RAJASTHAN NTSE STAGE-I (2017) CLASS-X [SAT]

HINTS \& SOLUTIONS

PHYSICS

1. Using $\left.\right|^{\text {st }}$ equation of motion
$V=u+a t$
$0=u-8 \times 3$
$u=24 \mathrm{~m} / \mathrm{s}$
Using II ${ }^{\text {nd }}$ equation of motion
$\mathrm{V}^{2}=\mathrm{u}^{2}+2 \mathrm{as}$
$0=(24)^{2}+2(-8) \times 5$
$576=16 S$
$S=36$
2. (1)

According to law of conservation of momentum
$m_{1} u_{1}+m_{2} u_{2}=\left(m_{1}+m_{2}\right) V$
$.01 \times 100+O=(.01+1) V$
$\frac{1}{1.01}=V$
$\mathrm{V} \cong 1 \mathrm{~m} / \mathrm{s}$
3. \quad B.F $=V_{\text {dipp }} \times D_{\text {liq }} \times g$

Density of liq
4. 1 Unit $(\mathrm{KWH})=3.6 \times 10^{6}$ Joule

200 unit will be
$200 \times 3.6 \times 10^{6}$
$7.20 \times 10^{8} \mathrm{~J}$
5. (1)

Glass
$\mathrm{V}_{\text {solid }}>\mathrm{V}_{\text {liq }}>\mathrm{V}_{\text {gas }}$
6. (1)

Mass $=15 \mathrm{Kg}$
$W_{\text {moon }}=\frac{M \times g}{6}$
$=15 \times \frac{9.8}{6}=24.5 \mathrm{~N}$
7. (4)

$$
\text { Work done }=\Delta K E
$$

$W=K_{f}-K_{i}$
$=1 / 2 m v^{2}-1 / 2 m u^{2}$
$=1 / 2 \times 2\left[(20)^{2}-(5)^{2}\right]$
$=375 \mathrm{~J}$
8. (2)

Between the principal focus and center of curvature
9. (3)
n_{3}
As the ray of light bends away from the normal in medium 3 (medium 3 is a rare medium) therefore velocity of light will be maximum in n_{3}.
10. (3)

Tyndall effect.
11. (3)

Using flemings left hand rule
12. (1)

$$
\operatorname{Req}=\frac{6}{3}=2 \Omega
$$

$\mathrm{V}=15 \mathrm{~V}$
$\mathrm{I}=\frac{\mathrm{V}}{\mathrm{R}}=\frac{15}{2}=7.5 \mathrm{~A}$
Current will equally divide in all the 3 resistors
$\therefore \mathrm{I}=2.5 \mathrm{~A}$
13. (2)
$10^{6} \mathrm{~K}$

CHEMISTRY

14. $M a s s /$ Mass $\%=\frac{\text { mass of solute }}{\text { mass of solution }} \times 100$

$$
\text { mass of solute }=30 \mathrm{gm}
$$

mass of solution $=220+30$

$$
\begin{aligned}
& =250 \mathrm{gm} \\
& =\frac{30}{250} \times 100 \\
& =12 \% . \text { Option }(3) \text { is correct. }
\end{aligned}
$$

15. Cheese is an example of gel. Option (1) is correct.
16. The difference between two miscible liquids A and B is $=(65-56)^{\circ} \mathrm{C}=9^{\circ} \mathrm{C}$.

The method used for the separation of two miscible liquids having a boiling poind difference less than $25^{\circ} \mathrm{C}$ that is fractional distillation. Option (2) is correct.
17. Magnesium atomic number is 12. $(2,8,2)$. Option (4) is correct.
18. 4 gm of O_{2} molecule
mole $=\frac{\text { given mass }}{\text { m.w.t }}=\frac{4}{32}=0.125$ mole.
1 mole of oxygen molecule contains $=2 N A$ atoms 0.125 mole of oxygen molecule will contain
$=2 \times 0.125 \times 6.022 \times 10^{23}$ atoms
$=1.5055 \times 10^{23}$ atoms. Option (3) is correct.
19. F^{-}contains 10 electrons, 9 protons and 9 neutrons.
At^{+3} contain 10 electrons, 13 protons and 13 neutrons.
So F^{-}and Al^{+3} both contains same number of electrons.
20. The basic solutions have pH more than 7 . So solution having pH 10.2 is basic in nature.

