NATIONAL TALENT SEARCH EXAMINATION NTSE STAGE－II（2015）
 CLASS－X［SAT］

HINTS \＆SOLUTIONS

ANSWER KEY

Ques．	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans	3	1	2	4	2	2	1	4	3	1	3	1	4	2	4
Ques．	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans	4	4	1	3	2	4	2	2	2	3	1	3	2	3	4
Ques．	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans	3	4	2	3	2	2	2	2	2	3	4	1	1	4	2
Ques．	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans	2	4	4	4	2	3	3	$*$	3	4	4	3	2	1	2
Ques．	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Ans	1	4	4	1	1	4	1	1	2	3	3	4	4	3	2
Ques．	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
Ans	4	2	2	1	3	1	4	3	1	2	1	4	2	1	2
Ques．	91	92	93	94	95	96	97	98	99	100					
Ans	3	3	4	1,3	4	4	3	3	2	2					

CHEMISTRY

15．On compressing the gas，no．of collision of molecules at per unit area of the wall of the cylinder increases．Average Kinetic energy of the molecules remains constant as the tem－ perature is constant．

16．Solubility of $S=28.6 \%$ at $50^{\circ} \mathrm{C}$
Amount of solute in 50 ml of saturated solution $=14.3 \mathrm{~g}$ at $50^{\circ} \mathrm{C}$
at $40^{\circ} \mathrm{C}$ amount of S separates out $=2.4 \mathrm{~g}$ in 50 ml
remaining solute $=11.9$ gin 50 ml
solubility of S at $40^{\circ} \mathrm{C}=\frac{11.9}{50} \times 100=23.8 \%$ m / v

17．Given，
amount of $C=6 \mathrm{~g}$
amount of oxygen $=32 \mathrm{~g}$
$\begin{array}{lll}\mathrm{C} \\ 12 \mathrm{~g}\end{array}+\begin{aligned} & \mathrm{O}_{2} \\ & 32 \mathrm{~g}\end{aligned} \rightarrow \quad \mathrm{CO}_{2}$
$\because 12 \mathrm{~g}$ of C gives the amount of $\mathrm{CO}_{2}=44 \mathrm{~g}$
$\because 1 \mathrm{~g}$ of C gives the amount gm of $\mathrm{CO}_{2}=\frac{44}{12} \mathrm{~g}$
$\because 6 \mathrm{~g}$ of C gives the amount gm of CO_{2}
$=\frac{44}{12} \times 6=22 \mathrm{~g} \mathrm{CO}_{2}$

18．Law of conservation of mass is only valid for chemical reactions and not for nuclear reac－ tions．

19．α－particle is doubly positive helium ion ${ }_{2}^{4} \mathrm{He}^{++}$
No．of proton $=Z=2$
No．of neutrons $=A-Z=4-2=2$
No．of electron $=$ zero
20．$\quad \mathrm{m}_{1}=69$ for isotope ${ }^{69} \mathrm{Z}$
$m_{2}=71$ for isotope ${ }^{71} \mathrm{Z}$
$x_{1}=$ abundance of ${ }^{69} Z=60 \%$
$X_{2}=$ abundance of ${ }^{71} Z=40 \%$
Relative atomis mass $=\frac{m_{1} x_{1}+m_{2} x_{2}}{100}$
$=\frac{69 \times 60+40 \times 71}{100}=69.8$
21. $2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2} \xrightarrow{\Delta} 2 \mathrm{PbO}+2 \mathrm{NO}_{2}+3 \mathrm{O}_{2}$
 fumes
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq)}}+2 \mathrm{NaOH}_{(\mathrm{aq)}} \longrightarrow 2 \mathrm{NaNO}_{3(\mathrm{aq)}}+$ $\mathrm{Pb}(\mathrm{OH})_{2}$
white ppt
The compound A is $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
cation is Pb^{2+}
anion is NO_{3}^{-}
22.

