NTSE STAGE-II (2013)
 CLASS-X [LANGUAGE]

ANSWERKEY

ENGLISH

Ques.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$
Ans	4	3	3	1	4	3	2	2	4	1	3	2	4	4	1
Ques.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans	3	4	2	1	1	3	3	1	3	2	1	2	2	1	4
Ques.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans	1	4	1	4	1	4	2	3	3	1	1	3	2	3	2
Ques.	46	47	48	49	50										
Ans	1	3	2	4	4										

HINDI

Ques.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans	2	2	3	1	2	3	2	1	4	1	3	2	4	3	1
Ques.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans	1	4	2	2	1	3	3	1	3	3	1	2	2	2	4
Ques.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans	2	4	1	4	1	4	2	3	3	1	1	3	2	3	2
Ques.	46	47	48	49	50										
Ans	1	3	2	4	4										

NTSE STAGE－II（2013）
 CLASS－X［SAT］

HINTS \＆SOLUTIONS

ANSWER KEY

Ques．	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans	4	2	4	3	1,4	2	2	2	3	3	2	4	4 or（bonus）	1	3
Ques．	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans	4	1	4	3	1	3	1	4	2	4	3	4	3	1	2
Ques．	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans	4	3	3	4	1	3	1	2	3	4	4	1	3	1	3
Ques．	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans	2	2	4	4	2	2	3	2	2	4	2	4	3	4	3
Ques．	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Ans	3	1	3	4	1	3	1	4	2	4	2	2	1	3	4
Ques．	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
Ans	3	2	2	4	2	4	1	4	1	1	4	3	4	1	2
Ques．	91	92	93	94	95	96	97	98	99	100					
Ans	4	2	4	1	2	2	4	3	2	2					

CHEMISTRY

15．Liquid A gives a more cooling sensation than liquid B means liquid A is early vaporised than liquid B ． Thus，liquid A has less B P and lower latent heat of vaporisation than that of liquid B ．
16.

First of all＇C＇can be separated from the mixture by sublimation．Thereafter，the mixture of＇A＇and＇B＇ can be put in water，filtered to separate B and recover A by crystallisation．

17． $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \quad 2 \mathrm{H}_{2} \mathrm{O}$
$4 \mathrm{gm} \quad 32 \mathrm{gm} \quad 36 \mathrm{gm}$
$2 \mathrm{gm} \quad 16 \mathrm{gm} \quad 18 \mathrm{gm}$
$2+16=18 \mathrm{gm}$
18．No．of electrons in L shell $=7$
No．of protons＝ 9
Electronic configuration $=2,7$
By acquiring one $e^{-i n} L$ shell gets $8 \mathrm{e}^{-}$in the last shell．

19．This reaction takes place in presence of oxygen． Hence，it is a combustion reaction and in this reaction there is a addition of two elements so it is combination reaction．

20． $\mathrm{CaCO}_{3}+$ mineral acid $\longrightarrow \mathrm{CO}_{2} \uparrow \xrightarrow[(\mathrm{Y})]{\mathrm{Ca}(\mathrm{OH})_{2}} \mathrm{CaCO}_{3}$
（X）
（X）
$\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{Cl}_{2} \longrightarrow \mathrm{CaOCl}_{2}$ （Y）
（Z）Bleaching powder
21．$[\mathrm{A}] \mathrm{CH}_{3}-\mathrm{COOH}+\mathrm{NH}_{4} \mathrm{OH} \rightarrow \mathrm{CH}_{3}-\mathrm{COONH}_{4}+\mathrm{H}_{2} \mathrm{O}$ weak acid weak base salt
$[B] \mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{NaOH}+\mathrm{H}_{2} \uparrow$

$[\mathrm{C}] \mathrm{Mg}+2 \mathrm{HCl} \longrightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2} \uparrow$

22． $2 \mathrm{Al}+6 \mathrm{HNO}_{3} \longrightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+6 \mathrm{NO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$

Protective layer

23．$\underset{(X)}{\mathrm{Na}}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \underset{(\mathrm{Y})}{\mathrm{NaOH}}+\underset{(\mathrm{Z})}{\mathrm{H}_{2}}+$ Energy
$\mathrm{NaOH}_{(\mathrm{aq)}}+\mathrm{HCl}_{(\mathrm{aq})} \longrightarrow \mathrm{NaCl}_{(\mathrm{aq)}}+\mathrm{H}_{2} \mathrm{O}_{(\ell)}$
$X=\mathrm{Na}, \mathrm{Y}=\mathrm{NaOH}, \mathrm{Z}=\mathrm{H}_{2}$
24. $\underset{\text { (Alcohol) }}{\text { Alkaline } \mathrm{KMnO}_{4}} \underset{\text { Acidification }}{\text { (Carboxylic acid) }}$