Option (4) is correct.
21. The metal which comes at the bottom side of the reactivity series is less reactive in nature. Silver (Ag) is least reactive among the elements given. Option (3) is correct.
22. Aqua Regia is a mixture of Nitric acid and Hydrochloric acid in the ratio of $1: 3$.
23. According to reactivity series, Potassium is mot reactive.
$\mathrm{K}>\mathrm{Na}>\mathrm{Ca}>\mathrm{Zn}$.
Option (3) is correct.
24. conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ will remove water from the alcohol.

Ethene. Option (3) is correct.
25. Electronic configuration is $2,8,1$ that means it is sodium having only one valence electron so the element having the same valence electron will have the similar chemical reactivity.
$\mathrm{K}-2,8,8,1$.
Option (1) is correct.
26. Methanol is poisnous in nature, so its added in ethanol to make it unfit for drinking. Option (3) is correct.

MATHEMATICS

41. $\sqrt[3]{\left(x^{1 / 3}\right)^{3}\left(y^{1 / 3}\right)^{3}+3 x^{1 / 3} y^{1 / 3}\left(x^{1 / 3}+y^{1 / 3}\right)^{3}}$
$=\sqrt[3]{\left(x^{1 / 3}+y^{1 / 3}\right)^{3}}$
$=x^{1 / 3}+y^{1 / 3}$
42. $0 . \overline{23}=0.232323$.

$$
\begin{aligned}
0 . \overline{23} & =0.233333 \ldots \ldots \ldots \ldots \\
& =0.465656 \ldots \ldots \ldots \ldots \\
& =0.4 \overline{65}
\end{aligned}
$$

43. $f(x)=k x^{2}-\sqrt{2}$
$f(-\sqrt{2})=0$
$k(-\sqrt{2})^{2}-\sqrt{2}(-\sqrt{2})+1=0$
$2 k+2+1=0$
$k=\frac{-3}{2}$
44. $3 x+2 y=13 x y$
$4 x-5 y=2 x y$
(1) $\times 5+(2) \times 2$
$15 x+10 y=65 x y$
$8 x-10 y=4 x y$
$23 x=69 x y$
$y=\frac{1}{3}$
Put $y=\frac{1}{3}$ in (1)
$3 x+2 \times \frac{1}{3}=13 x \times \frac{1}{3}$
$\frac{2}{3}=\frac{13}{3} x-3 x$
$\frac{2}{3}=\frac{4 x}{3} \Rightarrow x=\frac{1}{2}$
45.

$\tan \theta=\frac{\mathrm{h}}{9}$
$\tan (90-\theta)=\cot \theta=\frac{\mathrm{h}}{16}$
(1) $\times(2)$
$\frac{\mathrm{h}^{2}}{9 \times 16}=1$
$h=12$.

46. $\frac{\sin \theta-2 \sin ^{3} \theta}{2 \cos ^{3} \theta-\cos \theta}$
$=\frac{\sin \theta-2 \sin ^{3} \theta}{\cos \theta\left(2 \cos ^{2} \theta-1\right)}$
$=\frac{\tan \theta\left(1-2 \sin ^{2} \theta\right)}{\left[2\left(1-\sin ^{2} \theta\right)-1\right]}$
$=\frac{\tan \theta\left(1-2 \sin ^{2} \theta\right)}{\left(1-2 \sin ^{2} \theta\right)}=\tan \theta$
47. $\angle \mathrm{A}+\angle \mathrm{B}=180$

In $\triangle \mathrm{APB} \frac{\angle \mathrm{A}}{2}+\frac{\angle \mathrm{B}}{2}+\angle \mathrm{APB}=180$
$90+\angle \mathrm{APB}=180$
$\angle \mathrm{APB}=90$
48. $\angle A O B=2 x$

In $\triangle \mathrm{AOB}$
$2 x+y+y=180$
$x+y=90$.
49.