27. In periodic table

Electropositive nature increases from top to bottom in a group
Electronegative nature decreases from top to bottom is a group
Atomic size decreases from left to right in a period

PHYSICS

28. Let they will meet at time t. At that time velocity of man must be greater or equal to as that of bus.
$u \geq$ at
$\mathrm{t} \leq \mathrm{u} / \mathrm{a}$
$\frac{1}{2} a t^{2}+d=u t$
$d=u t-\frac{1}{2} a t^{2}$
$d \leq u(u / a)-\frac{1}{2} a \frac{u^{2}}{a^{2}}$
$d \leq \frac{u^{2}}{2 a}$
29. $\mathrm{v}=\mathrm{u}+\mathrm{at}$
$0=u-g t$
$\mathrm{t}=\mathrm{u} / \mathrm{g}=\mathrm{n}$ (total time of ascent)
$S_{n^{\text {th }}}=u+\frac{1}{2} a(2 n-1)$
$=u-\frac{1}{2} g\left(\frac{2 u}{g}-1\right)$
$=g / 2$
30. $g=\frac{4}{3} \pi \rho R g$
$=\frac{g_{A}}{g_{B}}=\frac{\rho_{A}}{\rho_{B}} \times \frac{R_{A}}{R_{B}}$
$=3 \times 2=6$
31. In all case displacement is perpendicular to force.
$W_{1}=W_{2}=W_{3}=0$
32. $f_{\text {disc }}=\frac{360}{60}=6 \frac{\mathrm{rev}}{\mathrm{sec}}$
$f_{\text {sound }}=60 \times f_{\text {disc }}$
$=360 \mathrm{~Hz}$
33. $\quad R_{e q}=\frac{R}{2}+\frac{R}{3}+\frac{R}{2}=\frac{4 R}{3}$
$I=\frac{V}{R_{\text {eq }}}=\frac{3 V}{4 R}$
34. Bulbs are connrected in parallel
so V is same
Heat produced by first bulb $\mathrm{H}_{1}=12 \times 10$
$=120 \mathrm{~J}$
Simillarily, $\mathrm{H}_{2}=2 \times 10=20 \mathrm{~J}$
$\mathrm{H}_{3}=6 \times 10=60 \mathrm{~J}$
35. Magnetic field is produced by moving charge

MATHEMATICS

41. LCM 90
42. $x=5 n+2$
$y=5 m+4$
$x+y=5(m+n)+6$
$\frac{x+y}{5}$ Remainder $=1$
$\therefore \mathrm{z}=1$
$\frac{2 z-5}{3}=-1$
43. $\alpha=a-d$
$\beta=a$
$\gamma=a+d$
$3 a=\frac{144}{64}$
$a=\frac{144}{64}=\frac{6}{8}=\frac{3}{4}$
$(a-d) 1 \cdot(a+d)=\frac{15}{64}$
$\left(a^{2}-d^{2}\right) 1 .=\frac{15}{64}$
$\left(\frac{9}{16}-d^{2}\right)=\frac{15}{64} \times \frac{4}{3}=\frac{5}{16}$
$\mathrm{d}^{2}=\frac{9}{16}-\frac{5}{16}$
$=\frac{4}{16}=\frac{1}{4}$
$d= \pm \frac{1}{2}$
$(a+d)-(a-d)$
$=a+d-a=d$
$=2\left(\frac{1}{2}\right)$
44.