Hence $X=$ Ethanoic acid, $Y=$ Ethanol, Z = Ethylethanoate

25. $\mathrm{C}_{2} \mathrm{H}_{2}$ is Ethyne and $\mathrm{C}_{3} \mathrm{H}_{6}$ is propene. Both of them are hydrocarbon. Hence they would undergo combustion to form $\mathrm{CO}_{2} \& \mathrm{H}_{2} \mathrm{O}$.
Both $\mathrm{C}_{2} \mathrm{H}_{2} \& \mathrm{C}_{3} \mathrm{H}_{6}$ are unsaturated compounds. Hence they would undergo addition reaction.
26. $2 \mathrm{X}+3 \mathrm{H}_{2} \longrightarrow 2 \mathrm{XH}_{3}$

Element ' X ' is placed on R.H.S. of periodic table. It is non-metal.
Element ' X ' is combining with three monovalent H atoms. Hence its valency is three. It has 5 valence electrons. It is a gas.
27. Element ' X ' $(Z=12)$ is $M g$ and, Element ' Y ' $(Z=17)$ is Cl .
$\underset{(\mathrm{X})}{\mathrm{Mg}}+\underset{\text { (Y) }}{\mathrm{Cl}_{2}} \longrightarrow \underset{\text { (Z) }}{\mathrm{MgCl}_{2}}$
Molucular formula of Z is XY_{2}.
Compound ' Z ' is ionic compound, hence it would
conduct electricity in molten state.

PHYSICS

28. If air bubble is in the path then sound wave will take more time to travel this distance.
29. In optical lens (for eye defects) concave lens is used. focal length must be much larger then 2.5 cm if its is equal or less than 2.5 cm then it mean that the power point is at approxmetly 2.5 cm , which is not possible.
30. Since F_{g} is perpendicular to displacement at each instant so Work done = 0
31.

Resistance of each bulb is R.
$I=\frac{2 V}{3 R}$
$P_{A}=P_{B}=\left(\frac{V}{3 R}\right)^{2} R=\frac{V^{2}}{9 R}$
$P_{c}=\frac{4 \mathrm{~V}^{2}}{9 R}$
When bulb A is fused, then
Now, current, $I=\frac{V}{2 R}$
So. $P_{B}=P_{C}=\frac{V^{2}}{4 R}$
So, B will be brighter and C will be dimmer
33. Since $V_{A B}$ \& resistance (2R) is same so ' i ' will also be same
34. $\mathrm{KE}=\frac{\mathrm{p}^{2}}{2 \mathrm{~m}}$
$|\overrightarrow{\mathrm{P}}|$ is same so $K E \propto \frac{1}{\mathrm{~m}}$
35. x is decreasing with decresing speed
37. $A v e r a g e ~ s p e e d ~=\frac{20}{20}=1 \mathrm{~m} / \mathrm{s}$ maximum speed from graph is between time t $=10 \mathrm{sec}$. and $\mathrm{t}=18 \mathrm{sec}$.

$$
V_{\max }=\frac{20-4}{18-10}=\frac{16}{8}=2 \mathrm{~m} / \mathrm{s}
$$

38. $g=\frac{G M}{R^{2}}=\frac{G \frac{4}{3} \pi R^{3} \rho}{R^{2}}$
$=\frac{4}{3} \pi \mathrm{~g} \rho \mathrm{R}$
$g \propto R$
39. Plastic is non magnetic substance and open ring does not form magnetic poles so due to induction only ring Q will experience retarding force

MATHEMATICS

41.

$V=x(12-2 x)^{2}$
This box has maximum volme when $x=2 \mathrm{~cm}$ which is 128 c.c.
So, volume130 cc is not possible.
42. For similarity of triangles we have SSS criteria. So S_{1} in true.
But for polygon : two polygon to be similar if the corresponding sides are in same ratio then corresponding angle must be same. So S_{2} is not correct.
43.

$\mathrm{a}=2 \sqrt{3} \mathrm{~cm}$
$\frac{1}{2} a(x+y+z)=\frac{\sqrt{3}}{4} a^{2}$
$x+y+z=\frac{\sqrt{3}}{2} a=\frac{\sqrt{3}}{2} \times 2 \sqrt{3}=3 \mathrm{~cm}$
44. $\sqrt[4]{6765201}=51$
45. All odd square can be written in the form $8 n+1$
$1^{2}=1=8 \times 0+1$
$3^{2}=9=8 \times 1+1$
$5^{2}=25=8 \times 3+1$
$7^{2}=49=8 \times 6+1$
46.