$\frac{A C^{2}}{B C^{2}}=\frac{A D \cdot A B}{B D \cdot A B}=\frac{A D}{B D}$
$\frac{\mathrm{BC}}{\mathrm{AC}}=\sqrt{\frac{\mathrm{BD}}{\mathrm{AD}}}=\sqrt{\frac{9}{4}}=\frac{3}{2}$.
50.

$$
\begin{aligned}
& (x+1)^{2}=x^{2}+(x-1)^{2} \\
& x^{2}+1+2 x=x^{2}+x^{2}+1-2 x \\
& x^{2}-4 x=0 \\
& x(x-4)=0 \\
& x=0,4
\end{aligned}
$$

But $\mathrm{x}=0$ is not possible.
$\therefore \quad \mathrm{x}=4$
so side, 4, 3, 5
Perimeter $=3+4+5=12$.
51. For equal roots

D = 0
$(3 k)^{2}-4(2)(8)=0$
$9 k-64=0$
$k= \pm \sqrt{\frac{64}{9}}= \pm \frac{8}{3}$.
52. $a+b+c=x-y+y-z+z-x=0$
$\therefore \quad a^{3}+b^{2}+c^{2}=3 a b c=3(x-y)(y-z)(z-x)$.
53.

$\therefore \quad \mathrm{AOB}=180-110=70^{\circ}$
$\angle \mathrm{AOP}=\angle \mathrm{BOP}=\frac{1}{2} \angle \mathrm{AOB}=\frac{1}{2}\left(70^{\circ}\right)=35^{\circ}$.
54. $S=\{T T, T H, H T, H T\}$
$P(\epsilon)=\frac{3}{4}$.
55. $\quad \tan 25^{\circ} \tan 35^{\circ} \tan 45^{\circ} \tan 55^{\circ} \tan 65^{\circ}$
$=\cot 65^{\circ} \cot 55^{\circ}(1) \tan 55^{\circ} \tan 65^{\circ}$
$=(1) \times(1) \times(1)$
$=1$
56. $\mathrm{a}=5$
$\mathrm{T}_{\mathrm{n}}=45$
$S_{n}=400=\frac{n}{2}[5+45]$
$\mathrm{n}=16$
$T_{n}=45=5+15 d$
$d=\frac{40}{15}=\frac{8}{3}$
$T_{n}=a+3 d$
$=5+3 \times \frac{8}{3}$
$=13$.
57. (BONUS) Initial area of grazing field is

$\pi(12)^{2} \times \frac{90}{360}=36 \pi$
final grazing field when rope is 23 m .
$\pi(23)^{2} \frac{90^{\circ}}{360^{\circ}}=529 \times \frac{\pi}{4}$
Addition grazing field when rope length increases from 12 m to 23 m .
$\frac{529}{4} \pi-36 \pi$
$\frac{529 \pi-144 \pi}{4}=\frac{605}{2}=302.5 \mathrm{~m}^{2}$.
58. Volume of sphere $=\frac{4}{3} \pi r^{3}$
$r=6$ (given)
so vol. of sphere $=\frac{4}{3} \times \pi \times 6^{3}=\frac{4 \times 216 \times \pi}{3}=288 \pi \mathrm{~cm}^{3}$.
Sphere is melted and recast into cylinder.
so volume of sphere $=$ vol. of cylinder.
$288 \pi=\pi r^{2} h$
($\mathrm{r}=3$ given)
$288 \pi=\pi \times 3^{2} \times h$
$\frac{288}{9}=h$
$h=32 \mathrm{~cm}$.
Option (4) is correct.
59. Mode $=3$ Median -2 Mean
$5=3 \times 3-2$ Mean
$-4=-2$ Mean
2 = Mean
Option (2) is correct.
60.

Let $\quad \operatorname{ar}(\triangle A B C)=x$
$\operatorname{ar}(\triangle \mathrm{ABD})=\frac{\mathrm{x}}{2}$ (median divide the triangle in two $\Delta \Delta^{\prime}$ s of equal area)
$\operatorname{ar}(\triangle \mathrm{BED})=\frac{1}{2} \times \operatorname{ar}(\triangle \mathrm{ABD})$
$=\frac{x}{4}$.
So $\quad \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{BED})}=\frac{x}{x / 4}=\frac{4}{1}$.
4 : 1 . Option (3) is correct.