$=1$
$2 x+y=10$
$(x+y)+x=10$
$x+y$ is max when $x=0$
$\therefore(\mathrm{x}+\mathrm{y})_{\text {max }}=10$
$2 x+y=10$
$2(x+y)-y=10$
$\therefore \mathrm{x}+\mathrm{y}$ is $\min \mathrm{y}=0$
$(x+y)_{\min }=\frac{10}{2}=5$
$\therefore(\mathrm{x}+\mathrm{y})_{\max }+(\mathrm{x}+\mathrm{y})_{\text {min }}=10+5=15$
45. $y+\frac{1}{y}=x$
$y^{2}+\frac{1}{y^{2}}=x^{2}-2$
$7 x-2\left(x^{2}-2\right)=9$
$7 x-2 x^{2}+4=9$
$2 x^{2}-7 x+5=0$
$2 x(x-1)-5(x-1)$
$(2 x-5)(x-1)=0$
$x=\frac{5}{2} x=1$
$y+\frac{1}{y}=1 \quad$ (Not possible)
$y+\frac{1}{y}=\frac{5}{2}$
on solving we get
$y=2, \frac{1}{2}$
so only one integral solution possible.
46. $A, B, A+B$ are in $A P$
$\therefore 2 B=A+A+B$
$2 B=2 A+B$
$B=2 A$
\therefore Area of bigger circle $=A+B=3 A$
$3 A=\pi R^{2}$
$A=\frac{\pi R^{2}}{3}$
$\pi \mathrm{r}^{2}=\frac{\pi \mathrm{R}^{2}}{3}$
$r^{2}=\frac{4^{2}}{3}$
$r^{2}=\frac{16}{3}$
$r=\sqrt{\frac{16}{3}}=\frac{4}{\sqrt{3}}=\frac{4 \sqrt{3}}{3}$
47. $\mathrm{c}=\mathrm{a}+\mathrm{b}-8 \Rightarrow \mathrm{a}+\mathrm{b}-\mathrm{c}=8$
$a=b+c-8 \Rightarrow b+c-a=8$
$b=a+b-8$
$(a+b+c)=2(a+b+c)-24$
$a+b+c=24$
$a+b-c=8$
$2 c=16$
$\mathrm{c}=8$
$\mathrm{c}=\mathrm{a}=\mathrm{b}=8$
area $=\frac{\sqrt{3}}{4} 8^{2}=16 \sqrt{3}$
48. $\frac{1-\cos x}{\sin x}=\frac{1}{3}$
$3(1-\cos x)=\sin x$
$9\left(1+\cos ^{2} x-2 \cos x\right)=1-\cos ^{2} x$
$9+9 \cos ^{2} x-18 \cos x=7-\cos ^{12} x$
$8+10 \cos ^{2} x-18 \cos x=0$
$5 \cos ^{2} x-9 \cos x+4=0$
$5 \cos ^{21} x-5 \cos x-4 \cos x+4=0$
$5 \cos x(\cos x-1)-4(\cos x-1)=0$
$\cos x=1$
$\cos x=4 / 5$
$\sin x=\frac{3}{5}$
$\therefore \cos ^{2} x-\sin ^{2} x$
$=\frac{16}{25}-\frac{9}{25}=\frac{7}{25}$

51. $\%$ Change $=\frac{6 \pi r^{2}}{4 \pi r^{2}} \times 100=150 \%$
52.

$\triangle \mathrm{ABC} \sim \Delta \mathrm{ADE}$
$\frac{12-2 r}{r}=\frac{12}{5}$
$r=\frac{30}{11}$
Vol. of cylinder $=\pi r^{2} h$
$=\pi r^{2}(2 r)$
$=2 \pi r^{3}$
$=127.39$
49. $\Delta=\frac{a b c}{4 R}$
$R=\frac{a b c}{4 \Delta}$
$=\frac{2.7 .7 .14 \sin \left(\frac{\theta}{2}\right)}{4.49 \sin \theta}$
50.
$=\frac{7 \sin \left(\frac{\theta}{2}\right)}{2 \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right)}=\frac{7}{2} \sec \left(\frac{\theta}{2}\right)$
$\pi R^{2}=\frac{22}{7} \times \frac{49}{4} \sec ^{2}\left(\frac{\theta}{2}\right)$
$=\frac{77}{2} \sec ^{2}\left(\frac{\theta}{2}\right)$

$\sqrt{2} x=12$
$x=6 \sqrt{2}$
Then area $=\frac{135 \pi}{360} \times 12^{2}-\frac{1}{2} \times 3 x \times x$
$=\frac{54 \times 22}{7}-108$
$\Rightarrow \frac{1188-756}{7}=\frac{432}{7}$
$=61 \frac{5}{7}$
54.

$\frac{x}{y}=\frac{1}{x-1}$
$x^{2}-x=y$
$\cos 72=\frac{x^{2}+y^{2}-x^{2}}{2 x y}$
$x^{2}-x=2 x \cos 72^{\circ}$
$x-1=2 \cos 72^{\circ}$
$x=1+2 \cos 72^{\circ}$
$=1+2\left(\frac{\sqrt{5}-1}{2}\right)$
$=1+\frac{\sqrt{5}-1}{2}=\frac{\sqrt{5}+1}{2}$
$\therefore \mathrm{BD}=\mathrm{x}-1$
$=\frac{\sqrt{5}+1}{2}-1=\frac{\sqrt{5}-1}{2}$

$\angle B A C-\angle O B C$
$=90+\theta-\theta$
$=90$

$\frac{\operatorname{area} \triangle \mathrm{PBC}}{\operatorname{area} \triangle \mathrm{ABC}}=\frac{6 \mathrm{x}}{10 \mathrm{x}}=\frac{3}{5}$

Educating for better tomorrow

Admission Annoucement

SCHOLARSHIP CRITERIA
NTSE IId Stage Qualified 40% NTSE ${ }^{\text {T}}$ Stage Qualified 25\% 75% \& above of Cut-Off $\quad 10 \%$
man now