Area of interior region $=a^{2}-\pi\left(\frac{a}{2}\right)^{2}$

$$
\begin{aligned}
& =a^{2}-\pi \frac{a^{2}}{4} \\
& =a^{2}\left(\frac{4-a}{4}\right)
\end{aligned}
$$

47. $\tan 1^{\circ} \tan 2^{\circ} \tan 3^{\circ}$ \qquad . $\tan 89^{\circ}$
$=\left(\tan 1^{\circ} \tan 89^{\circ}\right)\left(\tan 2^{\circ} \tan 88\right)$ $\tan 45^{\circ}$
$=\left(\tan 1^{\circ} \tan 1^{\circ}\right)\left(\tan 2^{\circ} \cot 2^{\circ}\right)$ \qquad
$=(1)(1)$ \qquad (1)
$=1$
48. $a x^{2}+b x+c=0$ will have real roots when $c=0$.
49.

S	S
S	S

If we cut square S from a piece of tin at that time the volume of open box is 0 .
But the open box made from S is always be greater than 0 .
So according to this $4^{\text {th }}$ option is not possible.
50. Every parallelogram is a trapezium
51. Triangle (By SSS criteria).
52. Let there are x human being and y dogs
\therefore Total legs $=2 x+4 y$
one tenth of x human beings lost a leg.
$\therefore(2 x+4 y)-\frac{x}{10}=77$
$\frac{19 x}{10}+4 y=77$
when $x=10$
$4 y=77-19=58$ (Which is not possible).
when $x=30$
$57+4 y=77$
$4 y=20$
$y=5$
\therefore Number of dogs $=5$
53. Let if we take n small simicircle of radii r

If we take n small simicircle of radii $2 R=2 n r$
If we take n small simicircle of radii $R=n r$

Part I $=\pi R=n \pi r$
Part II = $\mathrm{n}(\pi \mathrm{r})$

so Part I \& II always be equal.
54. From 1 to 50 number.

No. which are divisible by $4=25$
No. which are divisible by $6=16$
No. which are divisible by $12=8$
No. which are divisible by 4 or $6=25+16-8$ $=33$
So, number which are not divisible by 4 or 6

$$
=100-33=67
$$

So, requred probability $=\frac{67}{100}=0.67$
55. $\sqrt{(a-b)^{2}}+\sqrt{(b-a)^{2}}$
$=|a-b|+|b-a|$
Let $\mathrm{a}>\mathrm{b}$ Let $\mathrm{a}<\mathrm{b}$
then then
$|a-b|+|b-a|$

$$
|a-b|+|b-a|
$$

$=a-b+a-b$

$$
=b-a+b-a
$$

$=2 a-2 b \quad=2 b-2 a$
i.e. +ve i.e. +ve

So answer is always +ve if $a \neq b$
56. $\frac{4}{3} \pi R^{3}=\frac{4}{3} \pi\left(r_{1}{ }^{3}+r_{2}{ }^{3}+r_{3}{ }^{3}+\ldots \ldots \ldots . r_{n}{ }^{3}\right) \quad \ldots$ (i)
$S_{1}=4 \pi R^{2}$
$S_{2}=4 \pi\left(r_{1}{ }^{2}+r_{2}{ }^{2}+r_{3}{ }^{2}+\ldots \ldots \ldots .+r_{n}{ }^{2}\right)$
From (i), we get
$R^{3}=r_{1}^{3}+r_{2}{ }^{3}+r_{3}{ }^{3}+\ldots \ldots+r_{n}{ }^{3}$
If all smaller sphere are of equal radius i.e. r
then, $\frac{4}{3} \pi \mathrm{R}^{3}=\frac{4}{3} \pi \times n r^{3}$
$R^{3}=n r^{3}$
$\frac{S_{1}}{S_{2}}=\frac{R^{2}}{n \times r^{2}}=\frac{\left(n r^{3}\right)^{2 / 3}}{n r^{2}}=\frac{n^{2 / 3} \times r^{2}}{n r^{2}}$
$\mathrm{nS}_{1}=\mathrm{n}^{2 / 3} \mathrm{~S}_{2} \Rightarrow \mathrm{n}^{1 / 3} \mathrm{~S}_{1}=\mathrm{S}_{2} \quad \therefore \mathrm{~S}_{2}>\mathrm{S}_{1}$.
57. 23.10100100010000 is an irrational number as it is Non-terminating \& non-repeating.
58. Out of the options, 14 cannot be made as it required 2, Rs. 5 coins \& 4, Rs. 1 coin i.e. $5,5,1,1,1,1$.
59. Ascending order
$1,3,4,6,7,8,8,9,12,15$
Median $=\frac{7+8}{2}=7.5$.
60. Average speed $=6 \mathrm{~km} / \mathrm{hr}$.
$6=\frac{2 \times 4 \times x}{4+x}$
$24+6 x=8 x$
$2 x=24$
$x=12 \mathrm{~km} / \mathrm{hr}$.

