k$
$k+15+5+k-10=3 k$
$10=k$
$a=25$
$b=5$
$c=0$ (
mean $=\frac{25^{2}+5^{2}+0^{2}}{3}=\frac{650}{3}=216 \frac{2}{3}$
60. $P($ sum at least 5$)=1-P($ Getting sum 3 or 4$)$ no of ways getting sum $3=1$ way i.e. $(1,1,1$,) no of ways getting sum $4=3$ ways i.e.
(1,1,2,),(1,2,1),(2,1,1)
So $P($ sum at least 5$)=1-\frac{1+3}{216}=\frac{212}{216}=\frac{53}{54}$

